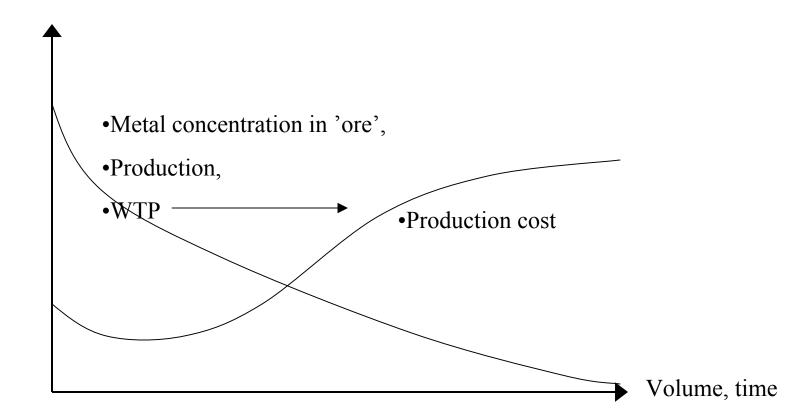
UNEP/SETAC International Workshop on Life Cycle Assessment and Metals, April 15 to 17, 2002, Montreal, Canada

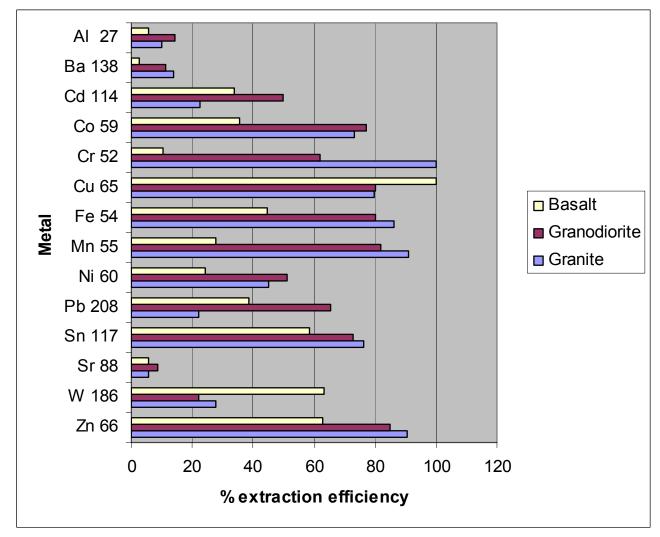
Extraction of metals from bedrock

Bengt Steen, Dept. of Environmental Systems Analysis and Gunnar Borg, dept. of Geology, Chalmers University of Technology, Gothenburg, Sweden A study within CPM, Centre for Environmental Assessment of Product and Material Systems

