Analysis of PCBs and Pesticides

in

Air and Precipitation Samples

IADN Project Gas Chromatography Procedure

Prepared by

Ilora Basu, Matt O'Dell, and Karen Arnold

School of Public and Environmental Affairs Indiana University Bloomington, Indiana.

Version 1.2 – July 2000

TABLE OF CONTENTS

Chapters

Page

I.	Introduction	1
II	Routine GC Maintenance	3
III	GC Cleaning: Clipping old column	5
IV.	Routine GC Operation	8
V.	HP 3365 ChemStation: General Integration	12
VI.	Pesticide Data Reduction in 50% Fraction	14
VII.	PCB and Pesticide Data Reduction in Hexane Fraction	21
VIII.	Appendix: Method Information from GC 6890	32

Charts

Page

1.	Sequence	10
2.	Pesticide Calibration Table	17
3.	Internal Standard Report, Pesticides, 50% fraction	19
4.	Events, Pesticides, 50% fraction	20
5.	PCB Calibration Table	25
6.	Internat Standard Reports, PCBs, Hexane fraction	29
7.	Events, PCBs, Hexane fraction	31

Chromatograms

Page

1.	Pesticide Calibration Standard	16
2.	Pesticide in vapor amples	18
3.	Mullin 94	23
4.	PCB Calibration Standard	24
5.	PCBs in Vapor Sample	28

I. INTRODUCTION

This document describes the instrumental analysis and quantitation of PCBs and pesticides in air and precipitation samples collected from five sites on the Great Lakes. This research is conducted at the School of Public and Environmental Affairs, Indiana University, Bloomington, as a part of the Integrated Atmospheric Deposition Network (IADN). The Great Lakes National Program Office of the U.S Environmental Protection Office supports the research. The following summarizes the gas chromatographic technique used for quantitation.

Gas Chromatographs used for analysis of PCBs and pesticides are:

- 1. Hewlett Packard 5890 with 7673A autosampler and Ni⁶³ electron capture detector; it is referred as GC North or Instrument #1
- Hewlett Packard 5890 with 7673A autosampler and Ni⁶³ electron capture detector; it is referred as GC South or Instrument #2 The Integrator Hewlett Packard 3396 controls operations of these two GCs. GCs and autosamplers are connected with Multichannel Interface Hewlett Packard 35900E.
- 3. Hewlett Packard 6890 with electronic pressure control, 7683 Autosampler and a micro ECD; This GC is mainly used for confirmation of certain compounds.

A 60m, DB-5 column with 0.25mm i.d and 0.1μ film thickness is used for good resolution. Data acquisition and quantitation are done in Hewlett Packard 3365 ChemStation Revision A.06.03 (509). Hydrogen and Nitrogen, ultrapure grade, are used as carrier gas and detector make-up gas. A 60m, DB-1701column with 0.25mm i.d and 0.25 μ film thickness is used as a second confirmation column.

Hexane fraction of a sample after silica gel cleanup is used for the analysis of PCBs, HCB, p,p'-DDE, p,p'-DDT, t-Nonachlor, aldrin, o,p'-DDT, and Octachlorostyrene. The 50% dichloromethane fraction in hexane is used for analyses of the other pesticides. After GC work the mass of the analytes are calculated by internal standard (ISTD) quantitaion procedure. The ISTDs for PCB analysis are PCB congeners 30 and 204. The ISTDs for the pesticides are PCB congeners 65 and 155.

For every GC run one hexane blank and a calibration standard are run for checking the instrument background and for calibrating the instrument. A second reference standard is also run to check the performance of the instrument. Another calibration standard is run at the end to check the shift of response factor of the instrument during the run. Another hexane blank is run at the end to check the cleanliness of the instrument after the samples are run.

Relative response factors (RRFs) for each analyte are determined from the calibration standard's peak areas using equation,

$$RRF_{std} = \left(\frac{mass_{a}}{area_{a}}\right)_{std} \div \left(\frac{mass_{istd}}{area_{istd}}\right)_{std}$$

Where $mass_a$ is the analyte's known mass in the injected amount of calibration standard, $area_a$ is the analyte's peak area, $mass_{istd}$ is the known mass of the appropriate internal standard, and $area_{istd}$ is that internal standard's peak area.

An analyte's mass in a sample $(mass_a)$ is calculated from the RRF_{std} above and the internal standard response in the sample by the following equation:

$$(\text{mass}_{a})_{\text{sample}} = (\text{area}_{a})_{\text{sample}} \times \text{RRF}_{\text{std}} \times \left(\frac{\text{mass}_{\text{istd}}}{\text{area}_{\text{istd}}}\right)_{\text{sample}}$$

where $area_a$ is the analyte's peak area in the sample, $mass_{istd}$ is the mass of internal standard spiked into the sample, and $area_{istd}$ is the internal standard's peak area in the sample.

The routine GC maintenance, daily operation, instrument calibration, and the quantitation are described in the following sections.

II. ROUTINE GC MAINTENANCE

1. Gaz Tanks

Check the gas tanks. Tanks should not go dry. While changing the tank, lower the temperature of the GC oven down to 40° C. Leave it at 40° C for about 15 minutes after changing the tank to get rid of air or oxygen that was drawn in.

2. Head Pressure

Check the column head pressure. It should be at 22-24 psi. If the pressure falls, tighten the septum nut. If the pressure is still low check for leaks and tighten other connections.

3. **GC oven Baking**

After every GC run bake the oven at 280^oC for 1 hour. After every other run also bake the injector and the detector at 280^oC and 380^oC.

4. Septum

a) After every 50- 60 samples or so change the septum.

b) Cool the oven down to 40 C.

c) Remove autosampler tower.

d) Remove septum nut and take the old septum out. Discard.

e) Using clean Q-tips soaked in hexane, wipe off the septum holder.

f) Put a new clean septum and replace the nut. Nut should be snug but not too tight. Column head pressure should go up to 24 psi if nut is tight enough. Check the tightness of the nut after injecting the first sample. Make sure that the head pressure is still 24 psi

5. Background

Background signals in both GC 5890 are usually around 20. For 6890 the output is 170-200 mz. Hexane is analyzed at the start of every GC run to monitor the baseline stability. If the signal goes up or hexane run produces noisy chromatogram GC should be cleaned.

6. Standard

Mullin 94 standard and a Mixed Pesticide Standard should be monitored to check the peak detection and the peak broadening or tailing. If the peak shapes are not satisfactory, column should be clipped. Altogether 118 peaks (including PCBs, pesticides, surrogate and Internal standards) should be detected in PCB standards and congener 17, 18, and 77 should be separated. If not, install a new column.

7. Checking Leaks and Gas Flow in 5890

Check leaks once in two weeks with a leak detector. Check around the septum, at the injector end, and at the detector end of the column.

Check the gas flow once in two weeks with a flow meter. Approximate gas flows are as follows:

Split vent	120 ml/min.
Purge vent	2 ml/min.
Total flow through detector	22 ml/min.

8. Checking Leaks and Gas Flow in 6890

Check leaks once in two weeks with a leak detector. Check around the septum, at the injector end, and at the detector end of the column.

