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Although this Guide provides a framework for assess-
ing uncertainty, it cannot substitute for critical thinking,
intellectual honesty, and professional skill. The evalua-
tion of uncertainty is neither a routine task nor a purely
mathematical one; it depends on detailed knowledge of the
nature of the measurand and of the measurement. The
quality and utility of the uncertainty quoted for the result
of a measurement therefore ultimately depend on the un-
derstanding, critical analysis, and integrity of those who
contribute to the assignment of its value.

“Guide to the Expression of Uncertainty in Measurement”, 1993, 1st

Edition (International Organization for Standardization, Switzer-
land), §3.4.8.
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List of Symbols

α Thermal dilatation coefficient of test gauge.

αs Thermal dilatation coefficient of standard gauge.

δθ Relative temperature difference between standard and test gauge blocks.

θ Temperature offset of test gauge with respect to the reference temperature of
20◦C.

θs Temperature offset of standard gauge with respect to the reference temper-
ature of 20◦C.

ci, cij, cijj Sensitivity coefficients in the combined standard uncertainty. Each
of ci, cij , cijj represents partial derivatives of f(xi, xj , . . .), which are
defined in §4 equation (10) below.

d Deviation from nominal length. Positive d indicates that the gauge is longer
than the nominal length, negative d indicates that it is shorter.

f(xi, xj , . . .) Functional relationship describing the measured quantity in terms
of influence factors xi, xj , etc. (§4.1.1, §4.1.2 Guide1).

k Coverage factor for the expanded uncertainty; typically k = 2.

l Length of test gauge, where l = L+ d.

ls Length of standard gauge.

L Nominal gauge length.

t Temperature in degrees Celcius.

tref Reference temperature tref = 20◦C (ISO 1 (1975)).

u(xi) Standard uncertainty attributed to the measured quantity xi (§3.3.5,
§4.1.5 Guide).

uc(xi) Combined standard uncertainty (§3.3.6, §4.1.5 Guide); usually a quadra-
ture sum of standard uncertainties of quantities influencing xi.

uc(θs) Combined standard uncertainty in measured gauge temperature.

u(θr) Standard uncertainty in gauge temperature measurement attributed to
reading the thermometer indicator.

u(θ̇) Standard uncertainty in gauge temperature measurement attributed to the
cyclic variation in room temperature.

1Guide to the Expression of Uncertainty in Measurement, 1993, 1st Edition (International
Organization for Standardization, Switzerland).
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u(θcal) Standard uncertainty in gauge temperature measurement attributed to
the traceable calibration of the thermometer.

u(δθ) Standard uncertainty in temperature difference between standard and
test gauges.

u(αs) Standard uncertainty in the thermal dilatation coefficient of the standard.

u(α) Standard uncertainty in the thermal dilatation coefficient of the test gauge.

u(αs)u(θs) Cross term uncertainty representing the uncertainty attributed to
the temperature deviation from the reference temperature of the standard.

u(α)u(θs) Cross term uncertainty representing the uncertainty attributed to the
temperature deviation from the reference temperature of the test gauge.

u(δθ)u(α) Cross term uncertainty representing the uncertainty attributed to
the temperature difference between standard and test gauges.

uc(d) Combined standard uncertainty attributed to the measured length differ-
ence.

u(dr) Standard uncertainty attributed to reading the indicator of the length
difference between standard and test gauges.

u(dcal) Standard uncertainty in the measured length difference attributed to
the calibration of the mechanical comparator.

u(dg) Standard uncertainty in measured length difference attributed to the sta-
bility of the comparator gain electronics.

uc(ls) Combined standard uncertainty in calibration of standard.

ucal(ls) Calibration uncertainty of standard gauge, provided by the laboratory
who calibrated the standards.

u(l̇s) Uncertainty attributed to secular changes in gauge length.

uc(lws) Combined standard uncertainty in the calibration of the working stan-
dard against the reference standard.

uc(lcl) Combined standard uncertainty in the calibration of a client gauge against
the working standard in a direct chain beginning with the reference stan-
dard.

U The combined standard uncertainty uc(y) in a measured quantity y multi-
plied by a coverage factor k represents the expanded uncertainty.

Ucl Expanded uncertainty in the client gauge calibration, where the client gauge
is calibrated against the working standard and reference standard in a
direct chain.
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1 Introduction

The Standards Council of Canada (SCC) and the National Research Council
(NRC) Calibration Laboratory Assessment Service (CLAS) are aimed at aiding
Canadian calibration laboratories in performing quality calibrations which are
directly traceable to the definition of the metre (Pekelsky 1991, Quinn 1993/94).
In the area of dimensional metrology, gauge block calibration is one of the key
areas of CLAS accreditation.

This document provides a worked example of a typical evaluation of measure-
ment uncertainty for the case of the calibration of gauge blocks by mechanical
comparison. The comparison involves gauges of known and unknown length,
herein referred to as the standard gauge and test gauge respectively. In labora-
tories that provide service to many clients, the lab’s reference standard gauge
is spared excessive handling and wear by calibrating a working standard gauge,
which is used to calibrate the client gauge. Our two-gauge comparison model
is general, in that it can apply first to the comparison of the reference stan-
dard, and working standard gauge, and then to the working standard and client
gauges. At the end of the paper, it is shown how the uncertainties propagate
along the traceability chain, from the reference standard, to the working stan-
dard, to the client gauge.

It is assumed that the reader is familiar with the gauge blocks, the mechanical
comparator and the principles of their metrology. Our objective is to guide the
reader through the evaluation of the overall calibration uncertainties.

The following evaluation of the measurement uncertainty is based on crite-
ria expressed in the ISO Guide to the Expression of Uncertainty in Measure-
ment: 1993(E), cited hereafter simply as the Guide. The calculation of uncer-
tainties can seem overwhelming at first glance at the Guide, but when broken
down into a series of smaller tasks, or steps, the evaluation becomes more man-
ageable. The gauge block example here is presented in the following steps:

Step 1: Analyse the measurement process and identify the influence
quantities.

Step 2: List any simplifying assumptions and their impact or influ-
ence on the measurement.

