Middle Level
 Mathematics
 Assessment June, 2006

Information Bulletin

New 屋通Brunswick
Evaluation Branch
Department of Education
New Brunswick

Middle Level Mathematics Assessment, June 2006

The Department of Education administers a comprehensive Provincial Evaluation Program to monitor overall student achievement at particular points in the system. This provides important feedback at provincial and local levels about students' knowledge and skills. The Middle Level Mathematics Assessment is an important component of this program. It focuses on student performance over the middle school years.

Administration

The Middle Level Mathematics Assessment consists of two sections that will be administered over a two-day period.

Day/Date	Section	Time Allotment
Monday	Section A	
June 12, 2006	Selected-Response Items	90 minutes
Tuesday June 13, 2006	Section B	
	Part 1: Mental Mathematics	2 minutes
	Part 2: Non-calculator Mathematics	20 minutes
	Part 3: Constructed-Response Items	60 minutes
If required, students may have up to 20 minutes additional time to complete Section A or the constructed-response questions in Section B. Up to 10 minutes of additional time may be given to complete the Non-calculator questions in Section B.		
Make-up Date: Wednesday, June 14, 2006		

Types of Items

Section A of the assessment will consist of selected-response items. Students will be required to select the correct answer from a number of response choices.

Section B is divided into three parts. The first part, Mental Mathematics, consists of 12 questions to be answered during a two-minute time frame. Part 2, Non-calculator Mathematics, consists of a combination of selected-response and constructed-response questions. Students are to determine their own response for the constructed-response questions. Part 3 consists of constructed-response questions. The use of calculators is permitted for this part of the assessment. Sample items are provided in Appendix A.

Distribution of Topics

The following Distribution of Topics reflects the approximate percentage emphasis allotted to each strand. A listing of strands and outcomes is presented in Appendix B.

Distribution of Topics

Strands

Number
Number Concepts (15\%)
Operations (35\%)
Patterns and Relations 15\%
Measurement and Geometry
20\%
Measurement (15\%)
Geometry (5\%)
Data Management and Probability $\mathbf{1 5 \%}$
Data Management (10\%)
Probability (5\%)

Testing Procedures

The principal of each middle school is responsible for the security of the Middle Level Mathematics Assessment materials sent to his/her school and for ensuring that there is no unauthorized reproduction of these materials.

Approximately two weeks before the assessment, the Administrative Guidelines will be sent to each school. Teachers administering the assessment should read these guidelines carefully prior to the administration date. These guidelines clarify how the assessment is to be administered.

Following completion of the assessment, a checklist is provided on the Packing / ReturnPacking Slip to assist the principal in preparing materials for return to the Department of Education.

Exemptions

The Middle Level Mathematics Assessment is compulsory for all students presently enrolled in the eighth grade in New Brunswick schools. The assessment is meant to be as inclusive as possible. However, the school principal may request an exemption for a student who is unable to respond with any degree of success to the assessment instrument or if participation would be harmful to the student.

A recommendation for exempting an individual student should be provided using the appropriate form and bearing the required signature(s). Please refer to the document Guidelines for Exemptions and Modifications for more specific information.

Bilingual Version of the Assessment

A bilingual version of the assessment will be produced for French Immersion students. French Immersion students will be able to respond to any item in French or English so that language does not interfere with their ability to demonstrate proficiency in mathematics.

Formula Sheet

A Formula Sheet will be provided for students when writing the assessment. Refer to Appendix C for the list of formulas that will be provided for students.

Student Use of Calculators

The use of calculators is encouraged for Section A and for the constructed-response questions in Part 3 of Section B. Students should have a calculator that performs addition, subtraction, multiplication, and division as well as having memory, percent, square root, exponent, reciprocal, and $+/-$ keys.

Reporting of Results

All parts of the assessment will be scored by the Department of Education. Provincial, district, school and individual results will be generated.

Looking Back: Middle Level Mathematics Assessment, June 2005

Background

In June of their grade 8 year, students write the Middle Level Mathematics Assessment. Although the assessment is based on the grade 8 provincial mathematics curriculum, it is designed to reflect students' achievement over the middle school years.