Approximate gas flows are as follows:

Split vent	61.4 mL/min
Total flow	70 mL/min
Initial column flow	2 mL/min
Detector gas flow	10 mL/min

The gas flows are set electronically. Sometimes it is advisable to monitor the gas flow with a flow meter to check if the electronic set up match with the actual flow.

The detailed GC 6890 conditions and method information for DB-5 and DB-1701 columns are printed out and added in the appendix.

III. GC CLEANING

CLIPPING OLD COLUMN OR INSTALLING A NEW COLUMN

1. Taking Apart

- a) Turn oven, injector and detector off.
- b) Turn hydrogen and nitrogen off manually or electronically. Wait until everything cools down.
- c) Take the autosampler tower off.
- d) Undo the small nut covering the septum and the large nut underneath it to expose the injection liner. Take the liner out.
- e) Open the oven. Take the column out (by detaching from injector and detector ends).
- f) Unscrew the nuts from both injector and detector ends of columns and plug the column ends with a septum. **Open end of column should not be exposed to air.**
- g) Place the column on the workbench.
- h) Unscrew the holder nut underneath the injection liner. There is one gold seal and a washer in it. The washer and the seal need to be replaced each time they are taken apart. Clean these parts by ultrasonication with dichloromethane and hexane and air dry. **This step is done when there is a problem with signal or base line.**
- i) Put a beaker inside the oven underneath the injection port and pour some hexane through the injection port. Clean the injection port with Q-tips and rinse again with hexane.

2. Assembling Injection Port and Liner

- a) **If step h is performed**, assemble the holder nut. Place the gold washer first and then the seal. The tapered opening of the seal will face downward. (The tapered end will hold the end of the ferrule from the column.) Screw the nut in before placing the injection liner.
- b) Insert a new liner.
- c) Put a viton O-ring on the liner. Put the big nut on and tighten it. Put in a clean septum. Cover the septum with septum nut. Tighten with a wrench.

3. Clipping Column

- a) Take the nut off the injector end of the column. Carefully scrape out all the ferrules from the column nuts. Clean all different parts with Q-tips soaked in DCM and ultrasonicate these with DCM and Hexane for 10 minutes with each solvent. Onto the column, insert the nut first and then a new ferrule with conical end pointing towards the open end of the column.
- b) Clip the column. Make a clean cut with diamond tip score or ceramic square. Examine the hole with magnifying glass. It should be a clean hole without any jagged end. Always clip the column after putting the nut and the ferrule on.
- c) Measure **25mm** from the tip of the column. Mark this point with Liquid Paper.
- d) Carefully insert the column with nut and ferrule through the holder nut and screw it in. As soon as it feels tight, pull the column out gently until the white mark is seen. Hand tighten the screw more and make it tight with wrench 1/4 turn after hand tight. **Do not over tighten**.
- e) Take the nut off the detector end of the column. Remove old ferrule. Put the nut and the new ferrule on the column in the same way as in the injector end. Clip the column and check for the nice clean cut. Turn hydrogen on and check the flow of gas through the column by inserting the cut end in a beaker of hexane. Turn hydrogen off.
- f) Insert the column all the way up until it stops. Pull down about 1 mm and tighten the screw.

4 Checking Leaks and Gas Flow

- a) Turn H_2 and N_2 on. Check leaks with a leak detector. Check around the septum, at the injector and at the detector ends of the column inside the oven. Check that the head pressure is 24 psi.
- b) Check the gas flow with a flow meter. Approximate gas flows for 5890 are as follows:

Split vent	120 ml/min
Purge vent	2 ml/min.
Total flow through detector	22 ml/min

c) Gas flow in 6890 should be back to electronic initial set up

Split vent	61.4 mL/min
Total flow	70 mL/min
Initial column flow	2 mL/min
Detector gas flow	10 mL/min

5. Assembling

- a) Replace the autosampler tower.
- b) Turn heated zones on.
- c) Turn oven on and set the temperature to 40° C for an hour. Change oven temperature to 70° C and leave another hour.
- d) If it is an old column, bake the column, injector and detector for an hour.

Baking temperature:

	0
Oven:	280°C
Injector A:	$280^{0}C$
Injector B:	$280^{0}C$
Detector A:	$380^{0}C$
Detector B:	$380^{0}C$

- e) If it is a new column, bake injector and detector. Column should be conditioned by ramping it 1 or 2 degrees per minute to 280^oC. Hold there for 1 hour.
- f) If blank run looks satisfactory, check a standard.

IV. ROUTINE GC OPERATION

1. GC condition and oven temperature program:

PCBs, Hexachlorobenzene, p,p'-DDE, aldrin, o,p'-DDT, octachlorostyrene, about 50% of t-Nonachlor, and p,p'-DDT are eluted in the hexane fraction, whereas the other chlorinated pesticides are eluted in the 50% dichloromethane in hexane fraction after the silica gel column chromatography. The procedure for nitrogen blowdown, spiking with internal standard, and making microvials for the autosampler are described in IADN Project Sample Preparation Procedure, Version 1.2, and May 2000.

<u>GC 5890 :</u>	
Carrier gas:	Hydrogen
Make up gas	Nitrogen
Split vent:	120 ml/min
Purge vent	2 ml/min
Total flow through the detector:	22 ml/min
Column:	DB-5, 60m, 0.25mm i.d, 0.1 μ film thickness

<u>GC 6890</u>

Carrier gas:	Hydrogen
Make up gas	Nitrogen
Split vent	61.4 mL/min
Total flow	70 mL/min
Initial column flow	2 mL/min
Detector gas flow	10 mL/min

The detailed GC conditions for the GCs are attached in appendix.

2. Temperature Program for 5890 and 6890

<u>DB-5</u>		<u>DB-1701</u>	
Initial temp.	100^{0} C	Initial temp.	$100^{0} C$
Initial time	1 min.	Initial time	1 min.
Rate	1 [°] C/min	Rate	10 ⁰ C/min
Final temp.	240^{0} C	Final temp.	160° C
Rate A	10 ⁰ C/min	Rate A	1 ⁰ C/min
Final temp A	280^{0} C	Final temp A	$240^{\circ} \mathrm{C}$
Final time	20 min.	Rate B	10 ⁰ C/min
Purge on	3 min.	Final temp B	260° C
Purge off	150 min.	Final time	20 min.
Run time	165 min.	Run time	109 min.

Mike Mullin specified the GC condition, column type, and the oven temperature program. The method name is <u>Mullin.m</u>

3. GC Pre-run

- a) Check if there is sufficient H_2 for operation. If not, change the tank. If necessary, change septum.
- b) Bake oven at 280°C for half an hour. Bake injector and detector at 280°C and 380°C respectively about every other time the oven is baked.
- c) Cool oven to 100°C, injector to 250°C, and detector to 350°C. Make the samples ready in microvials and load the autosampler tray.

4. Logging into the computer

- a) User name pvlab29
- b) Password *****
- c) Domain IUB

5. Preparing Sequence in ChemStation

Open HPChemStation. Open North GC, South GC or GCSPEA

Method and Run Control

Sequence

Sequence parameter

a) Type in the operator's name and the subdirectory name (Batch ID). Type in the information about calibration standard, dates, and spikes in the comment section.

b) Set the prefix/counter, signal 1: Type in analysis date as prefix. Example J2700 (data acquired on January 27, 2000). Counter should be 001.

c) Prepare a sample table with hexane blank, calibration standard, performance standard, and actual samples with proper ID's. At the end of each sample ID indicate whether the sample is a hexane fraction or 50% fraction with H or F1. Repeat hexane blank and a fresh standard at the end of the sequence.

d) Save the sequence in c:\HPChem\1\Sequence as .S file.