Step 3: Form a mathematical model of the measurement in terms
of the influence quantities (expressed in an optimal form).

Step 4: Evaluate the sensitivity coefficients of the influence quan-
tities.

Step 5: Calculate the standard uncertainties of the influence quan-
tities.
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Step 6: Calculate the combined and expanded uncertainties for the
overall process.

The remaining sections elaborate on these steps with enough generality that this
document can be adapted to other cases, and with enough specific calculations
using real-world values that a novice can follow the details to reach a final num-
ber for the uncertainty of gauge block calibration by mechanical comparison.2

2 Measurement Process and Assumptions

2.1 Identify the Influence Quantities

What are the influence factors involved in measuring length by mechanical com-
parison? Drawing a block diagram can often help elucidate these factors. In
measuring length by mechanical comparison the length of the test gauge is com-
pared to that of the standard gauge and the measured difference in their lengths
determines the length of the test gauge. Referring to Figure 1, both the stan-
dard and test gauges are placed on the anvil of the comparator, and measured
in turn between the styli. The gauge block comparator is of the type where
there is a two-point contact, and the block is supported on the anvil. Firstly,
the standard gauge is probed by the opposing styli and the length indication is
adjusted to agree with its calibrated deviation from nominal length. Next, the
test gauge is similarly probed, and the reading of the comparator is recorded.
The deviation from nominal length of the test gauge is then reported as this
reading.

Factors influencing this measurement are then: the length calibration of the
standard, factors inherent in the comparator equipment used to measure the
length difference such as scale linearity and reading capability, gauge geometry
with respect to its effect on probing the length difference, the temperature of the
environment as it influences the gauge temperatures, which is in turn influenced
by the gauge materials, and so forth. In summary, they are:

• calibrated value of standard gauge
– calibration value
– secular changes in standard gauge

• measured length difference between standard and test gauges
2Specific product names or services are mentioned in this document only for the convenience

of a worked example. NRC does not promote or endorse any of the products or services named
in this article.
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Figure 1: Schematic diagram of a gauge block comparator with opposing styli
and digital readout. The diagram depicts the influence factors in the measure-
ment, and the mathematical symbols which will represent them in the text.
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– comparator reading
– linearity
– drift
– gauge positioning and geometry effects
– gauge penetration variation

• temperature effects
– thermometer reading
– thermometer calibration
– ambient room temperature variation
– temperature difference between gauges
– thermal expansion coefficient

The detailed calculation of the uncertainties attributed to the influence quan-
tities is considered in §6. By setting some constraints on the measurement
process, some of these factors can be combined, or made negligible.

2.2 The Assumptions

In general, an uncertainty is calculated for a very specific measurement scenario.
The specifics of the calibration and the influence factors should be well defined
before trying to consider what their uncertainties are. The acronym SWIPE
(Standard, Workpiece, Instrument, Procedure/Personnel, Environment) is use-
ful in recalling the key factors which influence a measurement, and can help in
setting boundaries and limit cases for the measurement to be considered. The
completely general case for gauge block calibration by mechanical comparator
is beyond the scope of this paper. By making a few key assumptions, the model
is greatly simplified. For this example, the following assumptions are made:

• best quality standard gauge (ISO 3650 grade 1 or better),
• good quality test gauge (ISO 3650 grade 2 or better),
• gauges of like-materials (same stylus penetration and thermal
expansion coefficients),

• high-accuracy differential-mode mechanical comparator,
• best laboratory practice, free of blunders,
• environment meets or exceeds CLAS Type 1 lab (20± 1◦C).

The first two assumptions address gauge geometry, quality and closeness to
nominal length. If differences from nominal length are small, and gauge surfaces
are flat, parallel and in new condition, then the operator’s ability to centre each
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gauge under the stylus is a small factor that can be included in the repeatability
of the comparator readings.

The calibration of like-material standard and test gauges is another key simpli-
fication made in this example. By limiting the discussion to similar materials,
effects related to differences in thermal expansion simplify one of the largest
sources of uncertainty in this kind of calibration, namely that of temperature.
Penetration depth of the styli in different materials will be neglected. Variations
in stylus penetration are considered to be included in the uncertainty attributed
to repeated readings. For the purposes of this example, hardened steel has been
selected as the material of both the standard and test gauges.

As for the instrument, it is assumed that the gauge block comparator is a high
accuracy model of the opposing-styli type where only small length differences
between the standard and test gauges are measured, i.e., both gauges have the
same nominal length. Laboratory practices are assumed to be of a consistently
high quality, especially in the thermal conditioning and handling of gauges,
such that poor measurements as a result of blunders or bad practice are not
included in the measurement uncertainty (§3.4.7 and §3.4.8 Guide). The labo-
ratory environment is assumed to be maintained close to the standard reference
temperature of tref = 20◦C, for example meeting or exceeding the criteria of
a CLAS Type 1 laboratory (Practices for Calibration Laboratories 1990). The
reader is referred to the following references (and those mentioned therein) for
the general subject of temperature measurement in the laboratory: Magison
(1990), McGee (1988), Nicholas and White (1994).

3 Mathematical Model of the Measurement

The primary influence factors identified above can be expressed algebraically
and combined to yield a mathematical model representing the measurement.
Let the temperature offset θ be the difference between the gauge temperature t
and the standard reference temperature tref = 20◦C (ISO 1 (1975))

θ = t − tref. (1)

The length of a gauge at temperature offset θ is given by

l{θ} = l(1 + αθ) (2)

where l is the length at the reference temperature, and α is the thermal ex-
pansion coefficient for the gauge material. In our example, steel gauges are
considered with

α = 11.5× 10−6/◦C. (3)
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The length difference d between a test gauge measured at temperature offset θ
and a standard gauge at θs is

d = l{θ} − ls{θs}
= l(1 + αθ)− ls(1 + αsθs), (4)

where the l and ls are the lengths at the reference temperature of the test
and standard gauges respectively, and α and αs are their respective thermal
expansion coefficients. Equation (4) can be re-arranged to isolate the length of
the test gauge:

l =
d+ ls(1 + αsθs)

