National Research Council Canada / Conseil national de recherches CanadaGovernment of Canada
Skip all menus (access key: 2)Skip first menu (access key: 1)Menu (access key: M) Français Contact Us Help Search Canada Site
Employment Opportunities Business Development Our Facilities Links Home
Our Research Newsroom NRC Site

National Institute for Nanotechnology


About NINT
About Nano
Recruitment
Our Research
Electron Microscopy
Supramolecular Nanoscale Assembly
Materials & Interfacial Chemistry
Molecular Scale Devices
Theory & Modeling
Group Leader Bio
Publications
Group Members
Cross Appointees
Associated Researchers
Our Facilities
Innovation Centre
Business Development
Newsroom
Links

University of Alberta
Government of Alberta

National Institute for Nanotechnology curved bar

Theory & Modeling

Recent Publications

1.       J. G. Moralez, J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, and H. Fenniri, Helical Rosette Nanotubes with Tunable Stability and Hierarchy, J. Am. Chem. Soc., (Communication), 127, 8307-8309 (2005).

2.       A. Kovalenko and F. Hirata, A molecular theory of liquid interfaces, Phys. Chem. Chem. Phys., 7, 1785-1793 (2005).

3.       A. Kovalenko, Molecular description of electrosorption in a nanoporous carbon electrode, J. Comput. Theor. Nanosci., 1, No. 4, 398-411 (2005).

4.       L. Livadaru and A. Kovalenko, Molecular description of the collapse of hydrophobic polymer chains in water, J. Chem. Phys. (Communication), 121, 4449-4452 (2004);             A Self-Consistent Molecular Theory of Polymers in Melts and Solutions, J. Phys. Chem. B, 109, 10631-10639 (2005).

5.       Omelyan, A. Kovalenko, and F. Hirata, Microscopic description of a liquid-vapor interface by an inhomogeneous integral equation theory, Chem. Phys. Lett., 397, 368-373 (2004).

6.       T. Imai, A. Kovalenko, and F. Hirata, Solvation thermodynamics of protein studied by the 3D-RISM theory, Chem. Phys. Lett., 395, 1-6 (2004).

7.       Omelyan, A. Kovalenko, and F. Hirata, Compressibility of tert-butyl alcohol - water mixtures: the RISM theory, J. Theor. Comput. Chem., 2, 193-203 (2003).

8.       A. Kovalenko and F. Hirata, Towards a molecular theory for the van der Waals-Maxwell description of fluid phase transitions, J. Theor. Comput. Chem., 1, 381-406 (2002).

9.       K. Yoshida, T. Yamaguchi, A. Kovalenko, and F. Hirata, Structure of tert-Butyl Alcohol - Water Mixtures Studied by the RISM Theory, J. Phys. Chem. B, 106, 5042-5049 (2002).

10.   A. Kovalenko and F. Hirata, First-principles realization of a van der Waals-Maxwell theory for water, Chem. Phys. Lett., 349, 496-502 (2001).

11.   A. Kovalenko and F. Hirata,  A replica reference interaction site model theory for a polar molecular liquid sorbed in a disordered microporous material with polar chemical groups, J. Chem. Phys., 115, 8620-8633 (2001).

12.   T. Imai, Y. Harano, A. Kovalenko, and F. Hirata, Theoretical Study for Volume Changes Associated with the Helix-Coil Transition of Polypeptides, Biopolymers, 59, 512-519 (2001).

13.   Y. Harano, T. Imai, A. Kovalenko, M. Kinoshita, and F. Hirata,  Theoretical study for partial molar volume of amino acids and poly-peptides by the three-dimensional reference interaction site model,  J. Chem. Phys. 114, 9506-9511 (2001).

14.   A. Kovalenko, F. Hirata, and M. Kinoshita, Hydration structure and stability of Met-enkephalin studied by a three-dimensional reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method, J. Chem. Phys., 113, 9830-9836 (2000).

15.   A. Kovalenko and F. Hirata, Potentials of mean force of simple ions in ambient aqueous solution. I: Three-dimensional reference interaction site model approach. II: Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations, J. Chem. Phys. 112, 10391-10402; 10403-10417 (2000).

16.   H. Sato, A. Kovalenko and F. Hirata, Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution, J. Chem. Phys., 112, 9463-9468 (2000).

17.   A. Kovalenko and F. Hirata, Potential of Mean Force between Two Molecular Ions in a Polar Molecular Solvent: A Study by the Three-Dimensional Reference Interaction Site Model, J. Phys. Chem. B, 103, 7942-7957 (1999).

18.   A. Kovalenko and F. Hirata, Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model, J. Chem. Phys., 110, 10095-10112 (1999).

19.   A. Kovalenko, Extended States of a Shallow Donor Located Near a Semiconductor-Insulator Interface, Internat. J. Quant. Chem., 66, 435-456 (1998).

Textbooks Chapters

1.       A. Kovalenko, Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces, in: Molecular Theory of Solvation, Fumio Hirata (Ed.) Series: Understanding Chemical Reactivity, Paul G. Mezey (Ed.), vol.24, (Kluwer Academic Publishers, Dordrecht, 2003, 360 p.) pp.196-275.

2.       A. Kovalenko and F. Hirata, A molecular theory of solutions at liquid interfaces, in: Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces, Hitoshi Watarai (Ed.) Series: Nanostructure Science and Technology, D. J. Lockwood (Ed.), (Springer, 2005, 307 p.) pp.97-125. 

Maria Stepanova 

1.       M. Stepanova, S. K. Dew, and D. Karpuzov, Self-organized metal networks at ion-etched Cu/Si and Ag/Si interfaces, J. Appl. Phys. 97 (2005) 083536.

2.       M. Stepanova, S. K. Dew, and I. P. Soshnikov, Copper nanopattern on SiO2 from sputter etching a Cu/SiO2 interface, Appl. Phys. Lett. 86 (2005) 073112.

3.       M. Stepanova and S. K. Dew, Fabrication and atomistic modeling of ion-etch nanostructures on substrates, Kinetics-Driven Nanopatterning on Surfaces, edited by Eric Chason, George H. Gilmer, Hanchen Huang, and Enge Wang (Mater. Res. Soc. Symp. Proc. 849, Warrendale, PA , 2005), 35-40.

4.       M. Stepanova and S. K. Dew, Surface relaxation in ion etch nanopatterning, Appl. Phys. Lett. 84 (2004) 1374-1376.

5.       M. Stepanova and S. K. Dew, Anisotropic energy distributions of sputtered particles under oblique ion incidence, Nucl. Instr. Meth. Phys. Res. B. 215 (2004) 365.

6.       M. Stepanova and S. K. Dew, SOS simulation of sputtered nanoripples, // 2003 MRS Spring Meeting Symposium Proceedings, Mat.Res.Soc.Symp. Proc. 777 (2003) 163-168.

7.       M. Stepanova, S.K.Dew, and I.P. Soshnikov, Sputtering from ion-beam roughened Cu surfaces, Phys. Rev. B. 66 (2002) 125407

8.       M. Stepanova and S.K. Dew, Discrete-path transport theory of physical sputtering, J. Appl. Phys., 92 (2002) 1699-1708.

9.       M. Stepanova and S.K. Dew, Estimates of differential sputtering yields for deposition applications, J. Vac. Sci. Technol. A 19(6) (2001) 2805-2816.


National Research Council-Conseil national de recherches Canada
Date Published: 2002-09-30
Top of page