An example of a sequence is given on the next page.

Chart 1

Sequence: C:\HPCHEM\1\DATA\M200CH\M200CH.S

Sequence Parameters:

Operator:

Data File	Naming:
Signal 1	Prefix:
	Counter:
Signal 2	Prefix:
	Counter:
Data Dire	ctory
Data Subd	irectory:

Part of Methods to run:

Prefix/Counter j11400 01 SIG2 0001 C:\NPCHEM\1\DATA\

H200CH

not used

Lidia Strandberg

According to Runtime Checklist

Barcode Readers

shutdown Cmd/Macro:

none

Sequence Comment: South GC pcbcalst(99) and pcbperfst(98). 7/14/00.

Sequence Table (Front Injector) :

Method and Injection Info Part:

Line Vial SampleName Method Inj SampleType InjVolume DataFile

1	1	hexane blank	MULLIN	1	Sample	1.0
2	2	pebcalst 000714	MULLIN	1	Sample	1.0
3	3	properfat 000714	MULLIN	1	Sample	1.0
4	4	1bc 000626,h	MULLIN	1	Sample	1.0
5	5	bh 01c 000314,h	MULLIN	1	Sample	1.0
6	6	ch 01c 000314.h	MULLIN	1	Sample	1.0
7	7	eh 02c 000314b,h	MULLIN	1	Sample	1.0
		sh 01c 000314,h	MULLIN	1	Sample	1.0
9	9	sh 02c 000314.h	MULLIN	1	Sample	1.0
10	10	th 02c 000314,h	MULLIN	1	Sample	1.0
11	11	ch 02c1 000314,h	MULLIN	1	Sample	1.0
12	12	ch 02c2 000314,h	MULLIN	1	Sample	1.0
13	13	pebcalst 000714	MULLIN	1	Sample	1.0
14	14	hexane blank	MULLIN	1	Sample	1.0

Sequence Table (Back Injector) :

No entries - empty table!

Instrument 1 7/17/00 3:10:26 PM Lidia Strandberg

- -

6. GC run

a) Programming the integrator (5890 GCs only)

The integrator is already edited for the new method with the proper initial parameters. It does not need to be edited for each run. In case of power failure or method change, the method needs to be edited on the integrator as shown below.

Edit method

A menu with a list of options will be shown. Only the following 3 options need to be edited.

#1. Cht sp [1.0]:	Change the chart speed to 0.1 cm/in	This will save paper
#6. Report Option:	Suppress local report? y/n	Select y
#7. Print and post run options	Large font? y/n	Select n (North GC only)

b) Start a 5890 GC run

After saving the sequence in HPChemStation start the instrument with following steps in the computer

HPChemStation	Method and run	i control	Run Control	Run Sequence
And in the integrator	Shift+ seq	Start		

Once the GC makes the injection the sequence will start in ChemStation.

c) Starting a 6890 GC run

HPChemStation controls this instrument. After saving the sequence start the instrument with the following steps in the computer.

HPChemStation

Method and run control

Run Control

Run Sequence

d) Post GC run

The data files (*.d folders) will be saved on L:\HitesR\GCData\GCNorth or \GCSPEA (for the 6890). It can be also stored in C:\Hpchem.

V. HP 3365 CHEMSTATION GENERAL INTEGRATION AND REPORTING

1. Put all *.d folders in a batch (e.g. N99CH or N99FF1) in individual computer as C:\HpChem\1 or 2\data

2. Load Signal

Load a *.d file. The chromatogram will appear on screen.

3. Integration of a chromatogram

Integrate the chromatogram with the following:

Starting Parameters in Integration Events

10	Initial
0.04	Initial
10	Initial
10	Initial
OFF	Initial
0.0	
	10 0.04 10 10 OFF 0.0

Correct the integration by

Baseline now:	This command will maintain a straight baseline.
Area sum on and off:	This command will split a peak if two peaks are not well resolved.

4. Creating Method file

PCB or Pesticide methods are created with proper calibration tables and integration events after integrating the standard chromatograms. The procedures are described in Chapter V, and Chapter VI.

5. Preparing Report Template (FRP)

Header, footer, and a general section will appear. Separate <u>header</u> and <u>footer</u> section by dragging. Put <u>Data file name</u> and <u>Sample name</u> in Header section. This information will repeat on each page of the report.

Put information like method file, injection date and time, operator's name, analyst's name, sample ID etc on the top of the general section.

Put Chromatogram in General section and set up all options in Set up Chromatogram.

Create a **Table** underneath the chromatogram. Set up the table for <u>Calibrated Compounds</u>. Put the options like mean retention time, main peak type, main peak area, response factor, amount, ISTD, # ISTD, and compound names for the printed columns.

Save the template as PCB.FRP or Pesticide.FRP

6. **Printing report**

After integrating the chromatogram and loading correct method and correct FRP create a report through **Specify report.** Save the report as ***.txt file in the data folder (***.d folder) together with the method file in C drive.

7. Data storage

After working on the whole batch and saving data in C drive, copy the complete batch files (*.d, *.txt, *.m) in L:\ IADN\CompletedGCdata folder. Make a 2nd copy on zip disk. Delete the folder from C drive.

VI. PESTICIDE DATA REDUCTION IN 50% FRACTION

1. Creating a Method File

a) Integration and Peak Identification

Inject a Mixed Pesticide Standard and load the standard chromatogram in HPChemStation. Correct baseline, integrate, and identify the pesticide peaks (except HCB, p,p'-DDE, aldrin, o,p'-DDT, and octachlorostyrene) from the following Reference Table. This Reference Table was prepared from individual pesticide injection.

Pesticide Reference Table

Compounds	GC Retention time	concentration ng/ml	
-	Min. (approx.)		
α-НСН	36	20	
Hexachlorobenzene	37	20	
β-НСН	41	20	
γ-НСН	42	20	
б-НСН	47	20	
Aldrin	60	5	
Congener 65(Ref)	61	20	
Heptachloroepoxide	68	10	
Octachlorostyrene	67	9.5	
Oxychlordane	69	20	
γ-Chlordane	72	20	
Congener 155(ISTD)	73	20	
Endosulfan I	74	20	
α-Chlordane	75	20	
t-Nonachlor	76	20	
Dieldrin	78	20	
p,p'-DDE	82	20	
o,p'-DDE	82.7	20	
Endrin	83	20	
Endosulfan II	84	20	
p,p'-DDD	88	20	
o,p'-DDT	89	20	
Endosulfan sulfate	92	20	
p,p'-DDT	93	20	
Methoxychlor	100	20	
Dibutylchlorendate	112	20	

b) Preparation of new Calibration Table

If the peak shapes and the integrations look reasonable prepare a calibration table.

Calibration		New Table
-------------	--	-----------

Enter all compound names, amount, and mark congener 155 as reference standard and ISTD. Set calibration setting to 0.25% for reference and other peaks.

Remove all peaks with zero amounts. Save file as Method file (Pest. M). The calibration table and the integration events will be saved in the method.