The assessment included items of varying difficulty levels and addressed the seven strands: Number Concepts, Operations, Patterns and Relations, Measurement, Geometry, Data Management, and Probability.

Student results were reported in terms of three standards: Strong Performance, Appropriate Performance, and Experiencing Difficulty. These standards were linked, in turn, to the percentages of test items answered correctly.

Findings

Six thousand, one hundred and forty-three students wrote the Middle Level Mathematics Assessment. The exemption rate was 4.0%.

Sixty-one percent of those who wrote the assessment met the provincial standard, the same percentage as last year. Sixty-four percent of males and 58% of females met the standard as compared to 63% and 58% in 2004.

Students enrolled in French Immersion programs achieved at higher levels than those in the English program. In 2005, 78\% of Early French Immersion students and 80% of Late French Immersion students met the standard, compared to 51% of those in the English program. In 2004, 73% of Early Immersion students, 78% of Late Immersion students and 53% of English program students met the standard.

Appendix A: Sample Items

Section A, Selected Response

1. The population of New Brunswick is about $\mathbf{7 6 0} \mathbf{0 0 0}$ and the population of Canada is about 32000000 . About what percent of the population of Canada is New Brunswick's population?
A. 40%
B. 25%
C. 4%
D. 2.5%

| GCO*: B3 | A. 21% | B. 16% | C. 23% | D. 40% |
| :--- | :--- | :--- | :--- | :--- | :--- |

2. Jeff's salary increased from $\mathbf{\$ 8 . 0 0}$ an hour to $\mathbf{\$ 1 0 . 0 0}$ an hour.

What was the percent increase?
A. 30%
B. $\quad \mathbf{2 5 \%}$
C. 20%
D. 15%

| GCO: B4 | A. 2% | B. 47% | C. 41% | D. 10% |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^0]3. Find the missing fraction to make the following sentence true:
$$
\frac{1}{2}+\frac{\square}{\square}=\frac{10}{12}
$$
A. $\frac{9}{10}$
B. $\frac{5}{12}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

| GCO: B5 | A. 33% | B. 12% | C. 8% | D. 47% |
| :--- | :--- | :--- | :--- | :--- | :--- |

4. Which of the following operations is described by the diagram?

A. $\frac{1}{10}$ of $\frac{1}{2}$
B. $\frac{1}{5}$ of $\frac{4}{5}$
C. $\frac{1}{5}$ of $\frac{1}{2}$
D. $\frac{1}{10}$ of $\frac{4}{5}$

| GCO: B7 | A. 37% | B. 11% | C. 33% | D. 18% |
| :--- | :--- | :--- | :--- | :--- | :--- |

5. In a theatre, $\frac{4}{12}$ of the people present are men, $\frac{2}{5}$ are women and the rest are children. There are 450 people in the theatre. How many children are in the theatre?
A. 120
B. 150
C. 180
D. 330

| GCO: B11 | A. 49% | B. 17% | C. 21% | D. 13% |
| :--- | :--- | :--- | :--- | :--- | :--- |

6. Which of the following is equivalent to $x+2 x+4$?
A. $\quad 4(x+2 x)$
B. $\quad 2 x^{2}+4$
C. $7 x$
D. $\quad 3 x+4$
GCO: B14
A. 17%
B. 20%
C. 5%
D. 58%
7. Two less than triple a number can be written as
A. $2-3 x$
B. $2 x-3$
C. $\quad 3-2 x$
D. $3 \boldsymbol{x}-2$

| GCO: C6 | A. 39% | B. 4% | C. 3% | D. 54% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8. Only one value of x will make the following equation true:

$$
3 x+1=19
$$

Which of these equations will be true for the same value of x ?
A. $\quad 2 x=18$
B. $\quad 3 x=12$
C. $\quad 5 x=20$
D. $4 x+6=30$
GCO: C6
A. 24%
B. 10%
C. 7\%
D. 59%
9. The area of the circle is about
A. $\quad 201.1 \mathrm{~cm}^{2}$
B. $\quad 64.0 \mathrm{~cm}^{2}$
C. $\quad 50.3 \mathrm{~cm}^{2}$
D. $\quad 25.1 \mathrm{~cm}^{2}$

