

Environmental Risk Assessment

Valerie Hodge Environmental Assessment Division

Overview: Risk Assessment Framework

Exposure Assessment

Phys-chem Properties Persistence/Transformation Mobility Use pattern

Hazard Assessment

Acute Toxicity Chronic Toxicity Bioaccumulation

Risk Characterization

Integration of exposure and effects Identify environmental concerns

Explore Risk Mitigation Options

Exposure Assessment

Physico-Chemical Properties

Summary:

- Solubility in water
- Vapour pressure
 - Henry's Law Constant
- Octanol/water partition coefficient (K_{ow})
- Dissociation constant (pK_a)
- UV-visible adsorption spectrum

Analytical Methodology

Soil (R)
Sediment (R)
Water (R)
Biota (R)

Abiotic Transformation

• Hydrolysis (R)

Phototransformation
– Soil (R)
– Water (R)
– Air (CR)

Biotransformation (20-30°C)

Soil – Aerobic (R) – Anaerobic (flooded) (CR) • Water – Aerobic (R) - Aerobic water/sediment (CR) – Anaerobic sediment/water (R)

Mobility

Adsorption/desorption Or
Soil column leaching Or
Soil thin layer chromatography (R)

Volatilization (CR)

NAFTA Technical Working Group on Pesticides

Harmonization of Data Requirements and Test Protocols for Pesticide Registration

Field Dissipation – Terrestrial (R)

 Demonstrate fate and mobility at sites that are representative of areas of use in Canada

PMRA/U.S. EPA Workshop on Pesticide Field Dissipation Study Guidelines

- e.g., Number of field study sites/site selection criteria
- Ecoregions

Field Dissipation – Aquatic (CR)

Exposure Assessment

• Determine:

- Concentration and persistence of pesticide in different environmental media
- Concentration to which non-targets exposed
- Duration of exposure

Estimated Environmental Concentrations (EECs) in SOIL:

• g ai/kg soil (15 cm depth)

Estimated Environmental Concentrations (EECs) in WATER:

• g ai/L water (30 cm depth – agriculture)

EAD Water Modeling Group

 Determine EEC's in drinking water supplies PRZM/EXAMS • LEACHM Develop Canadian scenarios for estimation of EEC's in surface waters & ground water

Other Estimates of Exposure:

Honeybees and other beneficial terrestrial invertebrates

- Labeled application rates

Estimated Environmental Concentrations (EECs) in FOOD:

Birds and mammals

Dosages consumed in contaminated food items estimated using Hoerger and Kenaga (1972) nomogram and modifications by Fletcher et al. (1994)

E) FI	le Edit	View Insert Format T	ools Data Window	Cell Run CBTool	ls Help			
	Docto	till Theme = 🕅						
	EN DESER							
-	F10		<u></u>			<u></u>		
	A	В	<u> </u>	D	μ. Έ	<u>F</u>	_ 6	
1	For a given application rate, calculate concentration							
2	on vegetation and other food sources							
3			-		lin.			
4	Name of pesticide or ai >>>> Acetamiprid							
6	ENTER application rate >>>>			428.4	g ai/ha		414	
-					DEAD			
8		4X. N	10 A		READ			
9		Environmental	Concentration	fresh/dry	Concentration		6	
11		Compartment	mesn weight	weight fatios	ary weight		-1	
12		chort range grace	(III'B @VAB) 01 6705	22	302 5424			
13		leaves and leafy crons	47 9806	11	527,7871			
14		long grass	41,9831	4.4	184,7257			
15		forage crops	51.4082	5.4	277.6043			
16		small insects	22.2768	3.8	84.6517			
17		pods with seeds	4.5839	3.9	17.8771			
18		large insects	3.8128	3.8	14.4885			
19		grain and seeds	3.8128	3.8	14,4885			
20		fruit	5.7406	7.6	43.6282			
21	NO	TES:						
22		1. Results should be qu	uoted to <u>no more tha</u>	<u>m</u> 3 significant fig	gures.			
23		2. EECs based on corre	lations in Hoerger a	nd Kenaga (1972)	and Kenaga (1973), a	and modified		
24		according to Eletche	r et al (1994)	(EEC (diat) (Har	and (acuto)		5	
		EEC (SUII) Water) & EEC (F	unon/ / CEC (1008) /			1		

] Eile Edit View Inser	t F <u>o</u> rmat <u>T</u> ools	Data <u>W</u> indo	w <u>C</u> ell R <u>u</u> n C <u>B</u> To	ools <u>H</u> elp				
👌 💼 Paste Al 🛛 Items 🔹	8							
H3 🔸	=							
A	B	С	D	E	F			
Calcul	ation of F	ECc in th	e diet of wil	d birds and ma	mmale			
Carta	anion of L.	LCo III II	c the of the					
Name of ner	ticida or ai 2222	Acataminrid			1			
Traile of pes		metampin			. t.			
Bobwhite quail:	21057045		5055586 1250C 01	ALL STATES CHEMICAL STATES				
Food:	EEC:	% of diet	EEC each food	READ Σ EEC in diet:	_			
small insects	84.652	30	25.40					
forage crops	277.604	15	41.64		20			
grain	14.488	55	7.97	75.00	mg ai/kg dw			
Mallard duck:								
1 Food:	EEC:	% of diet	EEC each food	READ S EEC in diet:				
5 arthropods 1	14.488	30	4.35		-			
6 grain	14.488	70	10.14	14.49	mg ai/kg dw			
	3	*	69 B.		- 8 S			
uses EEC for large i	¹ uses EEC for large insects							
1 Rat:	2020-2046			ALCONTRACTOR AND A DESCRIPTION				
2 Food:	EEC:	% of diet	EEC each food	READ Σ EEC in diet:				
short grass	302.542	70	211.78					
	14.488	20	2.90					
f grain/seeds								

