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Abstract: The Geodetic Survey Division, in collaboration with the University of Calgary and the 
University of New Brunswick, developed a new and enhanced gravimetric geoid model for Canada 
(CGG2000).  This model replaces the GSD95 geoid model.  CGG2000 was developed according to the 
three-year plan in which we recommend actions to be taken to improve theory, data set and computational 
process.  The new geoid model follows the Helmert-Stokes scheme, i.e., the gravity measurements are 
reduced in terms of Helmert’s second condensation method and the geoid heights are determined using the 
Stokes integral.  All related reductions to the gravity measurements are determined using the spherical 
approximation.  The under-laying global geopotential model is EGM96 (degree and order 360) and it 
contributes its long wavelengths up to degree and order 30 through the modified spheroidal Stokes kernel.  
The 1D-FFT procedure solves the Stokes integral.  CGG2000 model is validated against GPS/Levelling 
across Canada.  For 1090 benchmarks distributed across Canada, the mean and standard deviation is –0.260 
m and 0.179 m, respectively.  Part of the misfit is probably due to a systematic error in the Canadian 
primary levelling network. 
 
 
1 Introduction 
 
With the completion of the GSD95 geoid model (Véronneau, 1997), the Geodetic Survey Division (GSD) 
of Natural Resources Canada, in association with the University of New Brunswick (UNB) and the 
University of Calgary (UofC), prepared a three-year plan in view of the development of the next model.  
The three-year plan (Pagiatakis, 1996) states the actions to be taken by the three agencies regarding geoid 
theory, required data and computational process.  The main objective is the development of a geoid model 
for Canada with accuracy of 1 cm from coast to coast.  Even though the current data set might not allow us 
to reach such a precision, at least the theory is developed at that level.  
 
The determination of a geoid model with accuracy of 1 cm will allow the modernization of heights 
determination through space techniques.  For example, when the geoid model is combined with the 
technology of the Global Positioning System (GPS), it offers a cost-efficient approach versus the traditional 
levelling methods.  In addition, the geoid model can be highly beneficial to oceanographers for the 
determination of the sea surface topography and ocean currents when it is combined with satellite altimetry 
data. 
 
This paper is a review of the procedure used for the determination of the CGG2000 geoid model. Sections 2 
to 7 give a summary of the theory, assumptions and approximations behind the new geoid model for 
Canada.  The theory of CGG2000 is principally derived from Martinec (1993 and 1998) and Vaníček et al. 
(1999).  Section 2 discusses Bruns’ formula, i.e., the relation between potential and geoid height.  The third 
section is the derivation of the Helmert anomalies on the geoid.  In sections 4 and 5, we describe the 
approach used for the global evaluation of the Stokes integral.  The procedure for the determination of the 
mean Helmert anomalies is mentioned in section 6.  Finally, in section 7, the primary and secondary 
indirect effects complete the theory for the CGG2000 geoid model. 
 
The next two sections deal with data and validation of the CGG2000 geoid model.  Section 8 gives a brief 
description of the gravity data and digital elevation models used for the determination of the CGG2000 
geoid heights.  Section 9 discusses the validation of the CGG2000 geoid model against GPS/Levelling 
measurements across Canada and the comparison of CGG2000 to latest geoid model for the USA.  Finally, 
the last section constitutes the conclusion and discussion of this paper.  
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2 Anomalous Potential and Geoid Height: Bruns’ Formula 
 
The gravity potential W is created by the gravitational potential V generated by the Earth’s masses and by 
the centrifugal potential Φ induced by the earth’s rotation.  The gravity potential may be expressed as a 
sum of a normal gravity potential U generated from a geocentric biaxial ellipsoid spinning with the same 
angular velocity as the earth and an anomalous potential T.  Thus, the gravity potential at a point P on the 
topography is 
 

ppp TUW += .              (2.1) 
 
The geoid is defined as the equipotential surface of the gravity potential Wg (= constant) of the Earth 
coinciding with the mean sea level.  Thus, the gravity potential on the geoid g is 
     

ggg TUW += .               (2.2) 
 