GCO: D4
A. 5%
B. 15%
C. 60%
D. 20%
10. The area of the shape is about
A. $\quad 9 \mathrm{~cm}^{2}$
B. $\quad 28 \mathbf{c m}^{2}$
C. $38 \mathrm{~cm}^{2}$
D. $\quad 110 \mathrm{~cm}^{2}$

GCO: D4
A. 9%
B. 46%
C. 39%
D. 6%
11. What is the volume of this container?
A. about $40 \mathrm{~m}^{3}$
B. about $150 \mathrm{~m}^{3}$
C. about $200 \mathrm{~m}^{3}$
D. about $600 \mathrm{~m}^{3}$

GCO: D7
A. 33%
B. 53%
C. 9%
D. 5%
12. How much more is the surface area of a $4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ cube than a $3 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ cube?
A. $\quad 28 \mathrm{~cm}^{2}$
B. $\quad 42 \mathrm{~cm}^{2}$
C. $54 \mathrm{~cm}^{2}$
D. $\quad 96 \mathrm{~cm}^{2}$

| GCO: D8 | A. 78% | B. $\mathbf{1 5 \%}$ | C. 4% | D. 3% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

13. Squares are drawn on each side of this right triangle. What is the area of the square on XZ ?
A. $\quad 20 \mathrm{~cm}^{2}$
B. $\quad 40 \mathrm{~cm}^{2}$
C. $\quad 96 \mathrm{~cm}^{2}$
D. $\quad 208 \mathrm{~cm}^{2}$

GCO: D9
A. 17%
B. 8%
C. 24%
D. 51%
14. The average (mean) temperature over four consecutive days was $2^{\circ} C$. The temperatures for the first three days were:

$$
10^{\circ} \mathrm{C} \quad-4^{\circ} \mathrm{C} \quad-1^{\circ} \mathrm{C}
$$

The temperature on the fourth day was
A. -5
B. 5
C. 3
D. -3

| GCO: F7 | A. 9% | B. 19% | C. 48% | D. 24% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

15. What is the probability that the spinner will land on D ?
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{1}{6}$
[^1]
Section B, Part 1: Mental Mathematics

 Part 1: Mental Mathematics (12 questions)

 Part 1: Mental Mathematics (12 questions)}

		Answer	Mean Score
1.	$(2+6)^{2}=$	64	56\%
2.	$21 \times 30=$	630	69\%
3.	$4 \times 17 \times 25=$	1700	71\%
4.	$\frac{1}{3} \text { of } 9=$ \qquad	3	68\%
5.	$1-\frac{3}{8}=$	$\frac{5}{8}$	51\%
6.	$\frac{2}{5}+\frac{3}{10}=$	$\frac{7}{10}$	59\%
7.	\$7.00-\$3.96 =	\$3.04	60\%
8.	How many halves are in 14 ?	28	36\%
9.	$\frac{1}{6} \times \frac{5}{7}=$	$\frac{5}{42}$	56\%
10.	$21.9 \div 10=$	2.19	57\%
11.	$0.5 \times 28=$	14	46\%
12.	$33 \frac{1}{3} \% \text { of } 27=$	9	22\%

Section B, Part 2: Non-calculator Mathematics

1. If $\frac{8}{15}+\frac{7}{30}=\frac{x}{30}$ then x equals
A. 10
B. 15
C. 22
D. 23

GCO: B5 Mean Score: 64\%
2. Which of the following has the least value?
A. $-3+(-2)$
B. $-3+2$
C. 3×2
D. $3 \times(-2)$
GCO: B5 Mean Score : 63\%
3. How many $\frac{5}{6}$ litres are in $4 \frac{1}{6}$ litres? \qquad GCO: B8 Mean Score: 56%
4. Look at the pattern below.

