

Mangrove Landfill gas Project

Barbados

CDM and JI Workshop February 28, 2003

Presentation Program

- Review of baseline objectives and outcome
- Feasibility study results
- Next steps

Green Energy Complex

What is the Green Energy Complex?

- Landfill Gas-to-Energy project including additional green energy generation capabilities through the provision of wind turbines
- Project to be developed as a CDM Project

Green Energy Complex

Proposed Project Stages

- Landfill Gas (LFG) Collection and Flaring System
- Landfill Gas-to-Energy including LFG storage and energy generation
- Wind farm to be constructed to increase total energy generation capacity

Baseline Study Objectives

- Estimate potential carbon credits that may be generated through using:
 - Landfill gas (LFG) captured for energy
 - Reduction in GHGs released to the environment
 - Create clean energy from captured landfill gas
 - Wind Energy potential

Green Energy Complex Baseline Study Approach

- Environmental Impact Assessment (EIA)
- Selected the historical operational procedures assuming no LFG collection system as the baseline scenario
- Estimated GHG emissions that are reasonably expected under:
 - The reference scenario
 - The proposed scenario
- Assessed potential power generation rates from both wind and LFG extraction system

- Small Scale Project Definitions
- UNFCCC has published a reference document entitled "Further Clarifications on Definitions of Eligible Activities" (2002)
- Describes three project categories including:
 - − Type I: Renewable Energy Projects ⇐
 - Type 2: Energy Efficiency Improvement Projects
 - Type 3: Projects that Reduce Anthropogenic Emissions \Longleftarrow

Projects are Mutually Exclusive

 Where two categories of projects are combined (i.e. LFG-to-Energy), then both project components must meet the threshold criteria of each project component

- Renewable Energy Projects (Type I)
- Maximum output capacity equal to 15 megawatts or equivalent
 - Includes LFG-to-Energy and Wind Power Components
 - Maximum expected energy generation rate is 5-8 MW

- Projects Reducing Anthropogenic Emissions (Type III)
- Project activity directly emits less than 15 kT CO₂e annually
 - Controlled by Project Boundary Definition
 - Project boundary was defined as the methane gas collection system

Environmental Impact Assessment

Environmental Impact Assessment

- Ensured compatible land-use with proposed Green Energy Complex
- Assessed impact of implementing the Green Energy Complex with respect to:
 - Current site conditions
 - Surrounding properties
 - Natural Environmental Habitats
 - Soil, Water, and Air Quality
 - Existing Infrastructure
 - Impacts of Noise

Environmental Impact Assessment Results

• Main areas of concern:

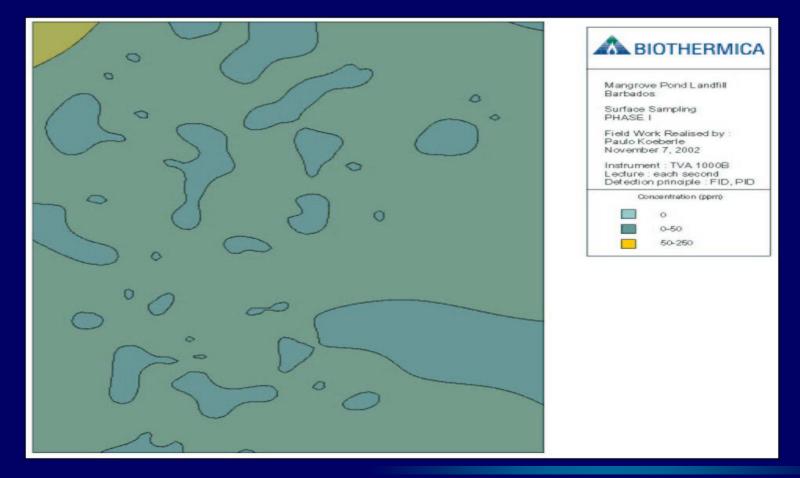
- Air quality
- Leachate generation and risk to aquifers
- Design requirements
 - Noise
 - Wildlife (flight path of birds)
- Impact Mitigation: the proposed landfill gas collection system and the resulting final cover materials will reduce the impacts of the landfill on the surrounding property

