

Direct Brain-Machine Interface

Eric Eisenstadt, Ph.D. DARPA Defense Sciences Office

Science and Technology Symposium 21-22 April 2004

Defence Research and Development Canada Recherche et développement pour la défense Canada

DARPA Accomplishments

DARPA Organization

	Director, Tony Tether Deputy Director, Bob Leheny		
Information Exploitation Ted Bially Bob Popp/Robert Tenney Sensors Exploitation Systems Command & Control	Tactical Technology Art Morrish Stephen WelbyAir/Space/Land PlatformsUnmanned SystemsSpace OperationsLaser SystemsFuture Combat SystemsPlanning / Logistics	Special Projects Amy Alving Joe Guerci Chem/Bio Def Systems Counter Underground Facilities Space Sensors/Structures Navigation/Sensors/ Signal Processing	Advanced Technology Dave Honey Larry Stotts Assured C3ISR Maritime Early Entry/Special Forces
Joint Unmanned Combat Air Systems Mike Francis Common Systems & Technologies X-45 System X-47 System	Defense Sciences Steven Wax Brett Giroir Bio Warfare Defense Technologies Biology Materials & Devices Mathematics	Information Processing Technology Ron Brachman Barbara Yoon Cognitive Systems Computational - Perception Representation & Reasoning Learning Natural Communication	MicrosystemsTechnology Zach Lemnios John Zolper Electronics Optoelectronics MEMS Combined Microsystems

DARPA Strategic Vision

Strategic Thrusts

- Detection, precision ID, tracking, and destruction of elusive surface targets
- Location and characterization of underground structures
- Force multipliers for urban area operations
- Networked manned & unmanned attack operations
- Assured use of space
- Cognitive systems
- Bio-Revolution
- Robust, secure self-forming networks

Enduring Foundations

- Materials
- Microsystems
- Information Technologies d for Public Distribution A, Case #2404

Maintain the technological superiority of the U.S. military and prevent technological surprise ...

High-payoff research that bridges the gap between fundamental discoveries and their military use.

Biology... DARPA's Future Historical Strength

Protecting Human Assets **Behavior** The Bio-"Defending silico against **Brain** interface **Biological** Technology threats" Energy Transduction Cell & Tissue Enhanced **Maintaining Human** Engineering **System Performance** Combat "Using Biology to Performance New Genomics & Enhance "Deploy at Peak, **Materials** proteomics **Defense Systems**" Maintain at Peak" **Bioinformatics Biocomputation** Tools

DSO – Technical Personnel

Dr. Steven G. Wax, Dir Dr. Brett Giroir, Dep Dir

Materials, Mathematics and Devices

Dr. Valerie Browning Dr. Leonard Buckley

Dr. Leo Christodoulou

Dr. William Coblenz

Dr. Douglas Cochran

Dr. John Lowell (Maj, USAF)

Dr. John Main

Dr. Carey Schwartz

Dr. Terrence Weisshaar

Dr. Stuart Wolf

Advanced Biological and Medical Technologies

- Dr. Joseph Bielitzki
- Dr. Ralph Chatham
- Dr. Mildred Donlon
- Dr. Eric Eisenstadt
- Dr. Neurosurgeon (LT Col, USA)
- Dr. Anantha Krishnan
- Dr. Rick Satava
- Dr. Morley Stone

AAAS Fellows: Dr. Rosemarie Szostak, Dr. Stephen Ho

Human Assisted Neural Devices

Use brain activity to command, control, actuate and communicate with the world directly through brain integration with prosthetics and peripheral devices

- Closed loop demonstration of arm reach and grasp of food
- Open loop demonstration of human control of gripping force
- Long-term compatibility
- Non-invasive correlates

Human Assisted Neural Devices

Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates

Jose M. Carmena^{1,4}, Mikhail A. Lebedev^{1,4}, Roy E. Crist¹, Joseph E. O'Doherty², David M. Santucci¹, Dragan F. Dimitrov^{1,3}, Parag G. Patil^{1,3}, Craig S. Henriquez^{2,4}, Miguel A. L. Nicolelis^{1,2,4,5*}

1 Department of Neurobiology, Duke University, Durham, North Carolina, United States of America, 2 Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America, 3 Division of Neurosurgery, Duke University, Durham, North Carolina, United States of America, 4 Center for Neuroengineering, Duke University, Durham, North Carolina, United States of America, 5 Department of Psychological and Brain Sciences, Duke University, Durham, North Carolina, United States of America

- Surface EMGs of arm muscles recorded in task 1 for pole control (left) and brain control without arm movements (right). Top plots show the Xcoordinate of the cursor.
- Plots below display EMGs of wrist flexors, wrist extensors, and biceps.
- EMG modulations were absent in brain control.

Microchip Models of Hippocampal Function as Neural Prosthetics

Cognitive Brain-Machine Interface for Hippocampus

<u>Hippocampal Function</u>: Encode information for long-term memory storage

<u>Goal</u>: to develop a biomimetic model of the CA3 region that can interact with the brain to restore and/or augment hippocampal memory function

Stage 2 Stage 1 Stage 3 **Hippocampal Slice Behaving Rat** Behaving Monkey • 2-dimensions 3-dimensions 3-dimensions evoked act. spontaneous act. spontaneous act. computer- environmentally- environmentallydriven act. driven act. driven act. multi I/multi O multi I/multi O single I/single O least complex proc. more complex proc. most complex proc.

Bio: Info: Micro Program

Dr. Eric Eisenstadt - DSO

eeisenstadt@darpa.mil Phone: (703) 696-2322 Fax: (703) 696-3999 Dr. Douglas Gage - IPTO

dgage @darpa.mil Phone: (703) 696-1122 Fax: (703) 696-4534

Dr. Mike Krihak - DSO

mkrihak@darpa.mil Phone: (571) 218-4246 Fax: (571) 218-4553

Example of extending the frontiers in multielement electrical recording of spatially extended neuronal activity

<u>Today</u>: silicon microelectrode arrays for in-vivo probing of brain cortex (J. Donoghue; Brown)

<u>Tomorrow:</u> Carbon nanotube arrays with superior spatial resolution endowed by superior electrical/mechanical properties (J. Xu, Brown)

CALTECH Record the intended movement activity from a reach area in the parietal cortex, decode this signal, and use it to move an animated limb on a computer screen, and later a robot limb.

CALTECH

Using the parietal cortex rather than motor cortex is novel. Useful features of parietal cortex activity are:

- High level (cognitive) and may require fewer recordings to read out intentions.
- Visual and may show less degeneration or reorganization after spinal cord lesion.
- Plasticity, making it easier to adapt to the implant
- Spatially tuned local field potentials (LFP), which are easier to record than single cells.

Biobots: Roborat

- Electrodes in reward area (medial forebrain and somatosensory cortex)
- Trained to move forward or turn when medial forebrain is stimulated

Future activities

- Non-invasive technologies
- Sensory feedback
- Proprioception
- Integrated and multidisciplinary approach to improved prosthetic devices for amputees

