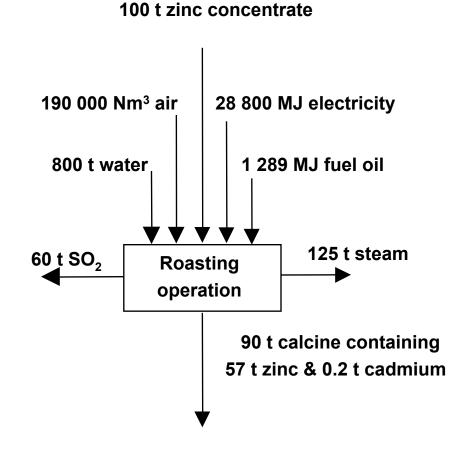
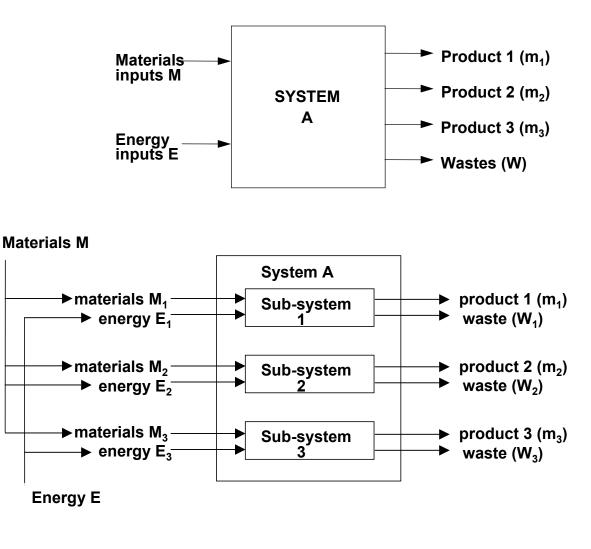

Zinc ecoprofile data: the results of a pan-European study

<u>William Dove</u> and Ian Boustead Boustead Consulting Limited, 2 Ashdown Field, Shalmsford Street, Chartham, Canterbury, CT4 7QS, UK

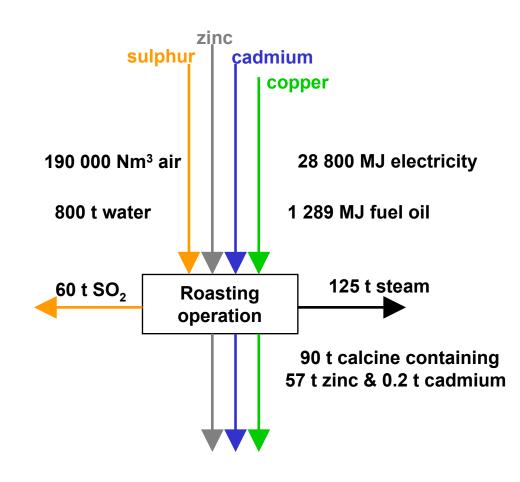


The two main European primary zinc production routes

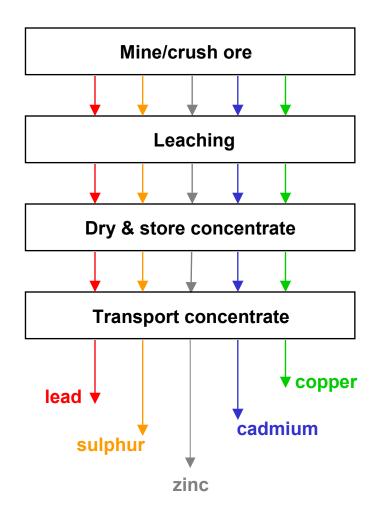

16/04/2002

Typical inputs to and outputs from a zinc concentrate roaster

16/04/2002



Traditional way of treating roaster SO₂ gas output (typical calcine roaster operating data)


	Raw data	Normali	sing parameter	Normalised data			
Inputs	Electricity	28,800	MJ			0.503	MJ
	Fuel oil	1290	MJ			0.023	MJ
	Zinc concentrate	100	t			1.749	kg
	Water	800	t			13.986	litre
	Air	190,000	Nm ³			2.980	Nm ³
Outputs	Steam @ 40 bar	125	t			6.121	MJ
	Calcine with:	[90	t]				
	Zinc	57	t	57,000	kg zinc	0.997	kg Zn
	Cadmium	200	kg	200	kg cadmium	0.003	kg Cd
	SO ₂	60	t				
Total zinc & cadmium			57,200	kg			

Tracking elemental flows

100 t zinc concentrate

Tracking elemental flows — back to ore extraction

16/04/2002

BOUSTEAD CONSULTING LID

Gross energy in MJ required to produce 1 kg of Zn in concentrate.

Fuel type	Fuel prod'n & delivery energy	Energy content of del'd fuel	Energy use in transport	Feedstock energy	Total energy
Electricity	3.72	1.75	0.04	0.00	5.51
Oil fuels	0.26	1.23	0.05	0.06	1.60
Other fuels	0.03	0.44	0.00	0.02	0.49
Totals	4.01	3.42	0.09	0.08	7.60

Gross energy in MJ required to produce 1 kg of SHG zinc/zinc alloy.

Fuel type	Fuel prod'n & delivery energy	Energy content of del'd fuel	Energy use in transport	Feedstock energy	Total energy
Electricity	27.31	13.90	0.18	0.00	41.39
Oil fuels	0.63	2.16	1.02	0.25	4.06
Other fuels	0.78	3.64	0.07	0.05	4.54
Totals	28.72	19.70	1.27	0.30	49.99

In Summary

- Tracking elemental flows means
 - variations in ore and concentrate compositions can be handled;
 - burdens can be assigned up until the point at which the main sequence is left;
 - any primary metal production system is wellsuited to this analytical approach.

BOUSTEAD CONSULTING LTD