If the pattern were to continue, what would the $7^{\text {th }}$ term be $?-10.5$

GCO: C1 Mean Score: 35\%
5. A rectangle has an area of $24 \mathrm{~cm}^{2}$. Its perimeter is 20 cm .
What are its dimensions? $\quad 4 \mathrm{~cm} \times 6 \mathrm{~cm}$
GCO: D2 Mean Score: 50%

Section B, Part 3: Constructed Response

Value: 3 points

1. Use the following key to answer the questions below.

a. What are the dimensions of this rectangle?

length $=$| $x+2$ or |
| :--- |
| $1 x+2$ |

GCO: B16 Mean Score: 53%
width $=$ \qquad
GCO: B16 Mean Score: 58\%
b. What is area of the rectangle?

$$
\text { area }=\begin{aligned}
& 3 x+6 \text { or } \\
& 3(x+2) \text { or } \\
& 3 \times(x+2) \\
& \hline
\end{aligned}
$$

GCO: B16 Mean Score: 23\%

Value: 3 points

2. The diagram shows an arched doorframe.

a. Find the area of X.

$$
\text { area }=\underline{\text { Range: } 1.57-1.58} \mathrm{~m}^{2}
$$

GCO: D6 Mean Score: 38\%
b. Find the area of Y.

$$
\text { area }=\frac{6}{} \mathrm{~m}^{2}
$$

GCO: D6 \quad Mean Score: 82%
c. Find the perimeter of the entire doorframe.

$$
\text { perimeter }=11.14 \mathrm{~m}
$$

GCO: D5 Mean Score: 18\%

Section A : Réponses choisies

1. La population du Nouveau-Brunswick s'élève environ à 760000 personnes, et le Canada compte environ 32000000 d'habitants. Quel est le pourcentage approximatif de la population du Nouveau-Brunswick par rapport à la population du Canada?
A. 40%
B. 25%
C. 4%
D. $2,5 \%$

| RAP*: B3 | A. 21% | B. 16% | C. 23% | D. 40% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Le salaire de Jeff est passé de $8,00 \$$ à $\mathbf{1 0 , 0 0} \$$ l'heure. Quel est le pourcentage d'augmentation de son salaire?
A. 30%
B. $\quad 25 \%$
C. 20%
D. 15%

| RAP : B4 | A. 2% | B. 47% | C. 41% | D. 10% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

* RAP - Résultats d'apprentissage du programme

3. Trouve la fraction manquante de façon à ce que la phrase suivante soit vraie :

$$
\frac{1}{2}+\frac{\square}{\square}=\frac{\mathbf{1 0}}{12}
$$

A. $\frac{9}{10}$
B. $\frac{5}{12}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

| RAP : B5 | A. 33% | B. 12% | C. 8% | D. $\mathbf{4 7} \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

4. Parmi les opérations suivantes, laquelle est représentée par ce schéma?

A. $\frac{1}{10}$ de $\frac{1}{2}$
B. $\frac{1}{5}$ de $\frac{4}{5}$
C. $\frac{1}{5}$ de $\frac{1}{2}$
D. $\frac{1}{10}$ de $\frac{4}{5}$

| RAP: B7 | A. 37% | B. 11% | C. $\mathbf{3 3} \%$ | D. 18% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5. Dans un théâtre, $\frac{4}{12}$ des gens présents sont des hommes, $\frac{2}{5}$ sont des femmes et le reste sont des enfants. Il y a 450 personnes en tout dans le théâtre. Combien y a-t-il d'enfants?
A. 120
B. 150
C. 180
D. 330
RAP : B11 \quad A. $\mathbf{4 9} \% \quad$ B. $17 \% \quad$ C. $21 \% \quad$ D. 13%
6. Parmi les expressions suivantes, laquelle est équivalente à $x+2 x+4$?
A. $\quad 4(x+2 x)$
B. $\quad 2 x^{2}+4$
C. $7 x$
D. $\quad 3 x+4$
RAP : B14
A. 17%
B. 20%
C. 5%
D. 58%
7. Quelle expression correspond à deux de moins que le triple d'un nombre ?
A. $2-3 x$
B. $2 x-3$
C. $\quad 3-2 x$
D. $3 x-2$

| RAP : C6 | A. 39% | B. 4% | C. 3% | D. 54% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8. Une seule valeur de x rendra l'équation suivante vraie :

$$
3 x+1=19
$$

Parmi les équations suivantes, laquelle est vraie pour la même valeur de x ?
A. $\quad 2 x=18$
B. $\quad 3 x=12$
C. $\quad 5 x=20$
D. $4 x+6=30$

