Pest Management Regulatory Agency Agricultural Buffer Zone Proposal

Presentation to the
Pest Management Advisory Council
November 2005
Karen Lloyd

Overview

Background

Proposed approach

Background: Stakeholder Comments

- No observable adverse effects
- Perceived to be overprotective
 - "Too big"
- Not reflective of "real world"
 - Area requiring protection
 - Application methodology

PMRA Perspective

- One size fits all
- No flexibility based on:
 - Adjacent sensitive habitat
 - Application conditions
- Doesn't 'credit' drift reducing technologies

Goals

Provide flexibility

Recognize different habitats

Reward efficient application

Remain protective

Buffer Zone Proposal

- Application Specific Variable Buffer Zones
- Method for applicator to adjust (modify) labelled buffer zone based on:
 - Sensitive habitat impacted
 - Application specific variables
 - meteorological conditions
 - sprayer configuration

Sensitive Habitats

- Aquatic areas
 - Labelled buffer zone modified based on depth of water

- Terrestrial areas
 - No buffer zone modifiers
 - List of exclusions

Aquatic Sensitive Habitat Modifiers

Depth (m) (estimated average	Multiplier		
depth)	Field	Airblast	Aerial
< 1	1.0	1.0	1.0
1 – 3	0.4	0.7	0.5
> 3	0.2	0.3	0.1

Application Specific Variables

Meteorological conditions

Sprayer configuration

Other

Meteorological Variables

- Wind speed
- Atmospheric stability
 - Labelled
- Temperature
- Humidity

Configuration Variables

- Spray quality
- Boom height and length
- Carrier volume
- Shrouds and cones
- Sprayer type

Other Variables

Travel speed

Crop growth stage

Field, Airblast, Chemigation Application Modifiers

- Obtained by examination of literature
 - Relationship between variable and drift/deposit

- Reduced variables to those:
 - Relevant
 - Greatest impact

Field Application Variable

- Meteorological conditions
 - Wind speed
- Sprayer configuration
 - Spray quality (DSD)
 - Boom height
- Shrouds and cones

Field Application Modifiers

Low Boom					
Wind Speed	Spray Quality				
(km/h)	Fine	Medium	Coarse	Very Coarse	
1-8	0.8	0.2	0.1	0.0	
9-16	1.2	0.6	0.3	0.1	
17-25	1.6	1.0	0.6	0.2	
High Boom					
Wind Speed	Spray Quality				
(km/h)	Fine	Medium	Coarse	Very Coarse	
1-8	1.6	0.3	0.2	0.2	
9-16	2.3	1.1	0.6	0.2	
17-25	3.1	1.9	1.1	0.4	

Health Canad

Field Application Modifiers

Low Boom – Drift Reducing Cones					
Wind Speed	Spray Quality				
(km/h)	Fine	Medium	Coarse	Very Coarse	
1-8	0.6	0.1	0.1	0.0	
9-16	0.8	0.4	0.2	0.1	
17-25	1.1	0.7	0.4	0.2	
Low Boom – Drift Reducing Shrouds					
Wind Speed	Spray Quality				
(km/h)	Fine	Medium	Coarse	Very Coarse	
1-8	0.2	0.1	0.0	0.0	
9-16	0.4	0.2	0.1	0.0	
17-25	0.5	0.3	0.2	0.1	

Buffer Zone Proposal

- Spray drift management booklet
 - Buffer zones modifier tables
 - Best management practices
- Easier to update
 - Additional drift reduction modifiers
 - Advances in spray drift reduction technology

Proposed Procedure

Registration

PMRA sets buffer zone using standard scenarios

Buffer zone is put on the label

Proposed Procedure

Use

- Voluntary modification of labelled buffer zone
- Applicator surveys the area of application
- Applicator notes meteorological conditions at time of application
- Applicator notes equipment setup

Proposed Procedure

Use

- Applicator determines application specific modifiers from tables
- Labelled buffer zone is adjusted appropriately
- Details recorded on "Application Record" form

Advantages

- Provides flexibility
 - Products can be used in situations where labelled buffer zone is impractical
- Rewards efficient application
 - Encourages drift reducing application strategies
- Amenable to spray technology progress
 - Proven technologies can be added

Advantages

- No cost to applicator
 - Voluntary
 - Additional equipment not needed
- Recognizes different habitats
 - Allowances for various water depths
- Remains environmentally protective
 - Modifiers based on empirical data

Future Directions

- Incorporation of other variables
 - Low drift nozzles
 - Leaf area index for orchards

- Collaboration with other agencies
 - ◆ EPA
 - Australia

Questions

- ▶ 1. What concerns, if any, do you have regarding the proposed strategy?
- 2. What issues do you see as key for implementation?
- Solution 2. Are their additional approaches that the PMRA should consider to mitigate environmental risk?

