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1.34 CHARACTERISTICS the following figure and tables. Figure 1.3.4.1
OF CLASSIFICATIONS illustrates the desirable interrelationship of the

urban road classification groups. Tables 1.3.4.1
and 1.3.4.2 provide summaries of the typical
characteristics of the various groups and sub-
groups, for rural and urban roads respectively.

The principal characteristics of each of the six
groups of road classifications are described by

Figure 1.3.4.1 Relationship of Urban Road Classifications
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Table 1.3.4.1

Characteristics of Rural Roads

Rural Locals

Rural Collectors

Rural Arterials

Rural Freeways

traffic movement
secondary

service function

traffic movement
and land access

traffic movement
primary

optimum mobility

consideration of equal consideration
importance
land service land access traffic movement land access no access
primary and land access secondary
consideration of equal consideration
importance
traffic volume
vehicles per day <1000 AADT <5000 AADT <12 000 AADT >8000 AADT
(typically)
flow interrupted flow interrupted flow uninterrupted freeflow (grade

characteristics

flow except at

separated)
major
intersections

design speed

(km/h) 50 - 110 60 - 110 80 - 130 100 - 130
average running
speed (km/h)
(free flow 50 - 90 50 -90 60 - 100 70 - 110
conditions)
vehicle type predominantly all types, up to all types, up to all types, up to
passenger cars, 30% trucks in the 20% trucks 20% heavy
light to medium 3tto5trange trucks
trucks and
occasional heavy
trucks
normal locals locals collectors arterials
connections collectors collectors arterials freeways
arterials freeways
Page 1.3.4.2 January 2002
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1.43 OPERATING SPEED
CONSISTENCY

The safety of a road is closely linked to
variations in the speed of vehicles travelling on
it. These variations are of two kinds:

1. Individual drivers vary their operating
speeds to adjust to features encountered
along the road, such as intersections,
accesses and curves in the alignment. The
greater and more frequent are the speed
variations, the higher is the probability of
collision.

2. Drivers travelling substantially slower or
faster than the average traffic speed have
a higher risk of being involved in collisions.

A designer can therefore enhance the safety of
aroad by producing a design which encourages
operating speed uniformity.

As noted in the discussion of speed profiles in
Chapter 1.2, simple application of the design
speed concept does not prevent inconsistencies
in geometric design. Traditional North American
design methods have merely ensured that all
design components meet or exceed a minimum
standard, but have not necessarily ensured
operating speed consistency between
components.

Practices used in Europe and Australia have
supplemented the design speed concept with
methods of identifying and quantifying
geometric inconsistencies in horizontal
alignments of rural two-lane highways. This type
of road typically has the most problems related
to design inconsistency. These methods have
not been perfected, particularly in predicting the
performance of a newly designed road. Their
effectiveness is greater in evaluating existing
roads and identifying priority improvements to
reduce collision rates.

143.1 Prediction of Operating
Speeds

In order to establish consistency of horizontal
alignment design for a proposed new road, it is
necessary to predict operating speeds

associated with different geometric elements.
Limited information is generally available to
assist designers with prediction of operating
speeds, but the material presented in this
section may help, noting the limited database
used. As an alternative, some jurisdictions have
local data on which to base speed predictions.

Researchers’ collected data from five US states,
measuring 85th percentile operating speeds,
under free flowing traffic conditions, on long
tangents and horizontal curves on rural two-lane
highways. Long tangents (250 m or more) are
those lengths of straight road on which a driver
has time to accelerate to desired speed before
approaching the next curve. The mean
85th percentile speed on long tangents was
found to be 99.8 km/h on level terrain and
96.6 km/h in rolling terrain. It was noted that
these speeds were probably constrained by the
90 km/h posted speed in force at the time.

On horizontal curves, the research found
consistent disparities between 85th percentile
speeds and inferred design speeds, with the
greater disparity on tighter radius curves. The
85th percentile speed exceeded the design
speed on a majority of curves in each 10 km/h
increment of design speed up to a design speed
of 100 km/h. At higher design speeds, the
85th percentile speed was lower than the design
speed.

Using regression techniques, a relationship was
found between 85th percentile speeds and the
characteristics of a horizontal curve.

V85 = 102.45 + 0.0037L (1.4.1)
— (8995 +5.73L) /R

Where V85 = 85th percentile
speed on curve (km/h)
L = length of curve (m)
R = radius of curvature (m)
1.4.3.2 Speed Profile Model

The findings outlined in Subsection 1.4.3.1
support the conclusion that there is no strong
relationship between design speed and
operating speed on horizontal curves.
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Consistency of horizontal alignment design
cannot therefore be assured by using design
speed alone. A further check can be carried out
by constructing a speed profile model, using
predicted 85th percentile operating speeds for
new road and measured 85th percentile speeds
for existing roads.