1 + αθ
. (5)

Equation (5) can be approximated as a polynomial by substituting (1 + αθ)−1

with its binomial expansion: (1+x)−1 = 1−x+x2−x3+. . . (x2 < 1). Neglecting
the quadratic and higher order terms in the polynomial, and retaining only
significant first-order terms, it follows that

l ≈ d+ ls(1 + αsθs − αθ). (6)

For convenience we will define the following parameter which will represent the
temperature difference between standard and test gauges3:

δθ = θ − θs. (7)

Rearranging (7) and applying it to equation (6), the expression for the calibra-
tion of a test gauge by mechanical comparison to be used in this evaluation of
the measurement uncertainty is:

l = d+ ls(1 + αsθs − αδθ − αθs). (8)

Recall that the case being considered is that where the standard and test gauges
are of like material (steel standard to steel test gauges). Even though the
thermal expansion coefficients for both standard and test gauges are nominally
equal, and therefore αsθs and αθs terms would cancel each other out in equation
(8), these terms must be kept in the calculation to account for the non-cancelling
uncertainties arising from each of these terms.

3The use of this difference parameter avoids having to deal with correlated uncertainty
components (§F.1.2.4 Guide). One can assume that if θ and θs are measured with thermome-
ters whose calibration traceability link at some point, then the temperature values for the two
gauges will be correlated. Using δθ avoids having to calculate the uncertainty in the case of
correlated components and thus simplifies the uncertainty calculation. Even if θ and θs are
not correlated (i.e., independent), the result obtained by incorporating this substitution is
only slightly more conservative. We will choose to leave α and αs expressed explicitly for the
reason that usually the manufacturer’s stated values are used without further verification by
measurement, and these stated values are assumed to be independent (uncorrelated). Having
explicit α and αs also readies this model for the case of different gauge materials. If the
thermal expansion coefficients are indeed measured with the same system in the laboratory,
the treatment of this variable could be altered to reduce the total uncertainty.
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4 Uncertainty Equations

The uncertainty example calculation presented in this document follows interna-
tionally accepted general rules for the evaluation and expression of uncertainties
as laid out in the Guide. The Guide contains detailed definitions of the statis-
tical concepts and terminology, general equations for standard and expanded
uncertainties, as well as recommendations for dealing with special uncertainty
cases. Every attempt is made to reference the relevant section of the Guide
where appropriate. The Guide also contains some specific worked examples in
a variety of measurement domains.

4.1 Combined Standard Uncertainty

The combined standard uncertainty uc(l) is an estimate of the standard devi-
ation of the distribution of possible values (or probability distribution) of the
length of the test gauge l, here measured by mechanical comparison. The com-
bined standard uncertainty, as its name implies, is just a sum of the uncertainties
of all of the various influence factors u(xi), each weighted by a sensitivity coef-
ficient ci. As the Guide explains (§5.1.2), it is a sum of squared terms, given in
general as

u2
c(l) =

N∑
i=1

c2
i u

2(xi)

+
N∑

i=1

N∑
j=1

[
1
2
c2
ij + ci · cijj

]
u2(xi)u2(xj), (9)

where u(xi) are the standard uncertainties attributed to the influence quantities,
with Type A or Type B evaluations (§4.2, 4.3 Guide), and where

ci =
∂f

∂xi
, cij =

∂2f

∂xi∂xj
, cijj =

∂3f

∂xi∂x2
j

. (10)

ci, cij , cijj are the partial derivatives of the expression describing the length of
the test gauge l = f(d, ls, αs, θs, α, δθ), as developed in equation (8). ci, cij , cijj

are often referred to as sensitivity coefficients; their detailed calculation will be
discussed below. To make this calculation a little more palatable, it is convenient
to think of equation (9) as consisting of two parts: first-order terms containing
u2(xi), and higher order terms containing u2(xi)u2(xj). In the subject area of
dimensional metrology, the higher order terms should be evaluated with the first
order terms.
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4.2 Expanded Uncertainty

It is desirable to express measurement uncertainties in a form that encompasses
a large portion of the distribution of possible values. The expanded uncertainty
(§6.2 Guide)

U = kuc(l), (11)

is defined as the combined standard uncertainty multiplied by a coverage factor
k. The value of the coverage factor is chosen depending on the approximate
level of confidence that would facilitate the interpretation of the uncertainty.
Most measurements are expressed with a value of k between 2 and 3. NRC
has chosen to express the expanded uncertainty for k = 2, corresponding to an
approximately 95% confidence level (§6.2.2 Guide). Multiplying by a coverage
factor does not add any new information; it is a convention. The emphasis of
this document is on the calculation of the combined standard uncertainty.

It is important that the reader distinguish between the standard uncertainty u,
which is the k = 1 or 1σ value, and the expanded uncertainty U = ku, where
k > 1. In §6, uncertainties with various k values will be adjusted to the 1σ
(k = 1) level in order to work with the standard uncertainties throughout that
section. The combined standard uncertainty is then expanded to U for k = 2
in §8.

4.3 Significant Digits for Calculated Uncertainty

Throughout the following calculations, three significant digits may be carried
for purposes of resolution and to avoid rounding errors; however, for the scope
of this uncertainty calculation, more than two significant digits is usually not
warranted. Remember that uncertainties should always be rounded up (eg.,
11.32 rounds to 11.4, which rounds to 12).

