Environmental Assessment

Ted Kuchnicki Environmental Assessment Division Pest Management Regulatory Agency

Environmental Assessment Division

Diverse team of staff

- ' Microbiologists
- ' Entomologists
- ' Soil scientists
- ' Aquatic toxicologists
- Plant physiologists
- ' Chemist

Environmental Assessment Division

Data evaluated

- ' Environmental Fate Part 8
- Environmental Toxicology Part 9

Preliminary Review

• Verification of waivers

Review of methodology

- Deviations from accepted protocols
- ' Appropriateness
- Scientific correctness

Evaluation

Detailed study review

- Researchers' notes
- ' Chromatograms
- ' Statistical analysis

• Verification of researchers' results

Validation of researchers' conclusions

Evaluation

Draw conclusions regrading fate and effects

Assess risk of use to environment

 Estimation of the likelihood of occurrence of adverse effects

Risk Assessment

Exposure estimation

Hazard identification

Exposure Estimation

 Concentration of pesticide in environment

 Concentration to which non-targets exposed

Duration of exposure

 Summaries of physicochemical properties (Part 2)

- ' Solubility
- ' Vapour pressure
- Octanol/water coefficient
- Dissociation constant
- UV-visible adsorption spectrum

• Use Part 8 - Environmental Fate data

- Analytical methodology for detection in soil, water, and biota
 - To understand limitations of techniques

Hydrolysis

Phototransformation

- ' Soil
- ' Water

Biotransformation

- ' Aerobic soil 20-30 °C
- Aerobic water 20-30 °C
- Anaerobic sediment/water 20-30 °C

Studies of Mobility

- Adsorption/Desorption or
- ' Soil column leaching or
- Soil thin layer chromatography

• Field dissipation studies

- Demonstrate fate in canadian environment
- ' Four regions
 - B.C. 2
 - Prairies 4
 - Central Canada 4
 - Maritimes 2

 Determination of toxic endpoints and dose response

Based on use of surrogate test species

 Data used to predict affect on nontargets

Use Part 9 - Environmental Toxicity data

Earthworm acute toxicity

• Daphnia sp. acute toxicity

• Fish acute toxicity

- cold water
 - rainbow trout
- ' warm water
 - bluegill sunfish

Birds

- dietary acute toxicity (LC₅₀)
 - Bobwhite Quail and Mallard Duck
- oral acute toxicity (LD₅₀)
 - Bobwhite Quail or Mallard Duck

Terrestrial vascular plants

10 crop species

Algae

- ' Fresh water 3
- ' Salt water 1

• Aquatic vascular plants

' Lemna sp.

RISK ASSESSMENT

Integration of assessments on:

- Environmental Exposure (Fate)
- Environmental Hazard (Toxicology)

• Exposure:

Expected Environmental Concentration (EEC)

RISK ASSESSMENT

• Hazard:

- No Observable Effect Concentration (NOEC)
- No Observable Effect Level (NOEL)
- ' Most sensitive test specied

Risk Assessment

Ratio of NOEC to EEC is determined

NOEC/EEC less than 1 indicates margin of safety

NOEC/EEC greater than 1 indicates
environmental impact is expected

Risk Mitigation

 Reduce number of applications per season

Restrict to ground application (no aerial use)

Buffer zones

 Any other measures that would reduce the exposure