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Commentary:
Can We See the Future?

K. Denman

Introduction

Increasingly, we as scientists are being asked by society to forecast the future. This
expectation is especially strong in fisheries science. Yet, as fisheries scientists, we
have been trained to observe natural systems in order to increase our under-
standing of how those systems behave rather than to forecast their future beha-
viour. Modelling is perhaps the most powerful tool available to analyse
observations of natural systems to increase our understanding of their ‘system
behaviour’. The excellent chapter in this volume by Dr Ware capably describes the
state-of-the art of modelling and analysis of marine ecosystems, and future direc-
tions in this area. However, models for improving our understanding of complex
systems are not necessarily the best models for forecasting the future behaviour of
these systems. In the same manner that atmospheric scientists study how the
atmosphere works, while meteorologists endeavour to forecast the weather (and
climate), we might expect a divergence in fisheries science between modelling
activities aimed at increasing our understanding and modelling activities aimed at
forecasting the future. Ideally, there should be close and frequent interactions
between the two activities, but they will be different. For example, the assimilation
of data is essential to initialize and to maintain forecast models as near as possible
to an evolving continuously-observed system, but data assimilation, while currently
a high profile activity, is not necessary in models designed to increase our under-
standing of a complex system. In this note I shall broaden the topics covered by Dr
Ware in his chapter, by reviewing the development of multidisciplinary ocean
models in the context of building up a capability to forecast the future state(s) of
marine ecosystems.

Steps to forecasting

Without becoming involved in the mathematics and philosophy of prediction, one
can describe several stages that we, as individuals and as a community of scientists,
pass through in developing a capability to forecast the future behaviour of various
systems. To continue to improve our ability to forecast, it is necessary regularly t0
evaluate our present capability and to pass on that evaluation to those using our
forecasts. With reference to Table 7.3, I shall describe the sequence of stages. The
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Table 7.3 Steps to forecasting

Wild guesses

Back-of-the-envelope calculations

Static ‘spreadsheet’ or ‘flowchart’ analyses

Predictive regression equations

Dynamic models of future behaviour (increasingly comprehensive):
— Scenarios

- projections

- predictions

6. Analysis of risk

NP LN

first attempt to provide a forecast is the ‘wild guess’. It is not quantitative and is not
usually considered to be based on scientific knowledge. For example, a wild guess
might be the statement that ‘if the ice cover in the Arctic Ocean melts, then sea level
will rise’. However, after a bit of scientific thought, we will conclude that since most
of the ice covering the Arctic Ocean is floating, it already displaces a volume of sea
water equal to its own mass, and its melting will have negligible effect on sea level.
What if the ice caps sitting on Antarctic and Greenland were to melt? Initial ‘Back-
of-the-envelope calculations’ a few decades ago led to sensational headlines that sea
level would rise 60100 m. However, ‘static spreadsheet or flowchart analyses’ and
most recently ‘dynamic models’ indicate that global sea level is likely to rise less
than a metre in the next century (e.g. Warrick et al., 1996), with a range of uncer-
tainty slightly larger than the mean prediction. The application of scientific
knowledge has transformed what appeared to be a major catastrophy in the future
into a change that can in principle be managed.