5 Evaluation of Sensitivity Coefficients

The general equation to be applied in the calculation of the combined standard
uncertainty is equation (9). A model describing the measurement is represented
mathematically by equation (8). It may seem complicated, but the calculation
of the uncertainty begins by applying (9) to the mathematical expression (8).
Simply making the substitution of our influence variables in place of the xi in
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(9), the combined standard uncertainty can be written as

u2
c(l) = c2

ls
u2(ls)

+ c2
d u2(d)

+ c2
αs

u2(αs)
+ c2

α u2(α)
+ c2

θs
u2(θs)

+ c2
δθ u2(δθ)

+ higher order terms,

(12)

where the sensitivity coefficients for the first order terms are

cls =
∂l

∂ls
,

cd =
∂l

∂d
,

cαs =
∂l

∂αs
,

cα =
∂l

∂α
,

cθs =
∂l

∂θs
,

cδθ =
∂l

∂δθ
. (13)

The next step is to perform the partial derivatives for ci, cij , cijj on equation
(8) to determine the sensitivity coefficients. It is very helpful to use a table-style
format in the book-keeping of the terms. Tables 1, 2 and 3 are constructed in
sequence: the first partial derivatives of equation (8) listed in Table 1 are used
in the calculation of the second partial derivatives cij in Table 2. Similarly, the
second partial derivatives in Table 2 are used for the calculation of the third
partial derivatives cijj in Table 3.
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xi ci =
∂l

∂xi

ls 1 + αsθs − αδθ − αθs

d 1
αs lsθs

α −ls(δθ + θs)
θs ls(αs − α)
δθ −lsα

Table 1: Sensitivity coefficients for the first order standard uncertainty compo-
nents where l is expressed by equation (8).
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xi cij =
∂2l

∂xi∂xj

xj = ls d αs α θs δθ
ls · · θs −δθ − θs αs − α −α
d · · · · · ·
αs θs · · · ls ·
α −δθ − θs · · · −ls −ls
θs αs − α · ls −ls · ·
δθ −α · · −ls · ·

Table 2: Sensitivity coefficients for the second order standard uncertainty com-
ponents, where l is expressed by equation (8) and the first partial derivatives
are given in Table 1. A dot (·) means the coefficient is zero.

xi cijj =
∂3l

∂xi∂x2
j

xj = ls d αs α θs δθ
ls · · · · · ·
d · · · · · ·
αs · · · · · ·
α · · · · · ·
θs · · · · · ·
δθ · · · · · ·

Table 3: Sensitivity coefficients for the second order standard uncertainty com-
ponents, continued. A dot (·) means the coefficient is zero.
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Referring to Table 1 to make the substitutions for ci, equation (12) becomes:

u2
c(l) = (1 + αsθs − αδθ − αθs)2 u2(ls)

+ u2(d)
+ l2sθ

2
s u2(αs)

+ l2s(δθ + θs)2 u2(α)
+ l2s(αs − α)2 u2(θs)
+ l2sα

2 u2(δθ)
+ higher order terms.

(14)

It is recognized that the first term involving u2(ls) in equation (14) can be sim-
plified a little at this point. It is known that regardless of the material, the
expansion coefficient is in the neighborhood of 10−5/◦C. In the initial analysis
of the measurement it has also been assumed that the comparator is placed in a
temperature-controlled metrology laboratory, in which case ambient air temper-
ature deviation, and therefore the standard gauge temperature deviation from
the standard reference temperature, θs is small — less than 1◦C. In addition,
good metrological practices are assumed, therefore the temperature difference
δθ between gauges is more than likely even smaller than that. Based on these
reasonable assumptions, it is realized that the terms αsθs, αδθ and αθs will have
a small impact on u2(ls) compared to unity, and can be neglected.

Now, consider the higher order terms in equation (9). Referring to Table 3, the
sensitivity coefficients cijj are all exactly zero. This means that all the ci · cijj

terms disappear. The higher order terms remaining are those that are multiplied
by cij , namely:

N∑
i=1

N∑
j=1

1
2
c2
iju

2(xi)u2(xj).

Reading cij from Table 2, the higher order contributions to the combined stan-
dard uncertainty are listed below (duplicate terms have been combined):

|cαs,ls |2u2(αs)u2(ls) = θ2
su2(αs)u2(ls)

|cα,ls |2u2(α)u2(ls) = (δθ + θs)2u2(α)u2(ls)
|cθs,ls |2u2(θs)u2(ls) = (αs − α)2u2(θs)u2(ls)
|cδθ,ls |2u2(δθ)u2(ls) = α2u2(δθ)u2(ls)

|cθs,αs
|2u2(θs)u2(αs) = l2su

2(θs)u2(αs)
|cθs,α|2u2(θs)u2(α) = l2su

2(θs)u2(α)
|cδθ,α|2u2(δθ)u2(α) = l2su

2(δθ)u2(α). (15)

The combined standard uncertainty in the mechanical comparison length mea-
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surement, according to the model described by equation (8), is thus:

u2
c(l) = u2(ls)

+ u2(d)
+ l2sθ

2
s u2(αs)

+ l2s(δθ + θs)2 u2(α)
+ l2s(αs − α)2 u2(θs)
+ l2sα

2 u2(δθ)
+ θ2

s u2(αs) u2(ls)
+ (δθ + θs)2 u2(α) u2(ls)
+ (αs − α)2 u2(θs) u2(ls)
+ α2 u2(δθ) u2(ls)
+ l2s u2(θs) u2(αs)
+ l2s u2(θs) u2(α)
+ l2s u2(δθ) u2(α).

(16)

Armed with the list of terms in this equation, we can now examine each term
in detail. Table 4 is a preview of this process, listing the various uncertainty
components, their physical source, an evaluated magnitude, and their combined
influence.

6 Standard Uncertainties of Influence
Quantities

6.1 Opening Remarks

The identification of the variables used in the evaluation of the standard uncer-
tainties and the values of the uncertainty components are tabulated in Table 4.
The following section provides a discussion of each case individually. A specific
example is presented here, and the detailed characterization of any system and
its associated measurement uncertainties will be unique to a given set of con-
ditions. By giving all the details at each step, this document is intended to be
used as a guide for such a characterization.

6.1.1 Nominal Length

The nominal length L is used for convenience in the calculation of length de-
pendent coefficients in equation (16). The difference arising in the calculation
from the substitution of L in the place of ls is negligible.
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6.1.2 Combined Standard Uncertainty Notation

The combined standard uncertainty is a quadrature sum (i.e., sum of squared
terms) of the standard uncertainties attributed to the influence factors. It is
convenient to sum the end effect uncertainties as a, and length dependent un-
certainties as bL and express the combined uncertainty as uc =

√
a2 + b2L2 nm,

where L is the nominal gauge length in millimeters. This notation allows one
to estimate how the uncertainty will scale with the length of the gauge, and
what the minimum uncertainty for short gauges having negligible length effects
would be.