Print the calibration table and integration events.

c) Replacing Previous Calibration

Once the calibration table is saved in the method it can be recalibrated and replaced in subsequent GC runs.

Calibration Recalibrate Replace	oration Recalibrate
---------------------------------	---------------------

If the GC column has been clipped or running conditions have been changed the analyte peaks shift so much that they are not found in the internal standard report and then a new calibration table will have to be created.

2. Samples, 50% fraction

Load Pest. M Load signal from .d file of a sample and integrate. Load Pest.FRP for **Report style** Check the report on screen first. Print report and save Text File by clicking options in **Specify Report.** Save the Method and the Text File in the same data folder. Such as C:\HPChem\1 or 2\data\batch\m3995.d\m3995.m or M3995.txt Calibration and the integration events will be saved in the method file.

NOTE: Sometimes it is necessary to increase the window more than 0.25% to find internal standard. If it goes more than 0.5%, rerun the sample in GC.

A Pesticide Standard Chromatogram, Pesticide Calibration Table, Pesticide Sample Chromatogram, Pesticide Internal Standard Report, and a Pesticide Event are added in the following pages.

16

Chart 2

Method C:\HPCHEM\1\DATA\M200CF1\JL130002.D\JL130002.M

Calibration Table Calib. Data Modified : Monday, July 17, 2000 12:41:15 PM Calculate Internal Standard Based on ± Peak Area Rel. Reference Window : Abs. Reference Window : 0.250 \$ 0.000 min Rel. Non-ref. Window Abs. Non-ref. Window 0.250 % 0.000 min ± Uncalibrated Peaks not reported Partial Calibration : Correct All Ret. Times: Yes, identified peaks are recalibrated No, only for identified peaks Curve Type Linear t Origin Included Weight Equal Recalibration Settings: Average all calibrations Floating Average New 75% Average Response : Average Retention Time: Calibration Report Options : Printout of recalibrations within a sequence: Calibration Table after Recalibration Normal Report after Recalibration If the sequence is done with bracketing: Results of first cycle (ending previous bracket) Default Sample ISTD Information (if not set in sample table) : ISTD ISTD Amount Name # [ng] -----0000 CONG 155 1 20.00000 Signal 1: ADC1 A, ADC1 CHANNEL A HEPTACHLOR EPOXIDE ENDOSULFAN SULFATE P,P'-DDT

1 Warnings or Errors :

Instrument 1 7/17/00 12:41:19 PM Lidia Strandberg

Page 1

18

Chart 3

Method File: C:\HPCHEM\1\DATA\M200CF1\JL130012.D\JL130012.M Data File: C:\HPCHEM\1\DATA\M200CF1\JL130012.D

Injection Date and Time: 5:39:19 PM Calibration Modification Date and Time: Jul 17, 2000 01:56:53 pm

GC Operator:	Lidia Strandberg
Data Analyst:	Karen Arnold
Sample:	CH 02C2 000314,F1
Comments:	TW= 34.70G, C1= 17.31G, C2= 17.39G

Chart 4

Method C:\HPCHEM\1\DATA\M200CF1\JL130012.D\JL130012.M

Event	Value .	Time
	-	
Initial Slope Sensitivity	10.000 I	nitial
Initial Peak Width	0.040 I	nitial
Initial Area Reject	10.000 I	nitial
Initial Height Reject	10.000 I	nitial
Initial Shoulders	OFF I	nitial
Negative Peak ON		0.000
Baseline Now		25.579
Area Sum ON		35.141
Area Sum OFF		35.275
Area Sum ON		40.321
Area Sum OFF		40.419
Area Sum ON		40.873
Area Sum OFF		41.007
Area Sum ON		59.426
Area Sum OFF		59.537
Area Sum ON		59.745
Area Sum OFF		59.880
Area Sum ON		70.725
Area Sum OFF		70.897
Area Sum ON		72.803
Area Sum OFF	į.	73.000
Area Sum ON		73.959
Area Sum OFF		74.119
Area Sum ON		74.723
Area Sum OFF		74.796
Area Sum ON		80.533
Area Sum OFF		80.643
Area Sum ON		80.839
Area Sum OFF		81.011
Area Sum ON		82.728
Area Sum OFF		82.872
Baseline Now		83.953
Area Sum ON		86.752
Area Sum OFF		86.875
Area Sum ON		93.283
Area Sum OFF		93.406
Baseline Now		98.478
Baseline Now	1	10.134
Baseline Now	ī	15.171

Apply Manual Integration Events: No

Instrument 1 7/17/00 2:05:22 PM Lidia Strandberg

20

VII. PCB AND PESTICIDE DATA REDUCTION IN HEXANE FRACTION

1. Creating a Method File

a) Integration and Peak Identification

Inject Mullin 94 Standard which was mixed with (HCB, p,p'-DDE, t-Nona, p,p'- DDT and Aldrin, o,p'-DDT, and Octachlorostyrene). Load the standard chromatogram and integrate it following the direction in Chapter IV. Identify PCBs from Mullin's 94 chromatogram (Chromatogram 3) and pesticides from individual pesticide standards in Pesticide Reference Table.

b) Preparation of new Calibration Table

If the peak shapes and integration look good prepare a calibration table.

Calibration

New Table

Enter all compound names, amounts supplied by Mike Mullin, and mark congener 30 and 204 as reference ISTDs.

Set calibration setting to 0.25% for reference and other peaks.

Remove all peaks with zero amounts. Save file as **Method File (PCB. M)**. The calibration table and the integration events will be saved in the method.

Print the calibration table and integration events.

c) Replacing Previous Calibration

Once the calibration table is saved in the method it can be recalibrated and replaced in subsequent GC runs.

If the GC column has been clipped or running conditions have been changed the analyte peaks shift so much that they are not found in the internal standard report and then a new calibration table will have to be created.

2. Samples, Hexane fraction

Load PCB.M Load signal from *.d file of a sample and integrate. Load PCB.FRP for **Report style**

Check the report on screen first.

Print report and save Text File by clicking options in **Specify Report.** Save the Method and the Text File in the same data folder. Such as C:\HPChem\1\data\batch\M3995.d\m3995.m or m3995.txt Calibration and the integration events will be saved in the method file.

NOTE: Sometimes it is necessary to increase the window more than 0.25% to find internal standard. If it goes more than 0.5%, rerun the sample in GC.

3. Statistical Calculations

The text files are imported to excel temporarily for statistical calculations. A summary sheet with Total PCBs, percent recoveries of different surrogate standards is generated and printed out.

A Chromatogram from Mike Mullin, PCB Standard Chromatogram, PCB Calibration Table, PCB Sample Chromatogram, PCB Internal Standard Report, and a PCB Integration Events are added in the following pages.