‘Static spreadsheet or flowchart analyses’ do not vary in time, and include steady-
state models described by Dr Ware, who presented the ECOPATH models as
examples. Meteorologists refer to such models as ‘diagnostic models’. In a marine
ecological context these analyses are referred to as flow analysis (e.g. Fasham, 1984)
or inverse analysis (e.g. Vézina and Platt, 1988). Generally, these methods provide a
starting point for dynamic models (as referred to by Dr Ware), by taking all known
information about an ecosystem, pool sizes, flows, etc., and trying to estimate a
consistent matrix of all the compartment pool sizes and the flows between the
compartments. This complementary nature of the two approaches, static analyses
and dynamics models, is illustrated by two recent studies of the planktonic foodweb
at Ocean Station P in the subarctic NE Pacific. Vézina and Savenkoff (1999)
performed an inverse analysis of all the pool sizes and fluxes measured on three
cruises in three different seasons. For each season they inferred consistent fluxes in a
rather complex version of the foodweb. Denman and Peiia (1999) simulated the
annual cycle at OSP with a one-dimensional coupled mixed layer—dynamic
ecosystem model. Their system was simpler (four ecological compartments), but
they could simulate rapid temporal change (15 minute timestep) and fine vertical
(2 m) structures. ‘
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Spreadsheet or flowchart analyses often lead to predictive equations for the
behaviour of a system based on statistical regression techniques. Regression
equations can provide useful information to manage an ecosystem or fisheries for a
time, but they are likely to fail eventually for two fundamental reasons. First, the
observations used in developing the regression equation(s) are drawn from a parent
population. According to the Central Limit Theorem, the subset of observations of a
mean drawn from a parent population will be normaily distributed even if the parent
population is not. However, even if the parent population is normally distributed,
subsampling is rarely adequate to estimate properly the likelihood of rare extreme
events, which are usually what we most want to be able to predict. Second, in a
changing climate, the parent population or distribution may itself be shifting such
that the regression equation used for predictions was developed from subsampling
of a parent distribution significantly different from that now in existence. In other
words, the system now regularly occupies states outside of the range of states from
which the regression equations were developed.

Environmental science, including fisheries oceanography, is progressing such that
the only acceptable mode of forecasting will be the final one in Table 7.3: dynamic
models of future behaviour. With continuously improving computer access, mod-
elling experience and large integrated multidisciplinary field studies, we expect to
be moving towards increasingly comprehensive coupled physical/ecological models.
The first stage of dynamic modelling will provide ‘scenarios’, probably without
predictive value. Scenarios are of value for managing ecosystems because they can
show us in graphic terms how changed ecosystems might appear and how they might
function. In other words, they can train our intuition and imagination. These models
should then evolve towards models that provide ‘projections’ — simulations of future
ecosystem state and behaviour that we have confidence could happen, given the
initial conditions and parameter values used in the model. The next stage is an
empirical sensitivity analysis or Monte Carlo modelling whereby the initial condi-
tions and the parameter values (and possibly the functional forms) are varied over
the range of likely values. The resulting ‘forecast’ or ‘prediction’ is not a single most
likely future state, but a range of ‘projections’, where enough simulations have been
conducted so that different probabilities can be assigned to different subranges of
projections.

There are philosophical arguments that models, because they are only analogues
of the real world, cannot be validated but only evaluated with observations (Oreskes
et al., 1994). However, I note that it is almost axiomatic to state that confidence in
forecasts will increase with the increased use of observations in the forecast models,
whether through improved initial conditions and boundary conditions, improved
parameter formulation and estimation, and/or data assimilation.
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State-of-the-art

In addition to the progress in ecosystem modelling as described by Dr Ware,
Getz (1998), in a readable yet comprehensive account, reviews the progress
and suggests future directions in the ‘... art of modeling in population
ecology’. Like Dr Ware, he argues for simple or ‘top-down’ approaches rather
than ‘bottom-up’ approaches to models of population ecology. In the ‘bottom-
up’ approach (starting with all the building block submodels of individual
processes), he warns pragmatically that ‘The finer the level of resolution at
which the modeler begins ... the greater the opportunity unwittingly to leave
out important bits and pieces that contribute critically to the higher-level
processes of interest’. Another disadvantage of the bottom-up approach follows
from considering a compartment model, where each compartment exchanges
matter or energy with each of the others. As the number of compartments N
increases, the number of one-way flows increases as 1 N(N-1), i.e. approxi-
mately as N2 Each flow formulation requires at least one parameter. But in
practice, the uptake of nitrate by phytoplankton, for example, is usually for-
mulated to depend on at least 4 parameters describing non-linear dependencies
on both light and nitrate. A typical planktonic ecosystem model with 6 or 7
compartments will require the estimation of perhaps 50 parameters based on
observations. Rarely can all the parameter values be estimated from observa-
tions.

