

Key considerations in assessing Environmental impacts of essential elements

F. Van Assche*, M. Cook* and A. Green**

*International Zinc Association, 168, Avenue de Tervuren, B-1150 Brussels, Belgium

** International Lead and Zinc Research Organisation, Research Triangle Park, NC, USA

Natural, essential elements

- Essential Elements (EE's) e.g. zinc, copper, iron,...are present in natural (background) concentrations in all environmental compartments
- EE's are used by biota for essential functions in cellular metabolism
- Environmental toxicity has been a major issue in the LCIA of metals
- The EU Risk assessment has identified key issues in which EE's require a specific methodological approach

Natural zinc background

- Biota take their required dose of EE's from their environment
- Internal EE levels are actively regulated (within boundaries by homeostasis
- ⇒ background variability??
- relationship organism sensitivity-background??

The Optimal Concentration range for Essential Elements

The variable environment e.g. freshwaters

Freshwater	Great Lakes	EU lowland rivers	Nordic waters
Natural Zn background (dissolved, µg/l)	0,09-0,3	1-10	<1-3
pН	7.5-8.2	7.5-8.2	5-8
Mean hardness	50	200	10 - ?
Typical DOC	No data	2-5	5-10

Conditioning of organisms to pre-test zinc concentration

- Sensitivity of the unicellular alga *Raphidocelis subcapitata*
 - Standard laboratory organism
 - OECD 201 prescribes 1,4 µg/l (dissolved) zinc in test medium
 - often cultivated under the same (zinc) conditions; sometimes however conditions are deviating

Ecotoxicity of zinc to Raphidocelis subcapitata

- *Raphidocelis subcapitata* was originally cultured for a lon time at very low (<EU natural background) zinc concentration (0.3 μg/l)
- subsequently, the algae were cultured for 4 weeks at 3 different Zinc levels:
 - OECD 201 medium + 0.3 μ g Zn/l
 - OECD 201 medium + 1.4 μ g Zn/l
 - OECD 201 medium + 18 μg Zn/l
- <u>Results: Table</u>

Changing zinc sensitivity of *Raphidocelis* subcapitata as a function of culture conditions

Toxicity endpoint	0.3 μg/l zinc	1.4 μg/l zinc	18 μg/l zinc
EC50 Growth rate	37	> 200	1100
NOEC Growth rate	< 4	101	/

Zinc (NOEC) data of the RAR groupe according to pre-test conditions

- <u><1 μg/l Zn dissolved</u>
 - Ephydatia (3,3)
 - Daphnia (55)
 - Selenastrum (8)
 - Corbicula (25)
 - Ceriodaphnia (31)
 - Jordanella (51)
 - Pimephales (78)
- > <u>> 50 μg/l dissolved</u>
 - Hormidium (1000)
 - Scenedesmus (1400)

- $\geq 1 \ \mu g/l \ Zn \ dissolved$
 - Chroococcus (200)
 - Selenastrum (37)
 - Synecoccus (390)
 - Dreissenia (400)
 - Potamopyrgus (75)
 - Daphnia (224)
 - Hyallella (42)
 - Phoxinus (50)
 - Salmo (210)
 - Salvenilus (530)

Frequency of chronic NOECs as function of zinc background

Ecological relevancy of ecotoxicity data: the regional approach

- Organisms are conditioned to the background range of EEs in their environment (in nature, in the lab).
- Background levels of metals in the natural environment show great variety
- The sensitivity to EEs of test organisms from environments with different pre-test EE level will be different in laboratory tests
- ⇒ region-specific approach required

Summary statistics/extrapolations for different zinc-metalloregions

Zinc metalloregion	Mean +/-	PNEC
in µg zinc	Standard	(µg
dissolved/l in	Deviation	Zn/l)
culture (N)		
< 1 (7)	36 +/- 27	3.1
> 1, < 50 (10)	216 +/- 174	26

Bioavailability

- In the natural environment, organisms are conditioned to the <u>available</u> EE concentration
- the <u>combination</u> of factors defines bioavailability
 - water: pH, DOC, hardness
 - soil: OC, CEC
 - sediment: AVS, OC
- The EU has recognised that bioavailability must be factored in the RA
- Research is ongoing to develop the quantifiers for bioavailability in water, sediment, soils

Modelling bioavailability

Bioavailability makes the difference

Scenario	PEC/PNEC without bioavailability	PEC/PNEC with integration of availability factor
Regional waters e.g. region Rhin- Meuse (F)	2.8	0.5-0.8
Roadside waters NL worst case scenario	4.0	0.5

Relevancy of ecotoxicity data

- EE background and physicochemical factors determine the availability of EE's to biota
- ⇒ conditions to be documented and to be conform with the environment to be assessed:
 - metal background
 - physico-chemistry (pH, hardness, DOC/CEC...)
- To be relevant for use in the risk assessment of a given environment, an ecotox result should be obtained <u>under</u> the conditions of that environment (culture and test)

Conclusions

 Due to the close relationship between the environmental conditions (EE background, physicochemistry) and the sensitivity of organisms towards EE's, the potential risks of EE's must be assessed on a regionspecific, not a general-environment basis