The second of the

1.1

Ĭ.

auto and

and the

J

Hazard Assessment – Characterization of Ecological Effects

Hazard Assessment

Based on accepted protocols with surrogate test species (acute and/or chronic)
Determination of effects endpoints and dose response (e.g., LD₅₀, NOEC, EC₂₅)
Identify sensitive organisms and predict adverse effect(s) on non-target organisms

Non-Target Terrestrial Organisms

Mammals

Mammalian toxicology studies reviewed by HED

Birds: Anas platyrhynchos - mallard

Colinus virginianus - bobwhite quail

Reproduction

Earthworm -Lumbricus terrestris

Apis mellifera – honey bee

Predators and Parasites - *Trichogramma* – parasitic wasp

Hippodamia convergens – Lady Bird Beetle, adult

Lady Bird Beetle larvae

Chrysoperla rufilabris -Lacewing larvae

Orius sp. - Minute Pirate Bug

Poecilus sp. - ground beetle

Terrestrial Vascular Plants (R)

Non-Target Aquatic Organisms

Daphnia magna – Freshwater Crustacean

Warm Water Fish – Lepomis macrochirus - Bluegill Sunfish

Cold Water Fish -Oncorhynchus mykiss - Rainbow Trout

Freshwater Algae – 3 Species Selenastrum capricornutum – Green Alga

Anabaena sp. - Blue-green Alga

Aquatic Vascular Plant Lemna gibba

• Floating aquatic macrophyte

Marine, Estuarine Organisms (CR)

- Acute crustacean
- Mollusk embryo larvae **OR** shell deposition
- Chronic (mollusk or crustacean)
 - Algae
- Fish
 - AcuteSalinity challenge

Risk Characterization

Risk Characterization

• Exposure: - Expected Environmental Concentration (EEC) – Use Pattern • Effects: - Most sensitive test species from each group - No-Observable-Effect Concentration (NOEC or $0.1 \times LC_{50}$)

Risk Characterization (cont'd)

• Tier I: Deterministic

Risk Quotient (RQ) = [EEC / Toxicity Endpoint]
(where toxicity endpoint is NOEC, NOEL or 0.1 x EC₅₀, LC₅₀)

 RQ greater than 1 indicates environmental concern may exist

• RQ less than 1 indicates margin of safety

Risk Characterization, Acute Toxicity Birds and Mammals

 Use EEC in diet, body weight, food consumption, and toxicity endpoints to determine –

• Number of days of intake of the a.i. by a wild bird/mammal equivalent to the dose that ellicited a response from the lab population.

🖲 E	ile Edit View Insert Format Iools Data Windov	v <u>C</u> ell R <u>u</u> n C <u>B</u> Tools <u>H</u> elp			
	C9 = 0.05	P	c	n	F
7	ENI	ER snecies tested >>	> mallard		
8	ENTER C	tation (author, date) >>	(Sec. 12)	510.00 	
9	ENTER FC (food consu	mption, control group) >>	0.05	kg dw/ind/d	5
10	ENTER BWI (body weight per ind	ividual; control group) >>	1.2	kg bw/ind	
11	ENTER EEC ¹ (expected e	nvironmental conc.) >>	524	mg ai/kg dw	
12	- 00 898	ENTER LD ₅₀ >>	1000 :	mg ai/kg bw	
13		ENTER NOEL >>	200 :	mg ai/kg bw	
15		1.			
16	DI (daily int	ake) = [FC*EEC] >>	2.62E+01	mg ai/ind/d	
17				-	s É
18	LD ₅₀₀	$_{ind}$ = [LD ₅₀ *BWI] >>	1.20E+03	mg ai/ind	
19		in the second			Î
20	NOEL (ma	n = [NOEL*BWI] >>	2.40E+02 :	mg ai/ind	2
21		en e sever de la			
22	The number of days ⁺ of	intake of ai by a wild r	nallard		
23	equivalent to the dose	administered by gavag	ge that kille	d 50% of	Ó
24	individuals in the lab populat	ion [LD _{50@nd)} / DI] >>	4.58E+01	days	Į.
25	Maximum number of dows ² of	intaka afai by a wild -	llow d		
20	equivalent to the doce	make of a by a whith	e that had n	o-observable-	
20	offect on the lab nonvistio	n INOFL / DU >>	0 16F+00	doure	1
44	Hazard (acute) / Hazard (dietary, repro.)	/ Hazard (soil, aquatic) /	Buffe 4	μαγδ	¢

Probabilistic Risk Assessment • Tier II and above: Refined Environmental Risk Assessment - Probabilistic risk assessment methodologies - Refined exposure assessments - Better characterize risks to non-target organisms – U.S. EPA

Risk Mitigation

Ground Buffer Zones

Nordby and Skuterud 1972 (ground boom)Ganzelmeier et al. 1995 (airblast)

Buffer Zone Statements

• A buffer zone of **20 meters** (ground boom sprayer) or **30 meters** (air-blast/vineyard sprayer) is required from sensitive aquatic habitats

Downwind

Aerial Buffer Zones

AgDrift model
FPT/PMRA Buffer Zone Working Group

Other Risk Mitigation Options

e.g., Decreased application rates (determined in conjunction with efficacy review)
Reduce number of applications per season
Precautionary label statements

To Protect the Environment

Questions