6.1.3 End and Length Dependence

Gauge block uncertainties can be grouped into those with length dependent
effects and end effects. End effect uncertainties are those for which the uncer-
tainty value is constant regardless of the length of the gauge. An example of
an end effect uncertainty component is the indicator reading uncertainty, where
the variation in reading the indicator is not related to the length of the gauge.
Length dependent uncertainties are of the form of a coefficient multiplied by
the nominal gauge length. The value changes with gauge length; for example,
longer gauges display more dramatic changes in length with temperature vari-
ations than do shorter gauges, and therefore the uncertainties corresponding to
temperature effects will scale as the length of the gauge.

6.1.4 Type A and Type B Uncertainty Evaluations

In the Guide, there is considerable concern about distinguishing between Type
A and Type B uncertainty evaluations. Simply put: Type A evaluations are
those for which repeated measurements are made and the 1σ standard deviation
is calculated from the data, and used as the standard uncertainty. Type B
evaluations are those for which repeated measurements cannot simply isolate
the influence, and the uncertainty must be obtained by some other method
based on the experience and expertise of the metrologist. The reader is referred
to the Guide (§4.2, §4.3) for more background. In the sections that follow, the
discussion gives worked examples of evaluating each type.

The rectangular distribution crops up frequently in Type B evaluation, and it is
used in several instances in this document. As explained in §4.4.5 of the Guide
(also see Figure 2, p. 17 Guide), if data to estimate the uncertainty distribution
of an influence parameter is limited, often an adequate and useful approximation
is to assume an upper +a and lower −a bound for a range of equally probable
values. The standard uncertainty (§4.3.7 Guide) is then given by a/

√
3.
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6.1.5 Interpreting Uncertainties to Identify Weaknesses

Uncertainty modeling and evaluation is an important tool for the metrologist
as it provides a qualitative and quantitative insight in to the factors control-
ling the total uncertainty for a process. If any one uncertainty term is several
times larger than the rest, when added in quadrature, it’s magnitude dominates
the combined uncertainty. As each component is investigated in the following
sections of this example, the dominant terms will be noted. In a very practi-
cal sense, these dominant terms are the areas in which the most cost-effective
improvements can be made to the calibration system.

6.2 Calibrated Value of Standard Gauge

Calibration Value The uncertainty of the calibration value of the standard
gauge block ucal(ls) is provided on the calibration certificate for the most recent
calibration. This is a Type B evaluation, comprised of both length dependent
and end effect components. The calibration uncertainty provided on the cer-
tificate indicates the uncertainty of the calibration at the time of measurement.
Estimation of the long-term behaviour of the gauge length may or may not be
included in this calculation; this matter should be discussed with whomever is
responsible for the calibration. A calibration certificate from NRC will indicate
the evaluated uncertainty for each gauge, as well as the parametric expanded
uncertainty U = k

√
a2 + b2L2 nm for a coverage factor of k = 2. For the exam-

ple in this document, U = 2
√
102 + 0.212L2 nm, where L is the nominal length

of the gauge in millimeters. Therefore,

ucal(ls) =
√
102 + 0.212L2 nm. (17)

Secular Uncertainty One can estimate the effect of long-term drift of the
standard gauge length by analyzing the trend of the gauge blocks over a period
spanning several calibrations. With sufficient history, one can predict a value for
the drift of the gauge length over the next calibration interval, as well as assign
a value for the secular uncertainty u(l̇s). This Type A evaluation of statistical
data is the preferred method for determining this important length dependent
uncertainty factor. It is the main reason that gauges with a long history of
calibration are so valuable: secular characterization with a small uncertainty
takes many years. A new set (as in this example) is an unknown performer.
Depending on the variables of manufacturing the bulk material and processing
it into blocks, the finished individual gauges may be growing or shrinking in a
very uncertain fashion.

In the absence of statistical study of the specific members of the set, one must
resort to a Type B best guess, based on the experience and research of others,
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and therefore potentially conservative numbers. For example, the stability of
gauge block steel has been studied at the U. S. National Institute for Standards
and Technology (NIST), where it was determined that steel gauges may shift
in length by an amount l̇ = 0.02l ppm/year,4 with an uncertainty u(l̇) = 0.2l
ppm/year (Doiron and Beers 1995). Assuming that the standards are calibrated
annually

u(l̇s) =
0.2ls × 10−6

year
× 1 year

= 0.2L nm, for 1 year, (18)

for the gauge length L in millimeters. Notice that this is a length dependant
uncertainty, and it can be quite large. If recalibration is delayed for several
years, this term can grow to dominate. The price of a new set with no history
is a costly secular uncertainty. For gauge sets with a long history, this term can
be made negligible.

Combined Standard Uncertainty in Standard Gauge Calibration The
above calibration and secular uncertainties are combined to give the uncertainty
attributed to the calibration value of the standard as,

uc(ls) =
√

u2
cal(ls) + u2(l̇s)

=
√
102 + 0.212L2 + 0.2L2 nm

=
√
102 + 0.2902L2 nm. (19)

Recall from (16) that the sensitivity coefficient corresponding to this term is
unity.

6.3 Measured Difference in Gauge Lengths

In this section, the uncertainty uc(d) in the value read from the comparator as
the difference between the lengths of the standard and the test gauge is con-
sidered. This combined standard uncertainty is a combination of the following
components.

Reading the Length Difference The uncertainty u(dr) in reading the length
indicator due to the short-term perturbations can be evaluated by repeated dif-
ference readings of the same gauges (described below), which is a Type A evalu-
ation. Somewhere in the uncertainty model, the operator(s) variance must also

4ppm: parts per million, 1 ppm = 10−6
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be accounted for. In this example, it is included in the reading uncertainty. One
could also refer to the uncertainty evaluation for repeated readings provided by
the manufacturer, which is a Type B uncertainty evaluation. Both methods
evaluating this uncertainty are valid; however, the uncertainty attributed to
repeated readings given by the manufacturer may be on the conservative side.
In the example case presented here, one can get a more realistic value for this
uncertainty by performing an experiment that isolates this influence factor.