RAP : C6
A. 24%
B. 10%
C. 7%
D. 59%
9. L'aire de ce cercle mesure environ
A. $201,1 \mathrm{~cm}^{2}$
B. $\quad 64,0 \mathrm{~cm}^{2}$
C. $\quad 50,3 \mathbf{c m}^{2}$
D. $25,1 \mathrm{~cm}^{2}$

| RAP : D4 | A. 5% | B. 15% | C. 60% | D. 20% |
| :--- | :--- | :--- | :--- | :--- | :--- |

10. L'aire de cette figure mesure environ
A. $\quad 9 \mathrm{~cm}^{2}$
B. $\quad 28 \mathbf{c m}^{2}$
C. $\quad 38 \mathrm{~cm}^{2}$
D. $\quad 110 \mathrm{~cm}^{2}$

RAP : D4
A. 9%
B. 46%
C. 39%
D. 6%
11. Quel est le volume de ce récipient?
A. environ $40 \mathrm{~m}^{3}$
B. environ $150 \mathrm{~m}^{3}$
C. environ $200 \mathrm{~m}^{3}$
D. environ $600 \mathrm{~m}^{3}$

RAP : D7
A. 33%
B. 53%
C. 9%
D. 5%
12. De combien l'aire d'un cube mesurant $4 \mathrm{~cm} \times 4 \mathrm{~cm} \times 4 \mathrm{~cm}$ est-elle plus grande que l'aire d'un autre cube mesurant $3 \mathbf{c m} \times 3 \mathbf{c m} \times 3 \mathrm{~cm}$?
A. $\quad 28 \mathrm{~cm}^{2}$
B. $\quad 42 \mathrm{~cm}^{2}$
C. $54 \mathrm{~cm}^{2}$
D. $\quad 96 \mathrm{~cm}^{2}$
RAP : D8
A. 78%
B. 15%
C. 4%
D. 3%
13. Des carrés sont construits sur chacun des côtés de ce triangle rectangle. Quelle est l'aire du carré construit sur le côté XZ ?
A. $20 \mathrm{~cm}^{2}$
B. $\quad 40 \mathrm{~cm}^{2}$
C. $\quad 96 \mathrm{~cm}^{2}$
D. $\quad 208 \mathrm{~cm}^{2}$

RAP : D9
A. $17 \% \quad$ B. 8%
C. 24%
D. 51%
14. La température moyenne de quatre jours consécutifs est de $2^{\circ} \mathbf{C}$.

Les trois premiers jours, on a enregistré les températures suivantes :

$$
10^{\circ} \mathrm{C} \quad-4^{0} \mathrm{C} \quad-1^{0} \mathrm{C}
$$

Le quatrième jour, la température a été de
A. -5
B. 5
C. 3
D. -3

| RAP : F7 | A. 9% | B. 19% | C. $\mathbf{4 8} \%$ | D. 24% |
| :--- | :--- | :--- | :--- | :--- | :--- |

15. Quelle est la probabilité que la flèche s'arrête sur la lettre D ?
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{1}{6}$

RAP: G2 \quad A. $3 \% \quad$ B. $5 \% \quad$ C. $43 \% \quad$ D. 49%

Section B, partie 1 : Calcul mental

		Réponse	Moyenne
1.	$(2+6)^{2}=$	64	56 \%
2.	$21 \times 30=$	630	69 \%
3.	$4 \times 17 \times 25=$	1700	71 \%
4.	$\frac{1}{3} \operatorname{de} 9=$	3	68 \%
5.	$1-\frac{3}{8}=$	$\frac{5}{8}$	51 \%
6.	$\frac{2}{5}+\frac{3}{10}=$	$\frac{7}{10}$	59 \%
7.	$7,00 \$-3,96 \$=$	3,04 \$	60 \%
8.	Combien y a-t-il de demies dans 14 ?	28	36 \%
9.	$\frac{1}{6} \times \frac{5}{7}=$	$\frac{5}{42}$	56 \%
10.	$21,9 \div 10=$	2,19	57 \%
11.	$0,5 \times 28=$	14	46 \%
12.	$33 \frac{1}{3} \% \text { de } 27=$ \qquad	9	22 \%