Assessment of LFG Generation

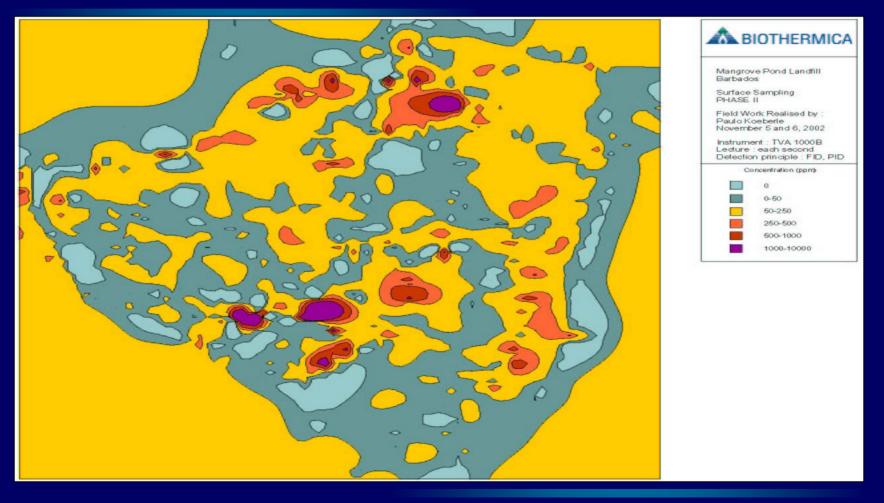
Major Factors Affecting Landfill Gas Generation

- Waste input from site opening to closure
- Waste composition (organic matter and humidity content)
- Climate

Impacts of Uncontrolled Landfill Gas Emissions


- Lateral migration in the soil and subsurface bedrock
- Health issues, toxic effects, and public safety:
 - potential fire and explosion hazards
 - Suffocation
 - carcinogenic compounds
- Vegetation stress

Landfill Surface Sampling


Sampling conducted to determine:

- the methane concentrations at the surface of the landfill site
- areas of a landfill where LFG generation and vertical migration are important (hot spots)
- System requirements of the LFG control system
- Efficiency of existing LFG control systems

Landfill Surface Sampling Phase 1

Landfill Surface Sampling Phase 2

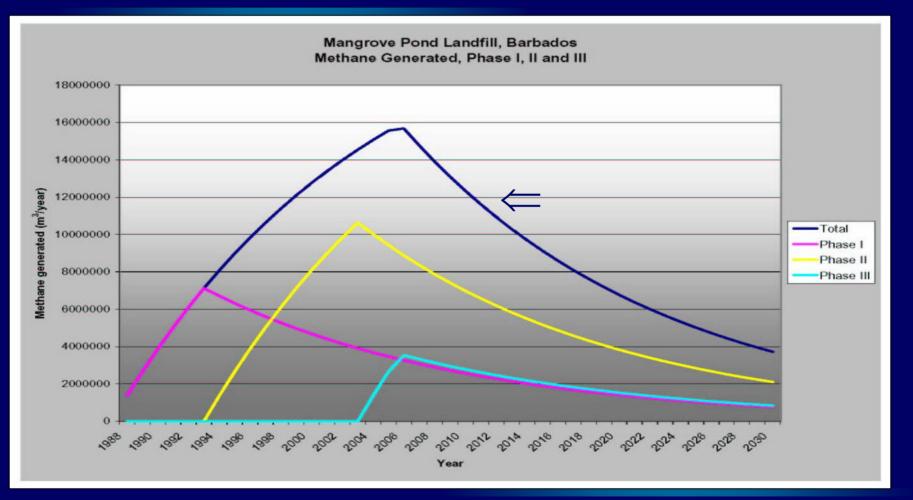
Results

- Modeling efforts: estimated current LFG production rates at <u>14,000,000 m³ per year</u>, while peak rates estimated to reach <u>15,700,000 m³ in 2006</u>
- Observed conditions: estimated vertical migration of LFG at the landfill surface was limited to 3,700,000 m³ per year

Landfill gas composition

Sample composition

Nitrogen :	4%
Oxygen :	1%
Methane :	60 % 🗲
Carbon dioxide :	35 %


Other substances VOCs : 360 ppmv Total reduced sulfur : 6 ppmv

VOCs composition

Concentration in ppbv

Toluene	14 000	1,2,4-trimethylbenzene	e 235
m+p-xylenes	3 840	1,3,5-trimethylbenzene	e 180
Vinyl chloride	1 500	4-ethyl-toluene	150
o-xylene	867	Styrene	122
Ethylbenzene	760	Dichloromethane	70
Freon	380	Trichloroethane	40
Benzene	250	Trichloromethane	20