For the predictive model, it is necessary to
calculate the critical tangent length between
curves as follows:

TL = 2V;* -v85," -V85,” (1.4.2)
¢ 25.92a
Where: TL, = critical tangent length (m)

V, = 85th percentile desired
speed on long tangents
(km/h)

V85 = 85th percentile speed on
curve n (km/h)

a = acceleration/deceleration

rate, assumed to be
0.85 m/s’

The calculation assumes that deceleration
begins where required, even if the beginning of
the curve is not yet visible.

Each tangent is then classified as one of three
cases, as shown on Figure 1.4.3.1, by
comparing the actual tangent length (TL) to the
critical tangent length (TL ).

Having found the relationship between each
tangent length (TL) and the critical tangent
length (TL ), the equations in Table 1.4.3.1 can
then be used, as appropriate, to construct the
speed profile model.

The speed profile model is used to estimate the
reductions in 85th percentile operating speeds
from approach tangents to horizontal curves, or
between curves. Designers should note that the
research® on which the model is based dealt
only with two-lane rural highways. The same
principles, however, can be applied to design of
other classes of roads.

1433 Safety

As noted in Chapter 1.2, there is evidence that
the risk of a collision is lowest near the average
speed of traffic and increases for vehicles
travelling much faster or slower than average.
While this is true in relation to the general
distribution of speeds in a stream of traffic, it
has also been found to apply when there is a
variation in speeds caused by the effects of a
reduction in speed from one geometric element
to the next.

This particular form of speed variation may be
experienced in situations such as the transition
from a tangent to a curve, or between curves.
In these cases, the previously mentioned
research study’, found that the mean collision
rate increased in direct proportion to the mean
speed difference caused by the transition from
one geometric element to the other. The results
are noted in Figure 1.4.3.2.

The numerical values from Figure 1.4.3.2
should be used with caution, because of the
database used. Wherever possible, designers
should use local data. However, the principles
established show the effect of a lack of
horizontal alignment consistency on increasing
collision potential. Figure 1.4.3.2 should not be
interpreted to mean that collision rate decreases
as speed decreases.

Page 1.4.3.2
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Figure 2.1.2.12 Lateral Clearance for Range of Lower Values of Stopping
Sight Distance’
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Figure 2.1.2.13 Lateral Clearance for Passing Sight Distance®
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Figure 2.1.8.3 Performance Curves for Heavy Trucks, 180 g/W, Decelerations
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Figure 2.1.8.4 Performance Curves for Heavy Trucks, 200 g/W, Decelerations
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and limitations. When a design is incompatible
with the attributes of a driver, the chances for
driver error increases. Inefficient operation and
collisions are often a result.’

In general, traffic volume is the most significant
contributor to intersection collisions. Typically,
as traffic volumes increase, conflicts increase,
and therefore the number of collisions increase.’
Severity of collisions varies only slightly among
rural, suburban and urban intersections; the
percent of severe collisions is approximately 5%
higher for rural intersections.’

Other elements related to intersection collision
rates include geometric layout and traffic
control.® As previously noted, traffic control
measures are not addressed in this document.
The relationship of specific geometric elements
and safety is described below:

Type of Intersection

In rural settings, four-legged intersections
typically have higher collision rates than
T-intersections (three-legged) for stop and
signal controls.’

In urban settings, very little difference in collision
rates between four-legged and T-intersections
was found for low volume intersections
(Average Daily Traffic under 20 000); however,
for larger volumes, the four-legged intersection
was found to have the higher collision rate.’

Sight Distance

In both an urban and a rural setting,
studies have shown that the collision rate at
most intersections will generally decrease when
sight obstructions are removed, and sight
distance increased.’

Channelization

In a rural environment, it was found that left-
turn lanes would reduce the potential of passing
collisions.’

In an urban setting, it was found that multi-
vehicle collisions decrease when lane “dividers”
(raised reflectors, painted lines, barriers or

medians) are used; however the use of left-turn
lanes was not considered effective as a collision
countermeasure but was considered effective as
a means of increasing capacity.’

Cross Section

Safety considerations for cross section
elements, such as lane width, are addressed
in Chapter 2.2.

2.3.1.7 Intersection Spacing
Considerations

Both rural road and urban road network spacing
is often predicated on the location of the original
road allowances prior to urban development.
The systems of survey employed in the layout
of original road allowances vary from region to
region across Canada. As rural areas urbanize,
the development of major roads generally
occurs along these original road allowances,
and consequently road networks vary from
region to region. As examples, the land survey
system in Ontario has created a basic spacing
between major roads of 2.0 km, whereas the
land survey system in the prairie provinces has
resulted in a 1.6 km grid.

As development occurs, this spacing is often
reduced. In areas of commercial or mixed use
development, the traffic generated by
employment and retail shopping may result in
a reduced arterial spacing. In downtown areas,
this spacing could be reduced further as
determined by the traffic needs and the
characteristics of the road network.