2		
F		···· .
F		
£		
£		
+ 007+001		
+ 008+005		
014 014	. 030	
F1014422 015+018	+ 011	
E-011 +016		
L 01 + 01 + 01 + 01 + 01 4 01 4		
tore to the to the		
		G
- 044	- + 065 X	ILLOI
- 100 042	ulli	nato
011 - 010 - + 010101b	194	gra
		B
		~
- 141 - 141		
	-164	
- 185 - 183		
- 15 - 157+ 200 + Laz + 177 - 177	74	
091+071		4-20
-105		
4-200	- OCN	
23		

Instrument 1 7/17/00 4:06:36 PM Lidia Strandberg 24

Page 1

Chart 5

Method C:\HPCHEM\1\DATA\M200CH\JL140013.D\JL40013.M

		Calibrati	on Table		
6-1/b Bass Had					-
Calib. Data Mod	ified :	Monday	, July 17, 20	000 12:01:18	PM
Calculate	:	Intern	al Standard		
Based on	:	Peak A	rea		
Rel. Reference	Window :	0.250	•		
Abs. Reference	Window :	0.000	min		
Rel. Non-ref. W	indow :	0.300	+		
Abs. Non-ref. W	indow :	0.000	min		
Uncalibrated Pe	aks :	not re	ported		
Partial Calibra	tion :	Yes, i	dentified pea	ks are reca	librater
Correct All Ret	. Times:	No, on	ly for identi	fied peaks	
Curve Type	1.25	Linear			
Origin		Inelud	ad		
Weight	:	Equal	eu		
Recalibration S	ettings:	Avenue		Fione	
Average Retenti	on Time:	Floati	e all callbra	w 75t	
Calibration Rep	ort Options				
Printout of	recalibrat	ions with	in a sequence	**	
Normal	Denort sfra	arcer Rec	allbracion		
Normal	Report arte	r Recallb	ration		
Peculte	of first o	e with br	acketing:	brackerl	
Acourco	or riter c	yere tend	ing previous	Drackec/	
Default Sample	ISTD Inform	ation (if	not set in s	ample table	:
ISTD ISTD Amou	nt Name				
# [ng/m1]					
1 8.0000	0 30				
2 6.0000	0 204				
Signal 1: ADC1	B, ADC1 CHA	NNEL B			
	-,				
RetTime Lvl	Amount	Area	Amt/Area R	tef Grp Name	
(min) Sig	[ng/m1]				
20.389 1 1	48.00000 3	889 64404	1 234050-2	1	
26.026 1 1	28 00000 1	084 25293	2 582420-2	; ;	
29.392 1 1	13.60000 2	538 11865	5 358308-3	1 4.10	
33 553 1 1	4 80000 3	977 60667	1.306720-3	1 2.0	
35 322 1 1	2 60000 3	504 37380	1.200736-3	1 /**	
36 367 1 1	FC 00000 3	3411004	2.100/20-3	1 0	
36 666 3 3	30.00000 4	.3411964	4.1/5396-3	1 5+8	
30.303 1 1	20.00000 4	.2329864	4. /24800-4	1 ncb	
30.003 1 1	20.00000 6	948.48096	2.8/8338-3	1 14	
39.362 1 1	1.12000 1	034.55811	1.082598-3	1 19	
41.170 1 1	8.00000 9	296.78809	8.60512e-4 +	11 30	
42.857 1 16	.80000e-1	440.30130	1.54440e-3	1 12	
43.052 1 1 3	.90000e-1	477.72354	8.16372e-4	1 13	
43.812 1 1	14.80000 1	.42710e4	1.03707e-3	1 18	
44.060 1 1	14.80000 6	292.15820	2.35213e-3	1 17+15	
45.475 1 1 5	.20000e-1	270.63330	1.92142e-3	1 24	
45.621 1 1 5	.20000e-1 1	004.82367	5.17504e-4	1 27	
46.923 1 1	8.00000 5	726.21045	1.39708e-3	1 16	
47.086 1 1	7.60000 4	498.63086	1.68940e-3	1 32	
49.436 1 1 2	.10000e-1	114.35308	1.83642e-3	1 29	
50.559 1 1	2.80000 2	149.41968	1.30268e-3	1 26	
50.876 1 1	1.30000 1	020 77780	1 263694-3	1 25	
		020.13303	1.203036-3	1 25	
51.992 1 1	18.80000 1	.37926e4	1.36305e-3	1 31	

Instrument 1 7/17/00 12:18:33 PM Lidia Strandberg

Chart 5

Method C:\HPCHEM\1\DATA\M200CH\JL140013.D\JL40013.M

	RetTime [min]	Sig	Lvl	Amount [ng/ml]	Area	Amt/Area	Ref	Grp Name
		1	11					
	52.048	' 1	' 1'	18 80000	1 5655444	1 200864-3	' 1'	28
	53.725		-	13 20000	1 0505544	1 256494-3	ī	11
	54 022	- 7	1	2 60000	3093 39404	8.405010-4	ĩ	53
	54 790	;	-	7 200000-1	1059 86914	6 793290-4	ĩ	51
	54.730	:	-	11 60000	6030 63135	1 920654-3	÷	22
	55.023	-	-	11.60000	2742 23145	0.511770-4	-	22
	55.896	-	-	3.56000	3/42./3145	3.511//6-4	-	
	57.310	1	1	1.60000	1543.56396	1.036568-3	1	46
	58.695	1	1	18.00000	1.65152e4	1.08991e-3	1	52
	59.052	1	1	1.10000	974.98175	1.128230-3	1	43
	59.360	1	1	9.20000	1.23190e4	7.46813e-4	1	49
	59.533	1	1	5.00000	5407.13623	9.24704e-4	1	Aldrin
	59.741	1	1	4.00000	5318.77148	7.52053e-4	1	47
	59.863	1	1	4.00000	5378.94531	7.43640e-4	1	48
	60.124	1	1	5.00000	7042.40723	7.09985e-4	1	65
	62.131	1	1	17.20000	1.75842e4	9.78151e-4	1	44
	62.447	1	1	4.80000	3685.51465	1.30240e-3	1	37
	62.618	1	1	5.60000	6644.91797	8.42749e-4	1	42
	64.081	1	1	9.20000	8655.43555	1.062928-3	1	41+71
	64 243	ī	1	7 20000	1.06757e4	6 744316-4	1	64
	65 515		ĩ	3 76000	4225 79297	8 897740-4	-	40
	66 950	:	-	4 400000-1	EE3 20071	7 957420-4	÷	100
	60.350	:	-	4.400002-1	333.29071	F. 360050 4	-	100
	67.452		-	9.38000	1.74/0504	5.369058-4	-	octachiorostyrene
	67.909	-	-	8.40000e-1	866.09753	9.698688-4	1	63
	68.556	1	1	7.60000	9437.62793	8.05287e-4	1	74
	69.357	1	1	13.60000	1.89675e4	7.17017e-4	1	70+76
	69.848	1	1	20.80000	1.56777e4	1.32673e-3	1	66
	70.085	1	1	8.00000	8798.16504	9.09281e-4	1	95
	71.130	1	1	2.04000	2313.68311	8.81711e-4	1	91
	72.684	1	1	14.00000	1.46045e4	9.58612e-4	1	56+60
	73.575	1	1	7.20000	5463.67969	1.31779e-3	1	84+92
	73.994	1	1	4.00000e-1	490.58990	8.15345e-4	1	89
	74.501	1	1	7.20000	9996.39258	7.20260e-4	1	101
	75.260	1	1	2,96000	3456.45996	8.56368e-4	ĩ	99
	75.443	ĩ	ĩ	20.00000	2.9291264	6.827996-4	ī	t-nona
	76 404	1	i.	1 120000-1	232 90166	4 808908-4	ĩ	119
	77 140			6 00000e-1	797 95910	7 520120-4	÷	83
	70 030	:	-	2 24000	1307 30303	5 100000-4	-	67
	70.039		-	2.24000	4307.79102	3.133000-4	:	57
	78.680	-	-	6.40000e-1	469.90161	1.361998-3	-	81
	78.969	-	1	4.00000	5913.79590	6.76385e-4	1	87
	79.587	1	1	2.80000	2961.62817	9.45426e-4	1	85
	79.950	1	1	3.00000	2478.11670	1.21060e-3	1	136
	80.145	1	1	20.00000	2.13620e4	9.36240e-4	1	p,p'-DDE
	80.446	1	1	9.20000e-1	1118.49402	8.22535e-4	1	77
	80.712	1	1	7.60000	1.04039e4	7.30497e-4	1	110
	82.418	1	1	1.80000	2784.20972	6.46503e-4	2	82
	83.063	1	1	6.80000	1.00404e4	6.77263e-4	2	151
	83.838	1	1	3.56000	4304.95361	8.26954e-4	2	135+144
	84.643	1	1	5.20000e-1	650,19952	7.99755e-4	2	107
	85.188	ī	ī	11.20000	1.88850e4	5.93065e-4	2	123+149
	85 447	5	1	4 80000	7182 07373	6 683318-4	2	118
	96 750	÷	-	2 900000-1	574 60773	5 046920-4	2	124
	07.100		-	2.900008-1	374.00773	1.107440-2	-	
	07.120	1	-	5.20000e-1	434.25958	1.197446-3	-	114
	87.400	1	1	1.16000e-1	261.68332	4.432840-4	4	131
	87.550	1	1	5.00000	4927.52783	1.01471e-3	2	o,pDDT
	88.728	1	1	1.56000	2307.48218	6.76062e-4	2	146
	89.756	1	1	17.20000	2.92835e4	5.87362e-4	2	105+132+153
	91.838	1	1	6.80000	1.62132e4	4.19411e-4	2	141
	93.098	1	1	1.04000	2725.89111	3.81527e-4	2	137+176
	93.369	1	1	3.00000e-1	313.48572	9.56981e-4	2	130
	93.877	1	1	20.00000	1.66085e4	1.20420e-3	2	p,p'-DDT
	94.275	1	1	10.80000	1.44900e4	7.45344e-4	2	163+138
	94.644	1	1	1.00000	1208.53186	8.27450e-4	2	158
	95.501	1	1	5.20000e-2	278.49811	1.86716e-4	2	129
122	96.014	1	1	4.40000	4934.45020	8.91690e-4	2	178
	96.422	1	1	5.00000	8805.98633	5.67796e-4	2	166

