Français Contact Us Help Search Canada Site
Home
About CSA
Image Gallery
Careers
Resources
 Audiences
 .Media
 .KidSpace
 .Educators
 .Industry
 .Scientific community
 Activities
 .Earth Observation
 .Satellites
 .Science
 .Exploration
 Bulletin
 .APOGEE
John H.
Chapman
Space Centre
David
Florida
Laboratory
 .Virtual Visit
  Index A to Z
You are here: home | sciences | themis
THEMIS: the stakeout for northern lights in the Canadian tundra

The northern lights are a fascinating natural phenomenon. These animated shows in the night sky have contributed to the mythology, folklore, and art of many cultures and civilizations in the northern hemisphere. In the early 17th century, Italian astronomer Galileo named the phenomenon "aurora borealis" after the Roman goddess of morning, because he thought the luminescence was due to reflected sunlight in the atmosphere.

We now know that the aurora are powered by the solar wind—an ever-present stream of ions and electrons that blows off the sun and expands outwards through space. This wind interacts with the Earth's magnetic field, distorting it and creating a downstream tail.


In the early 17th century, Galileo named this phenomenon "aurora borealis." 
(Photo: ©Jouni Joussila)


The solar wind has an average speed of 400 km per second, streaming around Earth like water around a rock.
Solar wind energy is stored in this long tail and released unpredictably in bursts of accelerated particles and electron currents. Such bursts, called substorms, occur along the equatorial plane of Earth's night side, and then propagate along magnetic field lines to the polar regions, where they cause spectacular auroral displays.

But to this day, these auroral storms are not fully understood. Numerous studies of the Earth's magnetosphere and space weather have never been able to pinpoint where in the magnetosphere the energy of the solar wind transforms explosively into auroras.

Tripping the light fantastic

Now NASA aims to launch a constellation of five small satellites in 2006, all carrying identical suites of electric, magnetic, and particle detectors to study aurora. These satellites will fly in carefully coordinated orbits. Every four days, they will line up along the Earth's magnetic tail to track disturbances in the magnetosphere.

Satellite data from the THEMIS mission (for "time history of events and macroscale interactions during substorms") will be compared to observations from ground stations across the Arctic Circle. In North America, 20 observatories equipped with automated, all-sky cameras will take pictures every five seconds over the two-year mission, for a total of 84 million pictures.
The satellites will form a constellation after separating from their launch rocket.
(Image: Berkeley University)

Canadian contribution

Most of the readily accessible land under the northern-hemisphere auroral zone is in Canada. So 16 of the 20 ground-based observatories are to be set up in Canada while the four others are to be in Alaska.


THEMIS observatory sites in 
Canada and Alaska 
(Illustration: Eric Donovan and Mike Greffen)
Dr. Eric Donovan, Associate Professor of Physics and Astronomy at the University of Calgary, leads the Canadian part of the THEMIS program. His team of scientists and engineers has worked closely with their American counterparts to develop the ground-based observatories. And they are responsible for fielding the Canadian observatories and retrieving the massive amounts of data from the entire array.

The Canadian team has already deployed observatories in Inuvik, Whitehorse, Prince George, The Pas, Athabasca, and at the Ekati Diamond Mine. The other sites (see site illustration, above) must be deployed and operating by the fall of 2006.

Universal implications

Aside from the spectacular light shows they produce, substorms are of great scientific interest. The processes that are thought to be at work in them are also thought to occur in the solar corona and other more distant and exotic objects in the cosmos. The substorm provides us with the only place in nature where we can directly study these interesting phenomena. THEMIS will advance our understanding of the universe.
Aurora can be found in the upper atmospheres of other planets in our solar system. This one is on Jupiter.
(Photo: Hubble Space Telescope)

THEMIS is a NASA-funded mission led by researchers at the University of California at Berkeley and involves scientists from the U.S., Canada, and Europe. Current Canadian activity is funded by the Canadian Space Agency. Ultimately, THEMIS will involve scientists from the Universities of Calgary, Alberta, New Brunswick, and Saskatchewan, as well as the Natural Resources Canada Geomagnetic Laboratory.

Updated: 2005/09/02 Important Notices