The determination of a geoid model by Stokes’ integral holds only when the anomalous potential is 
harmonic function outside the geoid.  Therefore, no masses should be present above the geoid.  Helmert’s 
second condensation method is one approach that satisfies the above condition.  It consists of transforming 
all masses above the geoid (topography and atmosphere) to a condensed layer onto the geoid.  For the 
Helmert approach, the anomalous potential T becomes the sum of the Helmert anomalous potential Th and 
the potential of the transformed masses δV.  Thus, the gravity potential on the geoid can be expressed as 
 

g
h

ggg VTUW δ++=  .              (2.3) 
 
The potential difference δV between the masses above the geoid and the condensed (c) masses is 
constituted of the topography (t) and the atmosphere (a), i.e.,  
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The normal potential on the geoid Ug can be expanded by the Taylor series and expressed as (Martinec, 
1993, 1998):  
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where U0 (= constant) is the normal gravity potential on the reference ellipsoid,  γ0 is the normal gravity on 
the ellipsoid, N is the geoid-ellipsoid separation (geoid height) and τN is the truncation error. 
  
By inserting equation (2.5b) into equation (2.3), it becomes 
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Thus, for the Helmert approach, the Bruns formula, which relates the geoid height to the anomalous 
potential, is given by 
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where δW is the difference between the gravity potential (Wg) at the geoid and the normal gravity potential 
(U0) at the surface of the reference ellipsoid.  The term Tg

h/γ0 yields the separation between the co-geoid 
and the ellipsoid.  The following term δVg/γ0 is the primary indirect effect (separation between the geoid 
and the co-geoid caused by the condensation of the topography and atmosphere).  The last term τΝ/γ0, 
which originates from the truncation of the Taylor series in equation (2.5b), has a maximum magnitude of 1 
mm (Martinec, 1993). 
 
Finally, we define the gravity potential Wg in relation to an Earth where all topography is removed and 
where the atmosphere is transformed according to Helmert’s second condensation method.  We define this 
modified Earth as “Bouguer”; and the superscript B expresses it.  This “Bouguer” Earth can be expressed in 
potential as  
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This equation will be used in the next section for the purpose of the downward continuation. 
 
 
3 Boundary Condition for the Helmert Anomalous Potential  
 
Heiskanen and Moritz (1967) give the definition of a gravity disturbance as 
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where n and n’ are the directions of the plumbline and the normal, respectively. 
 
While Vaníček et al. (1999) transform directly the masses above the geoid to a condensed layer onto the 
geoid (i.e., they go directly from the actual Earth to a Helmert Earth), we remove the topography, apply the 
downward continuation and then restore the topography as a condensed layer.  Therefore, the approach 
goes through the intermediate “Bouguer” Earth before the determination of the geoid heights in the Helmert 
Earth.  Therefore, the gravity potential in equation (3.1) is substituted by equation (2.8), but it is defined at 
the topography.  Equation (3.1) can be expressed in relation to the “Bouguer” Earth as follows 
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Because the two directions of the normal almost coincide and the elevation h is reckoned along the normal, 
equation (3.2) reads: 
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where εn is the correction for the substitution of the direction of the normal.  The correction can be 
neglected because it reaches only a few µGal (Cruz, 1986). 
 
Normal gravity γP can be expanded by means of γ and its derivatives in a Taylor series at point 0 on the 
ellipsoid, i.e., 
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where Dγ is the normal free-air reduction (normal gradient of gravity time height) to the second order term 
between the topography surface and geoid.  It is defined as follows (Heiskanen and Moritz, 1967) 
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Inserting equation (3.4) into equation (3.3), it becomes 
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and it can be expressed as: 
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It corresponds to a gravity disturbance for the “Bouguer” Earth.  The free-air anomaly is expressed by ∆gFA. 
Because the disturbance is defined at the topography, it must be downward continued to the geoid. Taking 
spherical approximation of the second term, equation (3.7) can be expressed on the geoid as 
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where the ellipsoidal correction term εh(T) is given by (Jekeli, 1981 and Cruz, 1986) 
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and Dδg

