On Modeling and Simulation of the Networked Critical Infrastructure

> Presented by

Dr. WJ (Chris) Zhang

Professor and Director Advanced Engineering Design Laboratory Department of Mechanical Engineering University of Saskatchewan Email: wjz485@mail.usask.ca

Organization

Part I: Concept and Principle

(1) What are being modelled?

(2) Why are these modelled?

(3) How is the model developed?

Part II: A Case Study

(1) Feasibility of the work

(2) Application of the theoretical development

Part I

Concept & Principle

Part I Model: What?

Model: What?

Critical infrastructure (CI):

The physical system which, if disrupted or destroyed, would have a serious impact on the health, safety, security or economic well-being of Canadians and /or the effective functioning of governments.

Model: What?

Types of Interdependency

Entity: material, energy, people information & knowledge

Entity flow

No-flow Rel

Process Dynamics

- (1) Concurrent
- (2) Asynchronous
- (3) Distributed
- (4) Parallel

(5) Stochastic

Part I Model: Why?

General Proposition I:

The networked CI system is a human-

machine system. The prototyping approach

useful to machine systems does not work

here. The simulation is the only way to

predict its behaviour, function or role, and

performance.

General Proposition II:

The networked CI system is a dynamic

system. The dynamic simulation is needed,

which significantly differs from the static simulation.

1. Identification of vulnerable areas

Basis:

Vulnerability means the area where a particular interdependence relation does not perform as desired when a networked CI system is in operation.

2. Validation of decisions

Basis:

Decisions apply to resource entities both in preparedness and response management.

The consequence of decisions is uncertain in terms of achieving a desired goal.

3. Support of enhancement

Basis:

Enhancement of a particular CI is dependent on a networked CI system of which that CI is a member.

Part I Model: How?

Modeling tool selection

Event tree

Fault tree

Distributed

Parallel

Stochastic

Petri Nets

: Carl Adam Petri's dissertation (University of Darmstadt, Germany)

Example of firing

Non-deterministic events - conflict, choice, or decision: a choice of either e1, e2 ... ,e3, or e4 ...

Synchronization

Model: How? Extended PN

High-level Petri net (Colored PN)

Tokens can have different types

Timed Petri Nets

- (1) Time delays associated with transitions and/or places.
- (2) Fixed delays or interval delays.
- (3) Exponentially distributed random variables as delays (Stochastic Petri nets)

PN-CI

Petri nets (PNs)Networked CIPlaceHospital

Transition _____ Entity move

Arc — Relationship

Token — People

Firing — Actuating

Part II A Case Study

CPN Tools version 1.2.2 Copyright © 1999-2004 CPN Group, University of Aarhus

Problem

Three Cls:

Petro-Process Plant, Transportation, Hospital

Accident and Response Description:

- (1) Plant gets an accident; the toxic gas leaks to the surrounding community (victim people);
- (2) The victim is transported through the transportation system to the hospital;

Problem

Description of the networked CI system:

- (1) There are three hospitals in the town;
- (2) Each CI has a limited capacity;
- (3) Each CI has a limited resource;
- (4) Each CI produces or serves something;
- (5) Assume that the hospitals perform under 80% of their capacity;

Problem

(6) Each hospital can increase its capacity by 10% in one hour;

(7) The service time in hospital is within [-2,2] time units;

(8) The patients are divided into three levels: emergency, important, and normal;

(9) The patients arrive at the hospitals at random, varying in the range of [0,2].

Objective

We simulate the process of the hospital in its service in this case study; in particular we examine whether the capacity of the hospital is reached at a specific time.

Yellow warning: work load > basic capacity

Red warning: work load > maximum capacity

Models & Results

Models & Results

Conclusions

- 1. Simulation of the operation of the networked CI is feasible;
- This enabler helps understand whether the work load is over the capacity;
- 3. This enabler is promising to support the decision making process further.

Work in Progress

- 1. Scalability issue (more CIs, complexity)
- 2. Decision support
- 3. Fault diagnosis
- 4. Vulnerable areas identification
- 5. Human-Machine dependency