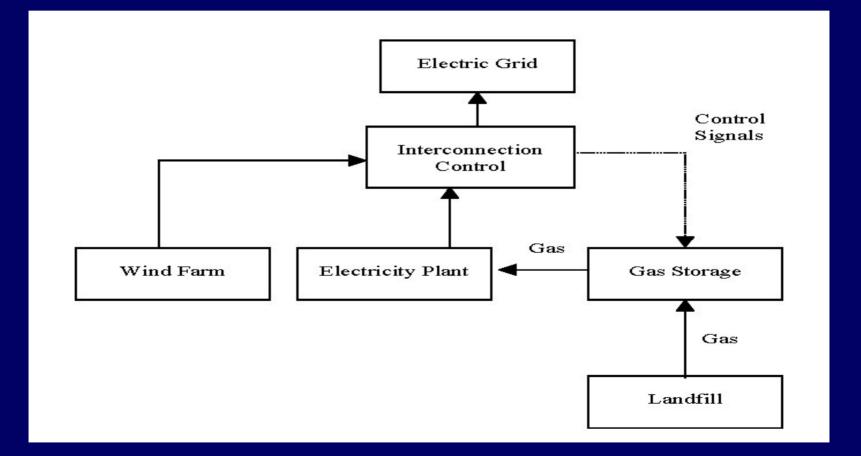
Estimation of methane generation

Wind Characterization

Wind Characterization

- Wind energy has potential to offset GHG emissions through adding clean energy to the power grid
- Wind speed at 50 m elevation above ground expected to average 7.6 m/s
- Wind expected to provide approximately 16.5 GWh as annual net electrical output
- Energy produced from wind is expected to reduce GHG emissions by 13,000 tonnes CO₂ per year as compared to existing energy generation methods

Example of Wind Turbine



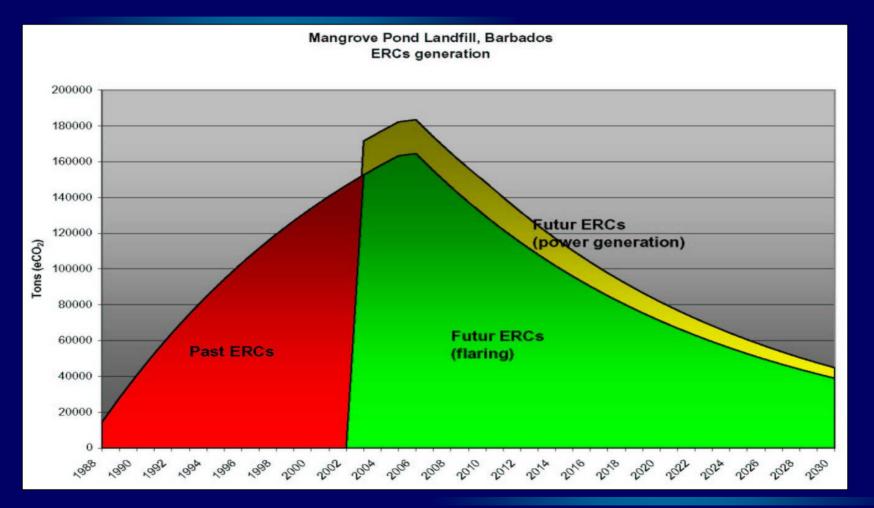
System Design

System Design

- On-site LFG collection and storage has been designed to provide for the option of variable demand rates
- Extraction of LFG from the landfill will be completed using a collection network consisting of a pipeline and recovery system
- On-site storage may be provided through liquefaction of methane or high-pressure methane storage
- LFG treatment will be provided in accordance with the desired end use
- The wind farm component will provide 2 to 3 MW of power

System Design

GHG Emission Reduction Credits as an Additional Funding Mechanism


GHG Credits

- LFG emissions are expected to reduce total GHG emissions by:
 - <u>1.4 million</u> tonnes CO₂e over 10 years through landfill gas collection, and
 - by an additional <u>190,000 tonnes</u> CO₂e over 10 years through alternate fuel energy generation processes

GHG Credits

- Alternate fuel electrical generation in Barbados is assumed to offset <u>800</u> <u>tonnes</u> CO₂e / GWh
- Wind farm electricity generation is expected to offset <u>43,000 tonnes</u> CO₂e over 10 years

GHG Credits

Continuing the Project

Next Steps

A phased approach

Phase 1 Landfill collection and flaring

Phase 2 Landfill gas energy utilization

Phase 3 Wind mill and energy integration

FEASBILITY STUDY

1. Detailed landfill gas recovery potential

- Dynamic pumping tests (2-3 wells)
- Subsurface integrated sampling
- 2. Construction costs of phase 1 of the project
- 3. Financial return for phase 1 of the project
- 4. Preliminary feasibility of phases 2 and 3
- 5. identify gains to the Government of Barbados

Project Schedule

PHASE 1 - LANDFILL GAS COLLECTION AND FLARING

- Detailed feasibility study
- Biogas rights agreement
- Project implementation by Biothermica-Burnside on a Built-finance-operate basis
- Registration of CER's under CDM

Deliverables

Report 1: CDM Baseline Study

Accepted in Final Form by the Canadian CDM/JI Office

Report 2: Feasibility study

- Summary of Supplemental Landfill Gas Characterization Study
- Design of required technology to permit construction of landfill gas collection system

Deliverables

Report 3:

- Project design document (PDD) to meet requirements of the UNFCCC Executive Board and to permit for the verification of Certified Emission Reduction Credits to be issued for this Small-Scale CDM Project
- Required in order to claim financial reimbursement for CDM Credits

Thank You