Instrument 1 7/17/00 12:18:33 PM Lidia Strandberg

Chart 5

Method C:\HPCHEM\1\DATA\M200CH\JL140013.D\JL40013.M

RetTime	L	/1	A	noun	C	A	'ea	Amt	:/Ar	ea	Ref	Grp	Name
[min] S	Sig		In	g/ml	1								
		1			1							11	
96.910	1	1	8.0	0000	e-1	887	94708	9.00	955	e-4	2	•	175
97 455	ī	5	1	4 40	000	2 756	68.04	5 21	990			1 8	197-197
00 207	÷	;	-	c 00	000	1 000	7044	6 7	1094		-		107 102
30.207		:		0.00	000	1.003	26334	0.7	210		-		100
98.720	1	1	4.0	0000	e-1	892.	36230	9.90	248	e-4	2		128
99.425	1	1	1.9	6000	e-1	160.	08366	1.2.	436	e-3	2		167
99.894	1	1	52	1.90	000	3863.	9331	4.9	7270	e-4	2		185
101.299	1	1	1	2.80	000	2.091	136e4	6.12	20420	e-4	2		174
102.144	1	1		6.80	000	1.019	70e4	6.6	5864	e-4	2		177
102.877	1	1		3.16	000	6654.	34082	4.74	878	e-4	2		202+171
103.066	1	1 :	2.6	0000	e-1	507.	55533	5.13	2259	e-4	2		156
103.658	1	1	1.5	2000	e-1	239.	4712	6.34	732	e-4	2		173
104.226	1	1		1.56	000	2617.	33374	5.90	5026	e-4	2		157+200
104.480	1	1		6.00	000	1.110	33e4	5.40	380	e-4	+12	6 8	204
105.243	1	1		2.24	000	2631	6044	8.5	1192	e-4	2		172
105 467	-	5		0000		600	8161	7 1	337	4	2		197
105 220	-	-		4 40	000	4 010	1001	6 0	1640		2		180
100.320		-	-	4.40	000	9.01:	7507		477		-		100
106.747	-	*		1.00	000	2205.	1591		4/3	e-4	-		193
107.378	1	1.	4.8	0000	e-1	532.	2481	9.0	1835	e-4	2		191
107.965	1	1		1.72	000	2773.	8581	6.20	075	e-4	2		199
111.020	1	1		6.80	000	1.328	343e4	5.1:	18824	e-4	2		170+190
112.125	1	1	4.8	0000	e-1	837.	9567:	5.73	28224	c-4	2		198
112.765	1	1	1	6.80	000	1.865	500e4	9.00	805	e-4	2	5 8	201
113.565	1	1		8.40	000	1.187	791e4	7.0	125	e-4	2	8 🛛	203
113.760	1	1		8.00	000	7149.	1196:	1.1	9024	e-3	2		196
116.082	1	1	1.6	0000	e-1	178.	99550	8.9	8774	e-4	2		189
118.323	1	1		3.20	000	6724	45508	4.7	875	e-4	2		208+195
119.646	1	1	3.7	0000	e-1	790	01111	4.6	348	e-4	2	8 8	207
122 075	-	5		7 20	000	1 411	5604	5.0	917	0-4			194
122 844	î	î.		0000	1	751	0490	5 8	848		-	8 8	205
120.364	-			2 22	000	5101	67400	E 0	774		-	8 8	205
128.104	-	-		4.12	000	5193.	3142.	3.4.	0724	6-4	-	8 B	200
133.053	1	1	4.8	0000	C-2	110.	04144	4.3.	0034	e-4	4	31 B	209
13 Warni	ings	or	Er	rors	(10	tirs	t mes	sage	fo	110	. (*		
CONTRACTOR OF	1022			-		10.0220		12000		23.3		19999	100000000000000000000000000000000000000
Warning	: 01	ver	lap	ping	pea	K tir	ne win	dows	at	51.5	992 1	min,	signal 1
Warning	: 01	ver	lap	ping	pea	k tir	ne wir	dows	at :	59.3	36 m.	1n,	signal 1
Warning	: 01	ver	lap	ping	pea	k tin	ne wir	dows	at !	59.	741 1	min,	signal 1
Warning	: 01	ver	lap	ping	pea	k tir	ne win	dows	at	62.4	447 1	min,	signal 1
Warning	: 01	ver	lap	ping	pea	k tir	ne wir	dows	at i	64.0	081 1	min,	signal 1
Warning	: 01	ver	lap	ping	pea	k tir	ne wir	dows	at '	75.2	26 m	in,	signal 1
Warning	: 01	ver	lap	ping	pea	k tin	ne wir	dows	at '	79.9	95 m	in,	signal 1
Warning	: 01	ver	lap	ping	Dea	k tir	te wir	dows	at i	87.4	4 mi	n. s	ignal 1
Warning	. 01	VAT	lan	ning	Dea	k tir	e wir	dows	at	91.0		min.	signal 1
Warning	: 01	ver	lap	ping	pea	k tir	e wit	idows	at :	102	.877	min	, signal 1
						Per	k Sur	Tabl	e				
***No Fr	ATTNO Patrian in tablett												