In order to isolate the variation due to taking repeated readings, the readings of
the gauge difference should be taken under constant conditions (recall SWIPE
and the conditions laid out in §2.2):

• same gauges,
• same operator (repeat experiment for different operators),
• constant environment,
• constant instrument.

The experimental evaluation of this short-term uncertainty in the difference
measurement simultaneously takes into account end effects such as: operator
effects, electronic effects of the comparator, variations in the position of the sty-
lus contact point with respect to the reference point, gauge geometry deviations
in flatness and parallelism, and variations in probe penetration. These influence
parameters will manifest themselves in the uncertainty of the repeated readings.
Example data of the repeated readings of the length difference between standard
and test gauges is shown in Table 5.

Length Difference Readings
Example Gauge Block #1 Example Gauge Block #2

Time Temp. Difference Time Temp. Difference
Reading Reading

[◦C] [microinch] [◦C] [microinch]
4:19 19.9 +0.6 4:30 19.9 +5.5
4:19 19.9 +0.6 4:30 19.9 +5.4
4:20 19.9 +0.5 4:31 19.9 +5.4
4:20 19.9 +0.6 4:31 19.9 +5.5
4:21 19.9 +0.5 4:32 19.9 +5.4
standard deviation: 1σ = 0.05 1σ = 0.05

Table 5: Example of real data: repeated measurements of length difference
between standard and test gauges. Experiment performed on Grade 1 steel
rectangular gauge blocks.
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Evaluating the standard deviation of the data in Table 5 yields a standard
uncertainty in taking one difference measurement reading of (SI units as per
CSA Standard 1989)

u(dr) = 0.05 microinch× 25.4 nm
microinch

= 1.3 nm. (20)

The uncertainty in taking the reading of the length difference is an end-effect
uncertainty.

Comparator Linearity Calibration The length-measuring transducer for
this example comparator is a linear variable differential transformer (LVDT)
which has a long mechanical range (5 µm or 200 microinch) that is interpolated
with a high resolution indicating device with a shorter range (2 µm). The indi-
cator can be offset or stepped along the range of the LVDT by a selector switch.
The linearity of readings within the step range is verified by using a calibrated
set of 5–6 reference gauge blocks increasing in length by small steps within the
test range. The indicator reading is compared with the calibrated length of
each gauge. The shape of the plot of the indicator readings with respect to
the calibration values is indicative of the nonlinearity within this measurement
range. This nonlinearity correction could be applied to the comparator readings
to reduce the variation of measurement made with the instrument. However,
for best-quality comparators this nonlinearity is small and is more conveniently
treated as a small uncertainty component. The gauge blocks used in this test are
rather specialized (i.e., expensive) and although a Type A evaluation is desir-
able, it may be sufficient to assign an uncertainty based on a Type B evaluation
of the manufacturer’s claimed performance (assumed to be based on rigorous
tests over the stated range of the instrument, see Figure 2). For our example, we
consider the comparator specifications given in Figure 3, where the calibration
accuracy is stated to be better than 0.2 microinch (2σ). Converting to 1σ and
SI units:

u(dcal) =
0.2 microinch

2
× 25.4 nm
microinch

= 2.5 nm. (21)

In the case where the coverage factor is not supplied, one should first contact
the manufacturer to clarify what the coverage factor is. Failing this, our policy
at NRC is to assume a coverage factor of k = 2.

Comparator Drift The uncertainty attributed to scale-size drift in the read-
ings due to the gain electronics can be determined from regular calibrations.
Table 6 shows an example of the verification of gain stability on a regular basis
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Figure 2: Manufacturers calibration certificate demonstrating the linearity of
the gauge block comparator. The graphed line has been re-drawn for illustration.
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Figure 3: Manufacturer’s specification sheet listing the performance specifica-
tions. The Calibration Accuracy is used in the calculation of the measurement
uncertainty.
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and how, in this case, the uncertainty attributed to changes in gain can be esti-
mated at a rectangularly distributed range (§6.1.4) of 0.1 microinch. Therefore

u(dg) =
0.1 microinch√

3
× 25.4 nm
microinch

= 1.5 nm, (22)

provided that the gain is calibrated on a regular basis.

Verification of Electronic Gain of Comparator
Comparator Reading [microinch]

Date 0.1001 in 0.1002 in 0.1003 in 0.1004 in 0.1005 in Adjust
1 Jan ‘96 -199.2 -104.4 -0.7 97.5 199.6 none
15 Jan ‘96 -199.2 -104.1 -0.7 97.5 199.7 none
22 Jan ‘96 -199.1 -104.0 -0.7 97.3 199.7 none
6 Feb ‘96 -199.1 -104.1 -0.7 97.4 199.6 none
19 Feb ‘96 -199.2 -104.1 -0.7 97.4 199.8 none
7 Mar ‘96 -199.0 -104.1 -0.7 97.5 199.6 none

Table 6: Real experimental data demonstrating the stability of the gauge block
comparator electronic gain. In order to verify the electronic gain of the com-
parator, a series of known gauge blocks are used to probe the range within one
step of the comparator. In this example, the upper and lower limits of the range
are probed by the 0.1001 inch and 0.1005 inch gauge blocks, respectively. The
0.1002 inch and 0.1004 inch gauges verify the stability within the range. The
comparator reading is set to that of the mid-range 0.1003 inch gauge block, and
the values for the other blocks used in the test are recorded without adjust-
ment. The data in this example demonstrates that there is a ±0.1 microinch
performance band over the range.

Combined Standard Uncertainty in Comparator Readings The com-
bined standard uncertainty uc(d) attributed to comparator effects in reading the
length difference between the two gauges is the quadrature sum of the standard
uncertainty attributed to repeated observations u(dr), the standard uncertainty
attributed to comparator calibration u(dcal), and the standard uncertainty at-
tributed to comparator drift u(dg), namely:

uc(d) =
√

u2(dr) + u2(dcal) + u2(dg)

=
√
(1.3 nm)2 + (2.5 nm)2 + (1.5 nm)2

= 3.19 nm. (23)
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Figure 4: Temperature readings of the thermometer in the neighborhood of the
gauge block comparator plotted for two hours. From this plot, the 0.1◦C reso-
lution and the cyclic variation in ambient room temperature can be observed.