B is the downward continuation of gravity disturbances for the “Bouguer” Earth.  It is given by   
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Substituting N by equation (2.7) and adding the condensed topographical effect on each side of equation 
(3.8), it reads 
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The derivative of the normal gravity along the normal can be expressed as (Jekeli, 1981 and Cruz, 1986) 
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where χ can be substituted by δW, Tg

h, δVg and τn.   
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Substituting the two above equations in equation (3.11), it reads 
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where 
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Equation (3.13) defines a Helmert gravity anomaly on the geoid. 
 
 
4 Stokes’ Integral 
 
In section 2, we demonstrated that geoid heights could be determined from the Bruns formula.  Equation 
(2.7) can also be expressed as (Heiskanen and Moritz, 1967) 
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where the second term on the right hand side is the Stokes integral, NPIE is the primary indirect effect, ε1 is 
the ellipsoid correction for the spherical Stokes kernel S(ψ)and Nτ is the truncation error.  The primary 
indirect effect contains the contribution from the topography and atmosphere.  
 
Because Helmert gravity anomalies determined from observed gravity contain biases, we remove the long 
wavelength components of the gravity measurements by subtracting the first l degrees from the Stokes 
kernel.  The long wavelengths up to degree l are added back from a global geopotential model Nl

h in a 
Helmert Earth.  Equation (4.1) becomes 
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where ε1

l is the ellipsoidal correction above degree l.  The spheroidal Stokes kernel Sl(ψ) can be expressed 
as  
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Furthermore, we do not have gravity measurements available over the whole world.  Therefore, we split the 
Stokes integral into two areas: 1) an area σ where we have gravity measurements and 2) an area Ω−σ 
where we do not have any observed gravity.  Ω corresponds to the integration over the whole Earth.  
Equation (4.2) reads 
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Naturally, for evaluating a geoid height, one requires gravity measurements globally.  Therefore, a global 
geopotential model can approximate the actual gravity measurements outside area σ. 
 
 
5 Spherical Harmonic Model 
 
The gravitational potential is given by 
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Spherical harmonic expansion of the normal gravitational potential is 
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Therefore, using the disturbing potential and Bruns’ formula, one derives 
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and 
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where ΝL and ∆gL are the geoid height and free-air anomaly up to degree and order L, respectively.  The 
difference between the mass of the equipotential ellipsoid of revolution (Me) and the mass of and the actual 
earth (M) is taken into consideration by the first term.  
 
The geoid height ΝL, which is determined from the spherical harmonic expansion can also be evaluated 
from the Stokes integral: 
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The ellipsoidal correction ε2 is a correction for the spherical Stokes kernel.  As previously, the geoid height 
ΝL can be determined from the spheroidal Stokes kernel Sl(ψ) of degree l and the integral split into the 
same two regions 
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The degree L (>= 360) is significantly higher than the degree l (<= 60).  We replace in equation (4.4) the 
unknown gravity anomalies by gravity anomalies derived from the spherical harmonic model as an 
approximation.  Equation (4.4) reads 
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where  
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The Nl

PIE term is the primary indirect effects on the first l degrees.  It allows the transformation of the long 
wavelengths from the actual Earth to the Helmert Earth.  Finally, by subtracting equation (5.6) from 
equation (5.7), it becomes 
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ε1

l-ε2
l represents the ellipsoidal correction due to the residual gravity anomalies above degree and order l.  

 
Because the far zone contribution is determined from a global geopotential model, we want to minimize its 
contribution by modifying the spheroidal Stokes kernel.  Equation (5.9) becomes  
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The modified spheroidal Stokes kernel is given by (Vaníček and Kleusberg, 1987) 
 

∑
=

+
−=

l

n
nn

ll PtnSS
0

00 )(cos)(
2

12)(),( ψψψψψ ,          (5.11) 

 
where tn are the modification coefficients and ψ0 is the size of the integration cap. 
 