Instrument 1 7/17/00 12:18:33 PM Lidia Strandberg

1

Instrument 1 7/17/00 4:02:22 PM Lidia Strandberg

Page

Chart 6

Data File:	C:\H	PCHEM\1\DA	TA\M200CH\	JL140012.	D\JL1	40012	. M
Sample name	:: ch 0:	2c2 000314	, h	Sec. 1			
Martine Management		Intern	al Standar	d Report			
Ret. Time	Peak	Peak	Rel. Res.	Amount	ISTD	Is	Compound
(min.)	Type	Area	Factor	(ng)		ISTD	Name
20.386	PP N	48	14.341	0.690	1		1
26.035	vv	59	30.010	1.804	1		3
29.419	PV	1054	6.227	6.647	1		4+10
33.599	vv	2147	1.402	3.047	1		7+9
,35.352	vv	1337	2.520	3.410	1		6
36.294	vv	6006	4.852	29.500	1		5+8
36.601	vv	39080	0.549	21.723	1		hcb
38.699	vv	5149	3.345	17.437	1		14
39.614	VV	438	1.258	0.558	1		19
41.205	PV	7902	1.000	8.000	1	x	30
0.000		0	0.000	0.000	1		12
0.000		0	0.000	0.000	1		13
43.840	PV	10419	1.205	12.711	1		18
44.085	~~	4803	2.733	13.290	1		17+15
45.494	PV	114	2.233	0.257	1		24
45.648	~~	233	0.601	0.365	1		27
46.947	~~	3363	1.624	5.528	1		16
47.111	VP	2112	1.963	5.509	-		32
49.404		408	2.134	1.011	1		29
50.588	VV	1192	1.514	1.827			26
50.895	VP INTA	652	1.469	1.267	-		25
51.950	WWA	0330	1.584	10.104			31
52.000	WW	1000	1.396	10.004			28
53.019	VD	10050	1.400	23.737	-		33
54.044	VP	728	0.300	0.987			53
54.009	VV	2524	0.789	6.304			51
55.043	VV	2324	2.232	5.704			22
57.320	UTV	1320	1.105	1.11	-		
57.330	107	520	1.205	10.044			10
50.710	107	3433	1.20/	12.813			52
59.091	VV	4750	1.311	0.455	-		43
59.500	VV	4750	1.075	4.1/4			ay aldeda
59 769	WW	1219	0.075	1 166	-		Aldrin
59 895	WW	2892	0.064	2 530			10
60.151	WV	5209	0.825	4 351	÷		65
62.156	vv	6912	1 137	7 954	÷.		44
62.443	VVA	1804	1 514	2 764	;		17
62 622	VV	2818	0 979	2 794	÷		42
64.103	VV	2455	1 235	3 070	;		41.71
64.269	vv	3064	0.784	2.431	î		64
65.540	vv	916	1.034	0.958	1		40
66.880	vv	3961	0.924	3.705	î		100
67.477	vv	219	0.624	0.138	1		octachlorostyrene
67.946	vv	57	1.127	0.065	ĩ		63
68.582	vv	2165	0.936	2.051	ĩ		74
69.382	vv	5310	0.833	4.479	1		70+76
69.869	vv	2854	1.542	4.454	1		66
70.109	vv	7897	1.057	8.447	1		95
71.148	PV	1133	1.025	1.175	1		91
72.705	vv	1848	1.114	2.084	1		56+60
73.589	PV	4237	1.531	6.569	1		84+92
74.059	VP	1742	0.948	1.671	1		89
74.525	PP	8856	0.837	7.504	1		101
75.338	vv	3373	0.995	3.398	1		99
75.453	vv	2619	0.793	2.104	1		t-nona
76.428	vv	35	0.559	0.020	1		119
77.159	vv	365	0.874	0.323	1		83
78.057	vv	2642	0.604	1.616	1		97
78.701	vv	233	1.583	0.373	1		81
78.989	vv	3839	0.786	3.055	1		87
79.606	vv	1295	1.099	1.440	1		85
80.010	VVA+	854	1.407	1.216	1		136
80.162	vv	4361	1.088	4.803	1		P, P'-DDE
80.466	vv	126	0.956	0.122	1		77

29

Chart 6

Data File: Sample name	: ch 0	PCHEM\1\D 2c2 00031	ATA\M200CH\ 4.h	JL140012.	D\JL1	40012	.м
Ret. Time	Peak	Peak	Rel. Res.	Amount	ISTD	Is	Compoun
(min.)	Туре	Area	Factor	(ng)	#	ISTD	Name
80 731	vv	6976	0 849	5 909			110
82.438	BV	840	1.196	0.590	2		82
83.082	vv	958	1 253	0 705	2		151
83.854	PV	892	1 530	0 802	2		135.144
84.661	vv	214	1 480	0 186	2		107
85.209	vv	3232	1.097	2.084	2		123+149
85.466	VB	3535	1.237	2.568	2		118
86.766	vv	279	0.934	0.153	2		134
87.083	vv	557	2.216	0.725	2		114
87.433	VVA+	186	0.820	0.090	2		131
87.570	VP	822	1.878	0.907	2		O.D'-DDT
88.733	PB	780	1.251	0.573	2		146
89.767	BB	5357	1.087	3.421	2		105+132+153
91.834	VB	1033	0.776	0.471	2		141
93.106	vv	140	0.706	0.058	2		137+176
93.394	vv	199	1.771	0.207	2		130
93.891	vv	578	2.228	0.757	2		D.D'-DDT
94.306	vv	2586	1.379	2.095	2		163+138
94.659	vv	403	1.531	0.362	2		158
95.519	vv	121	0.346	0.024	2		129
96.043	vv	189	1.650	0.183	2		178
96.439	VB	7536	1.051	4.652	2		166
0.000		0	0.000	0.000	2		175
97.470	vv	563	0.966	0.319	2		187+182
98.303	vv	266	1.251	0.196	2		183
98.734	vv	395	0.830	0.193	2		128
99.324	vv	307	2.266	0.409	2		167
99.901	vv	96	0.910	0.051	2		185
101.306	vv	430	1.133	0.286	2		174
102.174	vv	467	1.234	0.338	2		177
102.901	PV N	334	0.879	0.173	2		202+171
103.079	VBA	156	0.948	0.087	2		156
103.773	VVA+	150	1.175	0.104	2		173
104.224	vv	618	1.103	0.401	2		157+200
104.495	vv	10213	1.000	6.000	2	х	204
0.000		0	0.000	0.000	2		172
0.000		0	0.000	0.000	2		197
106.334	vv	312	1.124	0.206	2		180
106.854	w	144	1.372	0.116	2		193
107.412	vv	99	1.669	0.097	2		191
108.087	vv	107	1.147	0.072	2		199
111.045	vv	163	0.947	0.091	2		170+190
112.173	vv	4336	1.060	2.700	2		198
0.000		0	0.000	0.000	2		201
0.000		0	0.000	0.000	2		203
113.946	vv	146	2.071	0.178	2		196
110 454		0	0.000	0.000	2		189
110.456	VV	175	0.881	0.091	2		208+195
119.581	vv	1252	0.867	0.638	2		207
0.000		0	0.000	0.000	2		194
0.000		0	0.000	0.000	2		205
0.000		0	0.000	0.000	2		206
0.000		0	0.000	0.000	2		209