6.4 Uncertainties in Measuring Temperature

Given the large ramifications of temperature on dimensional measurements, it
is necessary to characterize the temperature behaviour in the location of the
laboratory in which gauge blocks are calibrated, particularly when striving for
lowest uncertainty calibrations.

Ambient Temperature Variation The cyclic variation of the temperature
can be determined from an experimental plot of temperature vs. time, as shown
in Figure 4. In any one hour period, the maximum offset of the room conditions
from the mean temperature observed in the example is 0.3◦C. This is a Type
B evaluation, where the uncertainty is assumed to be rectangularly distributed
across this range of ±0.3◦C (§6.1.4), therefore

u(θ̇) =
0.3◦C√
3

= 0.17◦C. (24)

This is a conservative evaluation of u(θ̇). The thermometer records the cycling
of the air temperature, whereas the cyclic variation of the temperature of the
gauge block has a large thermal inertia, and its temperature variation will be
considerably damped compared to that of the air.
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Reading Temperature By plotting temperature vs. time as in the example
in Figure 4, one can observe that the readings are quantized by the digital
resolution of the temperature indicator. In this case, the digital resolution
is 0.1◦C, therefore the uncertainty associated with the thermometer reading
capability is

u(θr) =
0.1◦C√
12

= 0.03◦C, (25)

where the
√
12 factor arises from evaluating a digital resolution (§F.2.2.1 Guide).

This is a Type B uncertainty evaluation.

Thermometer Calibration The calibration certificate should state the cal-
ibration uncertainty of the thermometer, and also the level of confidence or the
coverage factor used. Using the uncertainty from a calibration report or certifi-
cate is a Type B evaluation. In the example in Figure 5, the uncertainty stated
on the calibration certificate is 0.006◦C. The calibration certificate also states
that the coverage factor used is k=2. Therefore the standard uncertainty in the
thermometer calibration is

u(θcal) =
0.006◦C
2

= 0.003◦C. (26)

Combined Uncertainty in Temperature Measurement The combined
standard uncertainty uc(θs) in the temperature measurement of the standard
gauge is then the quadrature sum of the above components:

uc(θs) =
√

u2(θ̇) + u2(θr) + u2(θcal)

=
√
(0.17)2 + (0.03)2 + (0.003)2

= 0.173◦C. (27)

Notice that the room temperature drift contribution dominates the uncertainty
compared to those for the reading and calibration of the thermometer.

The contribution to the combined uncertainty in the length measurement is
uc(θs) multiplied by the sensitivity coefficient determined for u(θs) in (16),
namely ls(αs − α). It is immediately noticed that the term (αs − α) is zero
in the case of comparison of gauge blocks of like materials since the thermal
expansion coefficients are nominally equal. It shall be shown below that the
temperature effects make significant contributions to the uncertainty through
the higher order terms.
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Figure 5: Calibration certificate for the digital thermometer used in this
example.
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6.5 Temperature Difference Between Gauges

For the laboratory in this example, the ability to resolve temperature is limited
to 0.1◦C, so it is difficult to make tests for a Type A evaluation demonstrating
that gauge blocks are at the same temperature to a smaller uncertainty than
this. Indeed, most metrologists rely on allowing blocks to stabilize to a common
temperature over a period of time, rather than trying to measure gauge tem-
perature with a thermometer. Given sufficient time to stabilize, a reasonable
assumption is that the gauges have a temperature difference that is no larger
than what can be resolved with the laboratory thermometer (0.1◦C). This Type
B uncertainty estimation is then based on a rectangular distribution (§6.1.4)
spanning the range ±0.1◦C. Therefore

u(δθ) =
0.1◦C√
3

= 0.06◦C. (28)

Recalling equation (16), the contribution to the combined standard uncertainty
in the test gauge length measurement for steel gauge blocks is (α = 11.5 ×
10−6/◦C):

αlsu(δθ) = (11.5× 10−6/◦C) ls (0.06◦C)
= 0.690L nm, (29)

where L is the nominal gauge length in millimeters.

6.6 Thermal Expansion Coefficient

The value for the thermal expansion coefficient used in most gauge calibration
laboratories is that supplied by the manufacturer. Unless stated otherwise, an
accepted practice is to assign a conservative uncertainty of about 10%. For this
Type B evaluation we assume that this 10% is rectangularly distributed (§6.1.4).
Thus, for the case of steel gauge blocks, the standard uncertainty in the thermal
expansion coefficient is

u(α) =
10%× 11.5× 10−6/◦C√

3
= 0.66× 10−6/◦C. (30)

Recall from §2.2, the expansion coefficients for both standard and test gauges
are assumed equal, so u(αs) = u(α). The standard uncertainties contributing
to the combined standard uncertainty in the length of the test gauge includes
multiplication by sensitivity coefficients determined earlier in equation (16). The
sensitivity coefficients are lsθs and ls(δθ+θs), respectively. The value for δθ has
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already been estimated in §6.5 to be 0.1◦C. To estimate θs, the average value of
the temperature deviation from 20◦C shown in Figure 4 is used: θs = 0.15◦C.
The contributions to uc(l) are then:

lsθsu(αs) = ls(0.15◦C)(0.66× 10−6/◦C)
= 0.099L nm, (31)

and

ls(δθ + θs)u(α) = ls(0.1◦C+ 0.15◦C)(0.66× 10−6/◦C)
= 0.165L nm, (32)

where L represents the nominal length of the gauge in millimeters. These are
both length dependent uncertainty components.