The development of increasingly comprehensive coupled models for forecasting
requires the use of up-to-date ecological and ocean circulation models. Especially
along the continental margins, where most fisheries take place, physical circulation
and mixing profoundly affect the behaviour of fisheries food webs. Thus, inclusion
of physical influences in models of regional marine ecosystems are essential to
forecasting their spatial and temporal behaviour, as emphasized by Dr Ware in his
chapter. The natural question arises: how much physics is enough?

Generally, larger marine organisms have greater capability for directed motion
than do smaller organisms. At what level must this behaviour be included explicitly
in models: when the directed motion is significant relative to the advective motions
of the currents and mixing represented in the physical model. We can organize these
ideas with reference to Fig. 7.22, reprinted from Denman (1994), which compares
time and space scales of motions characteristic of the upper ocean with those for
phytoplankton, zooplankton and fish. The ‘directed motility’ scales (diamonds) for
phytoplankton and zooplankton overlay scales of typical motions in the upper
ocean, suggesting strong interactions with the flow field. Fish can swim for short
periods considerably faster than any currents, suggesting that physical motions
would usually be a small correction on the swimming behaviour of larger fish in a
coupled model. :

The so-called ‘ecological scales’ (connected circles) all lie along the rotational
range (oceanic mesoscale eddies) suggesting that these distances covered by
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Fig. 7.22 Space-time continuum for resonant motions in the upper ocean. From right to left, the
shaded band traces out preferred scales for large mostly two-dimensional eddies in the ocean
(Rotation Range), through scales less than or equal to the thickness of the upper mixed layer,
which are becoming three-dimensional but are flattened by stratification and gravity (Buoyancy
Range), through to three-dimensional small scale ‘turbulent’ motions (Inertial Range), ending in
the viscous range where motion is converted by friction into heat. Internal waves occupy the striped
area. The connected circles labelled ‘P’, ‘Z’ and ‘F” represent ‘ecological’ scales for phytoplankton,
zooplankton and fish; the similarly labelled diamonds represent ‘directed motility’ scales. (From
Denman, 1994.)

phytoplankton, zooplankton and fish are controlled by currents. We might also
define a ‘migration scale’ for fish. Northern cod in the N. Atlantic and salmon in the
subarctic NE Pacific Ocean can swim at least 30cms ™, which averaged over a
season, say 100 days, gives a migration distance of order 3000 km. This scale (in time
and space) would be located near the exponent 2’ in ‘10> on the label of the upper
axis of the figure. What is the comparable distance for ocean currents in 100 days?
Shelf-edge currents off western N. America can easily average 20-50cm s71,
suggesting distances of 2000-5000 km in 100 days. Mean currents over the top 100m
in the subarctic Alaskan gyre average 5-10cms™! (e.g. Thomson et al., 1990)
suggesting distances of 500-1000 km over 100 days. That such currents can affect the
migration routes and timing of returning salmon has been convincingly illustrated
through the use of a simple Ocean Surface CURrent Simulations model (OSCURS)
by Thomson et al. (1992, 1994) and Ingraham et al. (1998).
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In parallel with the advances in models of population ecology have been advances
in modelling ocean currents. McWilliams (1996) has recently reviewed progress in
modelling the large-scale ocean general circulation, but perhaps more relevant in
our context is the state of coastal ocean modelling. Because of the diversity of
approaches to modelling coastal circulation, there are a number of highly developed
models in two main categories. The first is the finite element approach where the
model grid consists of many connected triangles of differing sizes and shapes
representing coastline and bottom bathymetry with resolution that varies spatially
according to assumed scales of motion and/or the resolution required. The second is
the layered approach where the horizontal grid is more or less rectangular (often
oriented with major axes alongshore and across the shelf), but the vertical resolution
varies with bottom depth: a constant number of layers are compressed or expanded
vertically in proportion to the local bottom depth. These two approaches are being
used in two high energy continental margin regions coupled to food web models that
include Lagrangian or Individual-Based Models (IBM) where individuals or cohorts
of fish are followed as they are moved around by the currents, and in some models as
they feed on the modelled zooplankton prey fields.

