EUROFER Stainless Steel LCI study

Andy Hay - AVESTAPOLARIT Marie-Claude Orlandi - ARCELOR Group Patricia Koundakjian - EUROFER

Motivation

• Following the Rio summit in 1992:

- "The Environment" moved up everyone's agenda
- End users were asking for "environmentally friendly" products and so manufacturers wanted LCI data, to contribute to LCAs
- Good quality data defining the environmental impacts of our processes were needed, in order to evaluate the potential for improvements.

Why a Stainless Steel LCI ?

- Stainless steels are very versatile and widely used materials; their corrosion resistance and longevity make them very popular, but "environmental" clarity was missing.
- A previous study had been carried out for carbon steels (IISI).
- EUROFER, assisted by the ECOBILAN experts, was able to develop a suitable database involving the vast majority of the European stainless steel producers.

Objectives

- Provide a basis for impact assessments of stainless steel products.
- Provide benchmarking data to identify areas for improvement within the process.
- Support communication with our stakeholders.
- Support responses to environmental claims against stainless steel.
- Train people in our industry in the field of LCA.

Frame of the study

Grades	409	430	304	316	2205
Alloy types	Ferritic		Austenitic		Duplex
Content by weight %	11% Cr	17% Cr	18% Cr 8% Ni	18% Cr 12% Ni 2.5% Mo	22% Cr 5% Ni 3% Mo
Sheets' surface conditions	BHR WHR 2B	BHR WHR 2B BA	BHR WHR 2B BA	BHR WHR 2B BA	BHR WHR 2B

BHR : Black hot rolled WHR : White hot rolled 2B : Cold rolled - Pickled + Skin pass BA : Cold rolled - Bright annealed

Frame of the study

Life Cycle Inventory

The "cradle" to "cradle" system

Life Cycle Inventory: EUROFER study

System boundaries "gate" system Cr. Ni, Mo pure metals Pure Cr, Ni, Mo **Ferro-alloys** metals Ferro **Emissions** alloys (air, water) Site boundaries **Raw materials Stainless Energy production** steel **Stainless** Transportation The "cradle" to (including extraction, workshops steel products except Cr, Ni, Mo) Scrap Natural (recycled) resources Other recovery processes Consumables Scrap production By-Merchant scrap, Emissions products other steel (Ground) Saved **By-products** functions operations

Collecting the data

- 7 worksheets, 1 per unit process;
- Other inputs or outputs tables:
 - 1 worksheet for energy production;
 - 1 for the effluents;
 - 1 for transportation of raw materials and semifinished products;
 - 1 for the determination of the routes between different sites of the same company;
 - 1 for inputs and outputs depending on the grades (inputs of the EAF)

Collecting the data

Measured

- from continuous measurements;
- Averaged
 - from spot measurements;
- Calculated
 - from statistical or indirect methods (e.g. SO₂);

Estimated

- When no better information: e.g. transportation distance of some raw materials;
- Unknown

The data base at a glance

• Inputs

- Raw materials in the ground
- Metals and ferro-alloys
- Water intake
- Scrap
- Miscellaneous inputs

Outputs

- Emissions to air
- Emissions to water
- Waste
- Recovered Matter
- Energy Indicators

Working with the LCI data

• Select the most relevant from 889 flows:

- Highest data values
- Hazardous compounds (with regard to health and environment)
- "Hot spots" even for low values, related to threats of tighter regulation (politics!)
- Prepare readily understandable graphic views

Showing the results for a given route

Sources

- Ferro-products
- Fuel production
- Electricity production
- Raw materials
- Transport
- By-products
- Site

- Processes involved in a given route
 - Process 1
 - Process 2
 - ... Process n
 - Utilities
 - Water intake

Flow	Unit	Quantity
(r) Chromium (Cr, ore)	kg	159,2131818
(r) Coal (in ground)	kg	1084,158273
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	48,60535455
(r) Iron (Fe, ore)	kg	154,9569091
(r) Lignite (in ground)	kg	116,8741455
(r) Limestone (CaCO3, in ground)	kg	242,9585455
(r) Manganese (Mn, ore)	kg	18,76907273
(r) Molybdenum (Mo, ore)	kg	0,970445185
(r) Natural Gas (in ground)	kg	293,1247273
(r) Nickel (Ni, ore)	kg	55,90772727
(r) Oil (in ground)	kg	360,9903636