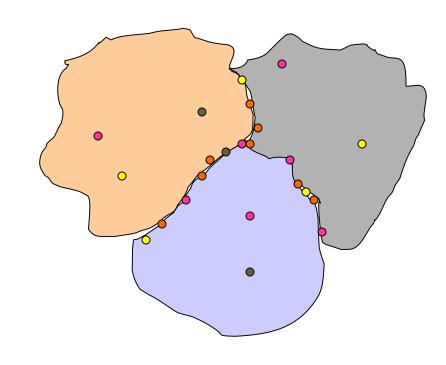
Gold ore

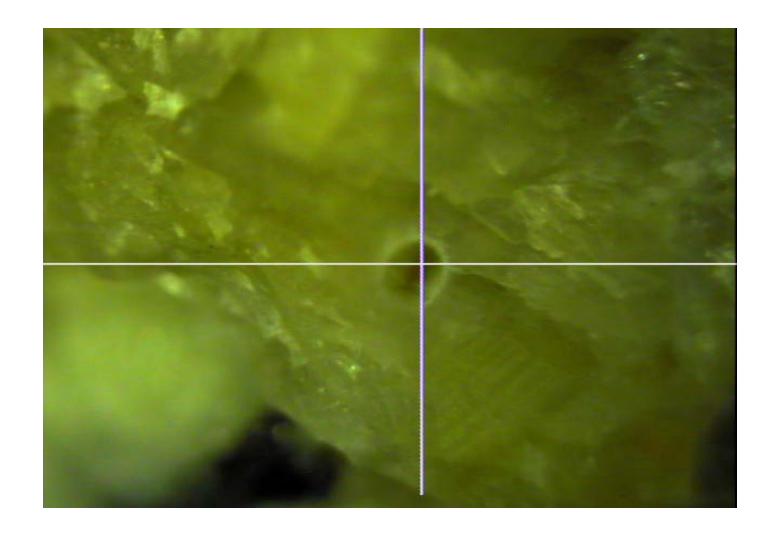


Granite

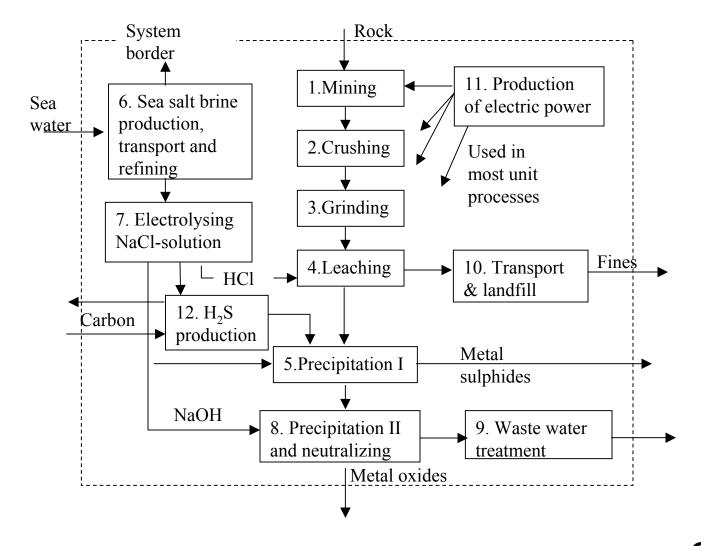


Likely future scenario


HCl leaching of bedrock


Hypothesis

When mineral crystals
were formed, metals not
belonging to the main
lattice or being similar to
the dominating metals,
were pushed out to the
borders



K-FELDSPAR LASER ABLATION (DIAM. OF HOLE 350 $\mu m)$

Production of metal concentrates from bedrock

Allocated costs for the production of various metal concentrates

Metal	Abundance	Cost of 'ore'	Cost of 'ore'	Cost of 'ore'	Weighted
	in earth's	production	production	production	average cost
	crust	from granite	from	from basalt	of 'ore'
	(g/ton)	EUR/kg	granodiorite	EUR/kg	production
		metal	EUR/kg	metal	EUR/kg
			metal		metal
Cd	0.102	76400	38800	77400	67700
Co	11.6	206	222	646	262
Cr	35	50.1	91.1	745	141
Cu	14.3	149	172	186	159
Mn	527	3.66	4.59	18.2	5.60
Ni	18.6	210	208	586	254
Pb	17	467	178	408	392
Sn	2.5	920	1080	1830	1060
W	1.4	4540	6330	3000	4780
Zn	52	37.2	44.7	81.4	44.2

Best estimates of costs for production of ore-like metal concen-trates compared to some market prices of today for pure metals

Metal	Weighted average cost of	Today's price levels
	'ore' production	EUR/kg metal
	EUR/kg metal	
Cd	67700	0.5-16
Co	262	8
Cr	141	8
Cu	159	1.7
Mn	5.60	0.5
Ni	254	6.8
Pb	392	0.6
Sn	1060	4.5
W	4780	0.03-0.2
Zn	44.2	0.9

Conclusions

- Concentrates of many metals may be produced from ordinary bedrock in a sustainable way
- The value of present ore concentrates to future generations is considerable
- When processing low grade bedrock, several metals will be produced at the same time, and allocation is likely to be a problem
- The average concentration in earth upper crust may be used for building category indicators, but several subgroups of substances may be an advantage

