Sustainability - The Ultimate Reality check

Development of a Science-Based Impact Assessment Methodology

Peter T. Peterson Director, Marketing -Automotive United States Steel Corporation

Sustainability

Requires impact assessment
Site specific
Spatial Considerations
Temporal Considerations
Threshold Analysis

#Is not for the faint of heart

Science-Based Methodology Strawman

 Life-Cycle Stressor-Effects Assessment
 △LCSEA <u>not</u> the only possible methodology
 △A tool for generating meaningful dialog
 △A peer-reviewed Steel Industry Case Study ○`Comparing Sustainability of Steel and Wood Studs Through LCSEA"

Green Marketing

Sustainability - the ultimate claim ☐Careful definition

Residential Construction - studs

<mark>∕ Stee</mark>l

⊠Wood

% Challenge - comparing relative sustainability

LCI & LCA

Document system inputs and outputs
Frequently ignore "use-phase"
Miss entirely land-use effects
loss of habitat
biodiversity reduction
ecosystem disruption

Scientific Certification Systems

☑ Dr. Stanley Rhodes

Environmental superiority of steel stude

- \triangle ecosystem disruption < 1% of wood
- Significantly reduced environmental impact

Life Cycle Assessment

Customer demands

△Competitive considerations

Improvement Analysis

Improvement Analysis

#Raw Materials use analysis

Economic

Environmental

₩Waste Reduction

Zero Waste

Competitive Considerations

<mark>₩Wood</mark>

- Entrenched competitor
- Strong Green Marketing claims
- **#**Response Required
 - Responsible
 - Credible
 - Draw Upon Broader LCA Principles

Customer Demands

#Enhanced Environmental Performance #Recycled content **₩www.recycle-steel.org Hunasked Questions** Embodied Energy △Thermal condustivity Finite Resources

Customer Demands

#Competitive negatives don't arise

Neither do Steel's environmental benefits

#LCSEA provides a balanced analysis

Launch & Completion

% Participants

- △Scientific Certification Systems, Inc.
- Steel Recycling Institute
- American Iron & Steel Institute
- United States Steel Corporation

#Study

- Begun September 1996
- Completed January 2000
- Peer Reviewed

Calculation Methodology

#ISO 14042

Including its comparative assertion provisions

₭ Key Indicators include -

energy resource depletion

renewable resource depletion

Mineral resource depletion

ecosystem disruption

emission loadings

residual hazardous waste

Goals, Objectives & Scope

Environmental relevance

- known material inputs
- emissions

∺Cradle to Gate

- Raw materials extraction
- Production of galvanized steel sheet

System Description

Carbon Steel ○ AISI 1006 Carbon Steel ○ Hot Dip Galvanized ○ 22- 26 GA ○ 60 inch wide coils

Functional Unit

Sufficient stud material to construct 30 % of new homes for one year
○ 30% of 1.3 million houses = 390,000
○ 2.31 million metric tons of steel

Allocation Protocols

By Products
 ⊡Chemicals

- ─Slags
- Methane

₩Used to Scale Coke & Byproduct production

Inventory Assumptions/Results

- raw material extraction
- energy production

<u>Site Specific</u>

Impact Indicator Results Calculation

Known Environmental Effects compiled

- published literature
- Selected databases
- designated experts
 - ⊠inside and outside steel industry

#Activity in key stressor-effects networks

Resource Depletion & Emission Characterization

Conversion of Inventory Results into Impact Indicators

Characterization Factors

- ≥Quantitatively relate
 - system stressors
 - actual environmental impact

⊠Resource Depletion Factors

- Stressor Characterization Factors
- Environmental Characterization Factors

Ecosystem Disruption -Steel

Measurement of large scale habitat change

Surrogate for biodiversity change

- **#**Comparative analysis
- Bisruption
 Bisru
 - Manufacturing permanent
 - Mining temporary

Ecosystem Disruption -Wood

390,000 homes

∺Stud production land use

requirement

△Wood - 600,000 hectares

Steel - 4,707 hectares

Air & Water Emissions

Readily available data
Clean Air Act
Clean Water Act
National Pollutant Discharge Elimination System

#All data is in public domain

Emission Loading Factors

∺Air & Water Emissions

○ Human health effects

Environmental effects

#LCI data - Environmental Confusion #LCSEA - Environmental Relevance Minimal ecosystem disruption Acidification & ground level ozone 70% / 75% below previous estimates Air loadings - below de minimus risk No eco-toxicity effluents over standard No hazardous residual waste

% LCSEA - Environmental Comparison

- Powerful
- ○Credible
- Adaptable to other steel
 - ☑ Manufacturers
 - ⊠Markets