Flow	Unit	Quantity
Stainless Steel Scrap (304, from external supply)	kg	502,4904545
Stainless Steel Scrap (316, from external supply)	kg	5,320859455
Stainless Steel Scrap (409, from external supply)	kg	15,97287909
Stainless Steel Scrap (430, from external supply)	kg	6,592498455
Steel Scrap (low alloy, from external supply)	kg	20,91885455
Carbon Steel Scrap	kg	187,1359182

Flow	Unit	Quantity
Water Used (direct cooling or process, total)	litre	75735,13636
Water Used (indirect cooling, total)	litre	8435,409091

Energy indicator	Unit	Value
E Feedstock Energy	MJ	4045,923
E Fuel Energy	MJ	57939,600
E Non Renewable Energy	MJ	59584,527
E Renewable Energy	MJ	2424,078
E Total Primary Energy	MJ	62042,536
Electricity	MJ el	e 9691,726

Flow	Unit	Quantity
(a) Carbon Dioxide (CO2, fossil)	g	6183152,727
(a) Carbon Monoxide (CO)	g	14129,73182
(a) Chromium (Cr III)	g	24,93037273
(a) Chromium (Cr III, Cr VI)	g	119,3759745
(a) Chromium (Cr VI)	g	0,122884645
(a) Dioxins (unspecified)	g	7,67958E-06
(a) Molybdenum (Mo)	g	6,560222691
(a) Nickel (Ni)	g	76,0908
(a) Nitrogen Oxides (NOx as NO2)	g	21146,85455
(a) Particulates (unspecified)	g	7914,111818
(a) Sulphur Oxides (SOx as SO2)	g	41218,97273

<u> </u>
Ð
Ţ
S
ئې
5
Q
Ţ
5
õ
U

Flow	Unit	Quantity
(w) Acids (H+)	g	103,243
(w) Ammonia (NH4+, NH3, as N)	g	126,854
(w) Cadmium (Cd++)	g	0,074
(w) Chromium (Cr III, Cr VI)	g	2,788
(w) COD (Chemical Oxygen Demand)	g	2770,215
(w) Copper (Cu+, Cu++)	g	0,451
(w) Fluorides (F-)	g	153,388
(w) Hydrocarbons (unspecified)	g	74,758
(w) Iron (Fe++, Fe3+)	g	227,467
(w) Lead (Pb++, Pb4+)	g	1,785
(w) Manganese (Mn II, Mn IV, Mn VII)	g	6,453
(w) Nickel (Ni++, Ni3+)	g	11,732
(w) Nitrate (NO3-)	g	3611,607
(w) Nitrogenous Matter (unspecified, as N)	g	4253,326
(w) Silicon Dioxide (SiO2)	g	433,909
(w) Sulphurated Matter (unspecified, as S)	g	1839,604

Depiction of the LCI results in a more readily digestible format

Contribution of the sources (%)

Contribution of the process stages

Contribution of the sources (%)

CO₂

Emissions to air:

Page 421

Contribution of the process stages

23

Contribution of the sources (%)

Contribution of the process stages

304 2B - Air emission / (a) Nickel (Ni)

Contribution of the sources (%)

304 2B - Energy indicator / Electricity

Contribution of the process stages

304 2B - Energy indicator / Electricity

Benchmarking between sites / producers

Cont. BHR

Batch BHR

EAF

HR Mill

CR Mill

Site 1 □ Site 2 □ Site 3 □ Site 4 ■ Mean

BA

2B

Page 893

Water In

Utilities

Problems & complexities

- Easy to overstate the data requirements.
- Hence, a lot of time and effort can be spent on looking for data that finally proves to be inconsequential.
- However, only when you have the first set of data can you truly decide what are the key flows.
- The "updating" LCI should be quicker and easier than the first, but will it be better?

Problems & complexities, continued

• Different sources of alloying metals. Not all were included in the LCI studies, so affecting average values; and non-included sources may be used in EU stainless steel production.

• Scrap is a variable but generally high percentage feedstock for stainless steel production: should we/can we factor in first production parameters, recycling efficiency, number of cycles?

Do our assumptions match the presumptions of the data users?

Problems & complexities, continued

- "Beyond the gate" introduces many Complexities:
- Stainless steel is a very widely used product with a huge range of applications (industrial, architectural, domestic and medical). Some of these use large quantities, others use much less; and some products have lives of at least decades while others may be short-lived.
- Taken together with the question of recycling statistics and their reliability, "beyond the gate" is a problem that will not be easily tackled.