Section B, partie 2 : À faire sans calculatrice

1. Si $\frac{8}{15}+\frac{7}{30}=\frac{x}{30}$, alors x est égal à
A. 10
B. 15
C. 22
D. 23
RAP: B5 Moyenne: 64\%
2. Parmi les expressions suivantes, laquelle a la plus petite valeur?
A. $-3+(-2)$
B. $-3+2$
C. 3×2
D. $3 \times(-2)$

RAP: B12 Moyenne : 63\%
3. Combien de fois $\frac{5}{6}$ litre entre-t-il dans $4 \frac{1}{6}$ litres? 5
RAP: B8 Moyenne : 56 \%
4. Observe la suite ci-dessous.

$$
4,5, \quad 2,0, \quad-0,5, \quad-3,0, \quad-\quad, \quad ?
$$

Si cette régularité est maintenue, quel sera le $7^{\mathbf{e}}$ terme ? $-10,5$
RAP: C1 Moyenne : 35 \%
5. Un rectangle a une aire de $24 \mathrm{~cm}^{2}$. Son périmètre mesure 20 cm . Quelles sont ses dimensions? $\quad 4 \mathrm{~cm} \times 6 \mathrm{~cm}$
RAP: D2 Moyenne : 50 \%

Section B, partie 3 : Réponses construites

Valeur : 3 points

1. Utilise la légende ci-dessous pour répondre aux questions suivantes.

a. Quelles sont les dimensions de ce rectangle?

Longueur $=$| $x+2$ ou |
| :--- |
| $1 x+2$ |

RAP: B16 Moyenne: 53 \%

Largeur $=$ 3

RAP : B16 Moyenne : 58 \%
b. Quelle est l'aire de ce rectangle?

$$
\begin{aligned}
& 3 x+6 \text { ou } \\
& 3(x+2) \text { ou } \\
& \text { Aire = } \\
& 3 \times(x+2)
\end{aligned}
$$

RAP: B16 Moyenne: 23 \%

Valeur : 3 points
2. Le schéma ci-dessous précise certaines dimensions d'un encadrement de porte en forme d'arche.

a. Trouve l'aire de \mathbf{X}.

Aire $=\underline{\text { Étendue: } 1,57-1,58 \mathrm{~m}^{2}}$
RAP : D6 Moyenne : 38 \%
b. Trouve l'aire de Y.
Aire $=$
6
m^{2}
RAP: D6 Moyenne : 82%
c. Trouve le périmètre de l'encadrement total de la porte.

$$
\text { Périmètre }=11.14 \mathrm{~m}
$$

RAP : D5 Moyenne: 18 \%

Appendix B: Grade 8 Mathematics Outcomes

Number Concepts

A1 model and link various representations of square root of a number recognize perfect squares between 1 and 144 and apply patterns related to them distinguish between an exact square root of a number and its decimal approximation find the square root of any number, using an appropriate method demonstrate and explain the meaning of negative exponents for base ten represent any number written in scientific notation in standard form, and vice versa compare and order integers and positive and negative rational numbers (in decimal and fractional forms)
A8 represent and apply fractional percents, and percents greater than 100, in fraction or decimal form, and vice versa solve proportion problems that involve equivalent ratios and rates

Operations

B1 demonstrate an understanding of the properties of operations with integers and positive and negative rational numbers (in decimal and fractional forms) solve problems involving proportions, using a variety of methods
B3 create and solve problems which involve finding a, b, or c in the relationship $a \%$ of $b=c$, using estimation and calculation estimate and mentally compute products and quotients involving fractions apply the order of operations to fraction computations, using both pencil and paper and the calculator
B11 model, solve, and create problems involving fractions in meaningful contexts
B12 add, subtract, multiply, and divide positive and negative decimal numbers with and without the calculator
B13 solve and create problems involving addition, subtraction, multiplication, and division of positive and negative decimal numbers