6.7 Higher-Order Terms Associated with Temperature

Substituting values in each of the second order terms of (16), the following three
terms are found to make significant contributions:

lsu(θs)u(αs) = ls(0.173◦C)(0.66× 10−6/◦C)
= 0.114L nm (33)

lsu(θs)u(α) = ls(0.173◦C)(0.66× 10−6/◦C)
= 0.114L nm (34)

lsu(δθ)u(α) = ls(0.06◦C)(0.66× 10−6/◦C)
= 0.040L nm (35)

where L is the nominal gauge length in millimeters. Notice that even if the
lab had a mean temperature of 20◦C (so θ = θs = δθ ≡ 0), these parameters
would still have non-zero uncertainty. Thus, the thermal expansion terms of
§6.6 would vanish, but these higher order terms would remain.
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7 Combined Uncertainties

7.1 Combined Uncertainty Attributed to the Working
Standard

The combined standard uncertainty is the quadrature sum of the standard un-
certainties of the influence factors, written explicitly as equation (16). Values
for the uncertainty components and their sensitivity coefficients have been cal-
culated in §6 above for each of the identified influence quantities, and all that
remains is to add them together in quadrature. This is facilitated with the sum-
mary format of Table 4. Adding the values in the right-most column of Table 4
in quadrature:

uc(lws) =
(
102 + 0.2902L2 + 3.192 + 0 + 0.6902L2 + 0.0992L2

+ 0.1652L2 + 0.1142L2 + 0.1142L2 + 0.0402L2)1/2

=
√
111 + 0.625L2 nm

=
√
112 + 0.802L2 nm, (36)

for L in millimeters. This is the uncertainty attributed to the single comparison
measurement of the working standard against the reference standard, which has
been calibrated at NRC.

7.2 Other Factors and Checking the Uncertainty
Model Performance

The combined standard uncertainty in the gauge length calibration should be
representative of the standard deviation of actual day-to-day measurements of
gauge blocks. If the model is correct, and we have managed to include all of the
significant influencing factors in a realistic manner, then the uncertainty should
match the standard deviation of the measurements made with this system. This
verification cannot be simply checked in-house by repeated readings. Only those
few of the uncertainty components to do with repeatability will exhibit variation.
The only way to verify the performance of the model is through intercomparison
with other laboratories (as is done by the national labs), or by external audit,
as is done for CLAS laboratories.

Referring to §4.1.2 of the Guide:

Thus, if data indicate that f does not model the measurement
to the degree imposed by the required accuracy of the measurement
result, additional input quantities must be included in f to eliminate
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the inadequacy (see 3.4.2). This may require introducing an input
quantity to reflect incomplete knowledge of a phenomenon that af-
fects the measurand.

7.3 Client Gauge Calibration Uncertainty

To calculate the uncertainty of the calibration of the client gauge from the work-
ing standard, the above evaluation can simply be replicated, where the combined
standard uncertainty in the working standard uc(lws) =

√
112 + 0.802L2 nm cal-

culated in equation (36) is now substituted for the calibration uncertainty in the
standard ucal(ls). Since the calibrations are performed in the same laboratory
under similar conditions, values used for the other uncertainty components will
be the same. The uncertainty in the client gauge block calibrated against the
working standard is then:

uc(lcl) =
(
112 + 0.802L2 + 0.12L2 + 3.912 + 0 + 0.6902L2 + 0.0992L2

+0.1652L2 + 0.1142L2 + 0.1142L2 + 0.0402L2)1/2

=
√
137 + 1.19L2 nm

=
√
122 + 1.12L2 nm, (37)

where the only difference from (36) is that the working standard has been as-
sumed to be calibrated against the reference standard every 6 months, therefore
the secular uncertainty attributed to the working standard gauge u(l̇ws) = 0.1L
nm.

In using this method of propagating the uncertainties from reference standard→
working standard onto working standard→ client gauge, there will be correlated
components (§5.2 Guide). It turns out that the few uncorrelated uncertainty
components are negligible compared to the other uncertainties that cannot be
reduced by repeated measurements. The dominant sources of uncertainty are
the calibration uncertainty in the reference standard ucal(ls) and temperature
effects between gauges u(δθ). Reducing the uncertainty attributed to reading
the comparator indicator through repeated readings, will be negligibly small in
comparison.

8 Expanded Uncertainty

The expanded uncertainty (see §4.2) in the calibration of the working standard
from the reference standard in this example is Uws = 2uc(lws) = 2

√
112 + 0.802L2

nm. The expanded uncertainty in the calibration of a client gauge from this
working standard is Ucl = 2uc(lcl) = 2

√
122 + 1.12L2 nm.
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Figure 6: Expanded uncertainties plotted against nominal length for the
cascade of calibrations beginning with an NRC calibrated reference standard
→ working standard → client gauge, assuming calibrations in a direct chain.

The calibration uncertainty for the cascade of calibrations beginning with the
NRC calibrated reference standard, working standard and then client gauge are
shown plotted against nominal gauge length in Figure 6. It is easily observed
from this graph that the end effect uncertainties are dominant for shorter gauges,
and beyond about 20-25 mm the length dependent uncertainties dominate. As
mentioned above, the length dependent uncertainties predominantly stem from
the reference standard calibration and temperature related effects. The main
source of the end effect uncertainty is again the reference standard calibration.
This is no mere coincidence. This example was designed for CLAS laboratories
making a concerted effort to contribute as little uncertainty as possible while
transferring the definition of length from NRC to their clients. One can never
reduce the uncertainty to be below that of the reference gauge. The only avenue
in that direction is to seek better calibration of one’s reference standards. Herein
lies the driving force of all progress in metrology.

9 Conclusion

Expressions describing the combined standard uncertainty for gauge block cal-
ibration by mechanical comparison were determined. Values for these com-
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ponents were evaluated, based on best practice in a CLAS laboratory. The
combined standard uncertainty was formed from the quadrature sum of the
standard uncertainties of the influence quantities, examples of which were con-
sidered separately and listed in Table 4.

Based on the quadrature sum of the components in Table 4, the expanded
uncertainty in the calibration of the working standard against a calibrated ref-
erence standard is Uws = 2

√
112 + 0.802L2 nm, for a coverage factor of k = 2,

where L is in millimeters. Similarly, the expanded uncertainty in the calibra-
tion of the client gauge in a direct chain against the above working standard is
Ucl = 2

√
122 + 1.12L2 nm.
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