The first is a finite element model that has been developed for the Gulf of Maine
and Georges Bank off the eastern seaboard of North America (Lynch et al., 1996). It
has been used to study the dispersion, retention, and settling of cod, haddock and
scallop larvae around Georges Bank for different life histories (Werner et al., 1993;
Tremblay et al., 1994), and recently to study the transport, population dynamics and
life history of the copepod Calanus finmarchicus in the same area (Lynch ez al., 1998;
Miller et al., 1998).

The second is a layered ocean circulation model of the circulation in the vicinity
of Shelikof Island, in the northwestern corner of the Gulf of Alaska (Hermann and
Stabeno, 1996). Embedded in this model is a Nitrate-Phytoplankton-Zooplankton
(NPZ) model (with 14 stages/species) with a horizontal spacing about 5 times
coarser than the physical model. This model provides food or prey for walleye
-pollock in a spatially explicit IBM model (Hinckley et al., 1996). In Hermann et al.
(1996, 1999) the combined comprehensive model simulates the movement and
survival of pollock for different years with different wind histories. As in the Gulf of
Maine, at least a decade of field studies and model development has led to the
present coupled model. Hermann et al. (1999) include a table describing the time on
a CRAY YMP for a season’s simulation: 125 h for 270 days of the circulation model,
5h for 95 days of the prey (NPZ) model, and 5h for 210 days of the pollock IBM
model. Over 90% of the computer resources have been dedicated to the circulation
model. We have the experience and observational base required to evaluate
simulations of the circulation and to state with confidence that we need such high
resolution in the circulation model. We might expect in the next decade also to
develop a similar confidence in the necessary and justified level of detail in the
foodweb and IBM model components, based on modelling and observations being
carried out in cooperative programmes like GLOBEC.
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Conclusions

It is from these types of models that we are likely to develop comprehensive forecast
models in fisheries oceanography. However, the final step to forecasting in Table
7.3, ‘risk analysis’, may not yet be considered as part of fisheries oceanography, but
it should be part of forecasting methodology if the forecasts are to be fully exploited
in resource management'. In risk analysis, the range of predictions is divided up into
different subranges with different probabilities. A level of risk, or seriousness of
consequence, is then assigned to each of these subranges. From a management
perspective, low risk, low probability subranges should be ignored, and high risk,
high probability subranges should be examined first. Are we confident that these
particular simulations represent the most probable outcomes and that the risk is
highest? If not what new knowledge is required to improve our forecasts? If we are
confident of our forecasting of both probability of outcome and assigned risk, then
can we develop procedures to avoid the outcome? If not can we design and
implement mitigation or adaptation measures to deal with the likely outcomes?
Sometimes there are no high probability, high risk subranges in the forecast, but
there -are low probability, extremely high risk subranges. In such cases, then
management efforts should be directed towards avoiding those outcomes.

Risk analysis and providing forecasts would usually be considered to be the
responsibility of resource managers rather than of fisheries scientists. However, the
process must be iterative: assessment of the scientific underpinnings of the forecast
methodology in light of new scientific knowledge should be ongoing, and new sci-
entific research should be conducted to address gaps identified in our scientific
understanding with the aim of improving the forecasting methodology.

The combined impacts of human activities and climate change threaten many
fisheries ecosystems, lending urgency to our quest to improve our ability to see the
future. Let us hope that Dr Ware will write a sequel to his chapter, in a few years’
time, where he can again report that progress had been significant in the previous
decade, not only in our understanding of how marine ecosystems function but also in
our abilities to forecast their future behaviour.

Note

(1) Here we use ‘risk-analysis’ in the decision theory sense, rather as ‘the probability of
something undesirable happening’, its usual meaning in the fisheries literature. See
Francis and Shotton (1997) for an explanation of the distinction.
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