Chart 7

Method C:\HPCHEN\1\DATA\M200CH\JL140012.D\JL140012.M

Dunn	Value Time
Event	value line
tial flore Consitivity	10.000 Inicial
itial Deak Width	0.040 Initial
itial bres Pelect	10.000 Initial
itial Height Petert	10.000 Initial
itial Shoulders	OFF Initial
dative Peak ON	0.000
saline Nov	17.386
seline Now	28.595
ea Sum ON	33, 352
rea Sum OFF	33.476
rea Sum ON	33.706
A Sum OFF	33.848
seline Now	40.998
seline Nov	47.476
tea Sum ON	49.301
tea Sum OFF	49.425
AS Sum ON	51.853
ea Sum OFF	52.042
as Cum ON	57.144
A Sun OFF	57.257
ea Sun OFF	62.349
a Sum OPP	62.536
ea Sum OFF	68.042
a Sum OFF	69.116
da Sun OFF	60.440
ea sum on	69.045
ea sum off	21 258
ea sum ON	71 360
ca sum OFF	71.300
Beiline Now	79.032
Ca Sum ON	19.930
ca sum OFF	80.073
ABELLINE NOW	97 367
ea sum ON	07.352
ea sum OFF	87.508
ea sum ON	102.305
ca Sum OFF	102.490
Seline Now	103.305
ea sum ON	103.617
ea sum OFF	103.919
seline Now	125.269
seline Now	129.625
Seline Now	134.182
eline Now	135.477

Apply Manual Integration Events: No

Instrument 1 7/17/00 2:28:30 PM Lidia Strandberg

Appendix

Method: C:\HPCHEM\1\METHODS\MULLIN.M of 10/1/99 8:03:05 AM

Method Information

Method was originally suggested by Michael Mullin in August, 1994.

Injection Source and Location

Injection Source: HP GC Injector

Injection Location: Front _____ HP6890 GC METHOD OVEN Initial temp: 100 'C (On) Initial time: 1.00 min Maximum temp: 325 'C Equilibration time: 1.00 min Ramps: # Rate Final temp Final time 1 1.00 240 0.00 2 10.00 280 20.00 3 0.0(Off) Post temp: 100 'C Post time: 0.00 min Run time: 165.00 min FRONT INLET (UNKNOWN) BACK INLET () ONT INLET (UNNNOWN) Mode: Splitless Initial temp: 250 'C (On) Pressure: 22.00 psi (On) Purge flow: 61.4 mL/min Purge time: 0.50 min Total flow: 70.0 mL/min Gas saver: On Saver flow: 20.0 mL/min Gas type: Hydrogen COLUMN 2 COLUMN 1 Capillary Column (not installed) Model Number: J&W DB-5 Max temperature: 325 'C Nominal length: 60.0 m Nominal diameter: 250.00 um Nominal film thickness: 0.10 um Mode: constant pressure Pressure: 22.00 psi Nominal initial flow: 2.0 mL/min Average velocity: 45 cm/sec Inlet: Front Inlet Outlet: Front Detector Outlet: Pront Detector Outlet pressure: ambient FRONT DETECTOR (#ECD) Temperature: 350 'C (On) Mode: Constant makeup flow Makeup flow: 10.0 mL/min (On) Makeup Gas Type: Nitrogen BACK DETECTOR (NO DET) Electrometer: On SIGNAL 1 SIGNAL 2

Instrument 1 6/29/00 2:12:25 PM LIDIA STRANDBERG

Page 1

Appendix

Method: C:\HPCHEM\1\METHODS\MULLIN.M of 10/1/99 8:03:0

Data rate: 20 Hz			
Type: front detector			
	Save Data:		
	Zero: 0.0		
	Range: 0		
	Fast Peaks:		
	Attenuation		
	•		

7673 Injector

Front Injector:		
Sample Washes	1	
Sample Pumps	3	
Injection Volume	2.0	microliters
Syringe Size	10.0	microliters
PostInj Solvent A Washes	3	
PostInj Solvent B Washes	3	
Viscosity Delay	0	seconds
Plunger Speed	Fast	
PreInjection Dwell	0.00	minutes
PostInjection Dwell	0.00	minutes

Back Injector: No parameters specified

Instrument 1 6/29/00 2:12:25 PM LIDIA STRANDBERG

Appendix

Method: C:\HPCHEM\1\METHODS\1701.M of 7/19/00 10:13:50 AM

our we have a second seco	
Initial temp: 100 'C (On)	Maximum temp:
Initial time: 1.00 min	Equilibration
Ramps:	
# Rate Final temp Final t	ime
1 10.00 160 0.00	
2 1.00 240 0.00	
3 10.00 260 20.00	
4 0.0(Off)	
Post temp: 100 'C	
Post time: 0.00 min	
Run time: 109.00 min	
FRONT INLET (UNKNOWN)	BACK INLET ()
Mode: Splitless	
Initial temp: 250 'C (On)	
Pressure: 22.00 psi (On)	
Purge flow: 61.4 mL/min	
Purge time: 0.50 min	
Total flow: 70.0 mL/min	
Gas saver: On	
Saver flow: 20.0 mL/min	
Saver time: 3.00 min	
Gas type: Hydrogen	
COLUMN 1	COLUMN 2
Condillary Column	(not installed
Madal Numbers, ICH DR-1701	(not installed
Model Number: Jaw DB-1701	
Naminal length: 60 0 m	
Nominal diameter, 250 00 um	
Nominal film thickness, 0.25 H	m
Mode, constant pressure	
Bressure: 22 00 pei	
Nominal initial flow: 2 0 mL/m	in
Nominal Inicial Liow. 2:0 mb/m	1
Average verocity: 45 cm/sec	
Autlet. Front Detector	
Outlet pressure: ambient	
FRONT DETECTOR (µECD)	BACK DETECTOR (NC
Temperature: 350 C (On)	
Mode: Constant makeup flow	
Makeup flow: 10.0 mL/min (On)	
makeup Gas Type: Nitrogen	
Electrometer: On	
7673	Injector
Front Injector:	
Sample washes	5
Sample Pumps	2 A migroliters
Injection volume	2.0 microfficers
Suringa Siga	10 0 microliters
Syringe Size	10.0 microliters

Instrument 1 7/19/00 10:14:06 AM LIDIA STRANDBERG

seconds minutes minutes

Appendix

Method: C:\HPCHEM\1\METHODS\1701.M of 7/19/00 1

Viscosity Delay	0
Plunger Speed	Fast
PreInjection Dwell	0.00
PostInjection Dwell	0.00

Back Injector: No parameters specified

Instrument 1 7/19/00 10:14:06 AM LIDIA STRANDBERG