The spacing of intersections along a road in both
an urban and rural setting has a large impact on
the operation, level of service, and capacity of
the roadway. Ideally, intersection spacing along
a road should be selected based on function,
traffic volume and other considerations so that
roads with the highest function will have the least
number (greatest spacing) of intersections (the
relationship of road classification and the
preferred functional hierarchy of circulation is
described in Chapter 1.3 of this Guide). However,
it is often not always possible to provide ideal
intersection spacing, especially in an urban
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setting. As such, the following should be
considered:

Arterials

Along signalized arterial roads, it is desirable to
provide spacing between signalized intersections
consistent with the desired traffic progression
speed and signal cycle lengths. By spacing the
intersections uniformly based on known or
assumed running speeds and appropriate cycle
lengths, signal progression in both directions can
be achieved. Progression allows platoons of
vehicles to travel through successive
intersections without stopping. For a progression
speed of about 50 km/h and a cycle length of
60 s, the corresponding desired spacing between
signalized intersections is approximately 400 m.
As speeds increase the optimal intersection
spacing increases proportionately. Further
information on the spacing of signalized
intersections is provided in the
Subsection 2.3.1.8.

A typical minimum intersection spacing along
arterial roadways is 200 m, generally only
applicable in areas of intense existing
development or restrictive physical controls
where feasible alternatives do not exist. The
200 m spacing allows for minimum lengths of
back to back storage for left turning vehicles at
the adjacent intersections.

The close spacing does not permit signal
progression and therefore, it is normally
preferable not to signalize the intersection that
interferes with progression along a major
arterial. Intersection spacing at or near the
200 m minimum is normally only acceptable
along minor arterials, where optimizing traffic
mobility is not as important as along major
arterials.

Where intersection spacing along an arterial
does not permit an adequate level of traffic
service, a number of alternatives can be
considered to improve traffic flow. These
include: conversion from two-way to one-way
operation, the implementation of culs-de-sac for
minor connecting roads, and the introduction
of channelization to restrict turning movements
at selected intersections to right turns only.

On divided arterial roads, a right-in, right-out
intersection without a median opening may be
permitted at a minimum distance of 100 m from
an adjacent all-directional intersection. The
distance is measured between the closest
edges of pavement of the adjacent intersecting
roads.

In retrofit situations, the desired spacing of
intersections along an arterial is sometimes
compromised in consideration of other design
controls, such as, the nature of existing adjacent
development and the associated access needs.

Collectors

The typical minimum spacing between adjacent
intersections along a collector road is 60 m.

Locals

Along local roads, the minimum spacing
between four-legged intersections is normally
60 m. Where the adjacent intersections are
three-legged a minimum spacing of 40 m is
acceptable.

Cross Roadway Intersection Spacing Adjacent
to Interchanges

The upper half of Figure 2.3.1.6 indicates the
intersection spacing along an arterial crossing
road approaching a diamond interchange. The
suggested minimum distance between a
collector road and the nearest ramp, as
measured along the arterial cross road, is
200 m (dimension A on Figure 2.3.1.6). In the
case of an arterial/arterial cross road
intersection, this minimum offset distance from
the ramp is normally increased to 400 m
(dimension A_ on Figure 2.3.1.6). The same
dimensions apply to arterial cross roads
approaching parclo-type interchanges as shown
on the lower half of Figure 2.3.1.6.

Ramp Intersection Spacing at Interchanges

The upper half of Figure 2.3.1.6, as well as
Figure 2.3.1.7, illustrate the suggested and
minimum intersection spacing and lane
configurations on the cross road at a typical
diamond interchange. The two different
channelization treatments illustrate the following
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Figure 2.3.8.6
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Intersections

Introduced Raised Median

Figure 2.3.8.7

3 uo esou yoeoidde
‘aUIjayusd uo J|ds uelpsW : WNWIUIW "D

J - D Uoljoes
IR SN NI
'1'8'€'Z 9|qe| 993 "e : 9JON wgo Ul w o) w m.m w G0
, 3
7 5 - m._mas yoeoidde Vi
Ik o abue) o
i
_ e - - - - - - - - —_— — —_ f— — - _ _ _ _ _
=1 - 1 - - - - - - - -
—— - - - - - - - - — -
\ ] Juabue) Y|
B o —— .
o Jadey ainpedep o
q - q uooas D wouy josyo asou yoeoidde
[F— —_— = —— ‘aulja)ua0 uo Jjds uelpaw : s|geydesoe ‘q
I
T, SR P B
wgGo ulw w Q' ﬁ wge w G
3 ml q .Jade} yoeoidde _
|\ /, o Juabuey u
= S — — _ _— —
—— - - - - - - - - - - - - - - - -
\ o hd jusbuey o
—~etlf—
q mLmam« alnyedap \/\
B - B uoljoes
[— —_— — BUI8JJUSD WOJ) 18SYO0 UBIpaW : 8|gelisep ‘e
|
Ay bt L
weo uwwol wge waeo
”,,_V B ~—
_ -— N - _  _ _  _— — — —
3 - = =
-
— — — — — —
—— ‘mw n‘ — — — — — — _ _ _ P — — — — -
- 3 — Jusbue) ]
\ B —

m._mn_m« alnuedep \/\

September 1999

Page 2.3.8.10