B14 add and subtract algebraic terms concretely, pictorially, and symbolically to solve simple algebraic problems

B15 explore addition and subtraction of polynomial expressions, concretely and pictorially demonstrate an understanding of multiplication of a polynomial by a scalar, concretely, pictorially, and symbolically

Patterns and Relations

C1 represent patterns and relationships in a variety of formats and use these representations to predict unknown values
C2 interpret graphs that represent linear and non-linear data
C3 construct and analyse tables and graphs to describe how change in one quantity affects a related quantity
C4 link visual characteristics of slope with its numerical value by comparing vertical change with horizontal change
C5 solve problems involving the intersection of two lines on a graph
C6 solve and verify simple linear equations algebraically
C7 create and solve problems, using linear equations

Measurement

D1 solve indirect measurement problems, using proportions
D2 solve measurement problems, using appropriate SI units
D3 estimate areas of circles
D4 develop and use the formula for the area of a circle
D5 describe patterns and generalize the relationships between areas and perimeters of quadrilaterals, and areas and circumferences of circles
D6 calculate the areas of composite figures
D7 estimate and calculate volumes and surface areas of right prisms and cylinders
D8 measure and calculate volumes and surface areas of composite 3-D shapes
D9 demonstrate an understanding of the Pythagorean relationship, using models
D10 apply the Pythagorean relationship in problem situations

Geometry

E1 demonstrate whether a set of orthographic views, a mat plan, and an isometric drawing can represent more than one 3-D shape
E2 examine and draw representations of 3-D shapes to determine what is necessary to produce unique shapes
E3 draw, describe, and apply transformations of 3-D shapes
E4 analyse polygons to determine their properties and interrelationships
E5 represent, analyse, describe, and apply dilatations

Data Management

F1 demonstrate an understanding of the variability of repeated samples of the same population

F2 develop and apply the concept of randomness
F3 construct and interpret circle graphs
F4 construct and interpret scatter plots and determine a line of best fit by inspection
F5 construct and interpret box- and whisker-plots
F6 extrapolate and interpolate information from graphs
F7 determine the effect of variations in data on the mean, median, and mode
F8 develop and conduct statistics projects to solve problems
F9 evaluate data interpretations that are based on graphs and tables

Probability

G1 conduct experiments and simulations to find probabilities of single and complementary events
G2 determine theoretical probabilities of single and complementary events
G3 compare experimental and theoretical probabilities
G4 demonstrate an understanding of how data is used to establish broad probability patterns

Appendix C: Formula Sheet
 Middle Level Mathematics

Formula Sheet

(The value for π is $3.14159 \ldots$)

Area $A=b h$
Perimeter $P=2 b+2 h$

Area $A=b h$

Volume $\quad V=s^{3}$
Surface Area $=6 s^{2}$

Volume $\quad V=A h$

Area $A=\frac{1}{2} b h$ or $\frac{b h}{2}$

Area $A=\frac{1}{2}(a+b) h$
or $A=\frac{(a+b) h}{2}$

$$
\text { Area } A=\pi \mathrm{r}^{2}
$$

Circumference

$$
\begin{aligned}
& C=\pi d \\
& C=2 \pi r
\end{aligned}
$$

Volume $\quad V=l w h$
Surface Area $=2 l w+2 w h+2 l h$

Volume $\quad V=A h$

Volume $\quad V=A h$

Mathématiques du niveau intermédiaire

Feuille-formules

(La valeur de π est 3,14159...)

Aire $A=l w$ Périmètre $\quad P=2 l+2 w$

Aire $A=b h$

Volume $\quad V=s^{3}$
Surface totale $=6 s^{2}$

Volume $\quad V=A h$

Aire $\quad A=\frac{1}{2} b h$

Aire $\quad A=\frac{1}{2}(a+b)^{h}$

Volume $\quad V=l w h$
Surface totale $=2 l w+2 w h+2 l h$

Volume $\quad V=A h$

Volume $\quad V=A h$

[^0]: * GCO - General Curriculum Outcome

[^1]: A. 3%
 B. 5%
 C. 43% D. 49%