 
6 Mean Helmert anomalies 
 
For the determination of the geoid model for Canada, the Helmert gravity anomalies used into the Stokes 
integral are actually a mean over a geographical cell.  Therefore, the mean Helmert anomaly is defined as 
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where A is the area of the cell. 
 
Because of the limited number of gravity measurements, the mean gravity anomalies are estimated from 
surrounding observations, which may not lie necessarily within the cell.  The proposed approach is based 
on two concepts: 1) the refined Bouguer anomalies offer a relatively smooth gravity field for interpolation 
and averaging; and 2) least-squares collocation is an efficient method for gravity prediction.  This is the 
same approach as for GSD95.  The refined Bouguer anomaly is defined as (Heiskanen and Moritz, 1967) 
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where 2πGρH is the Bouguer plate and At is the terrain correction within a radius ψ0 = 50 km. 
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The mean refined Bouguer anomaly can be determined as 
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where C is the least-squares collocation operator, n (= 9) is the number of sub-areas within area A and m 
(=20) is the number of observations (5 nearest observations from each quadrant). 
 
From equation (3.14), we can write the removal of the topography, the restoration of condensed topography 
and the atmospheric correction as 
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respectively.   Terms Bp

t and Bg
ct are the attraction of the Bouguer shell and condensed Bouguer shell, 

respectively.  They are given by (Martinec, 1998) 
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where σ is the condensed topographical density 
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The subscripts ψ0, ψ1 and ψ2 to the spherical terrain correction (STC) and condensed terrain effect (CTE) 
represent integration areas ranging from 0 to 50 km, 50 km to 3.0 degrees and outside the three-degree cap, 
respectively.  The three zones are evaluated by numerical integration.  However, the contribution of the 
condensed topography on the geoid in the innermost zone Aψ0

ct is small.  Its contribution to the geoid model 
reaches 4 mm.  However, the difference between the attraction of the Bouguer shell at the topography and 
the condensed shell at the geoid can contribute up to 5 cm in the Canadian Rocky Mountains. 
 
Therefore, by inserting Eq. (6.3), (6.4), (6.5) and (6.6) into equation (3.14), it yields 
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It represents a mean Helmert anomaly on the geoid. 
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7 Primary and secondary Indirect Effect 
 
Martinec (1993, 1998) gives the formulation for the primary indirect terrain effect (PITE) for the spherical 
approximation: 
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The primary indirect topographic effect is evaluated in two zones: inner and outer.  The inner zone 
contribution, which corresponds to a three-degree cap, is evaluated by numerical integration while the 
integration for the remaining of the world is determined from a spherical harmonic expansion (Novák et al., 
2001). 
   
For regions with an ice cap, such as Greenland, the formulation of PITE must take into consideration the 
ice thickness. The density of ice (ρice) is 0.917 g/cm3, which is 2.9 time less than the mean topographical 
density.   Therefore, the formulation of the primary indirect terrain effect at a point on an ice cap with 
thickness D can be approximated by  
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where H is the elevation of the surface above the geoid.  Equation (7.2) omits the second order term and the 
far zone contribution.   
 
The primary indirect atmospheric effect (PIAE) is currently judged negligible because its maximum 
magnitude on the geoid is 6 mm (Vaníček et al., 1998b). 
 
The secondary indirect terrain effect (SITE) is determined from the primary indirect terrain effect (PITE) 
(Martinec 1993, 1998), i.e.,  
 

PITESITE N
r

g γ2
=∆ .               (7.3) 

 
On the other hand, the maximum magnitude of the secondary indirect atmospheric effect (SIAE) on gravity 
is 2 µGal (Vaníček et al., 1998).  Its contribution is negligible on the geoid. 
 
 
8 Data and Computation of CGG2000 
 
The CGG2000 geoid model covers most of North America.  It includes Canada, the continental USA 
(including Alaska and and part of Hawaii), Greenland, Iceland, and most of Mexico; however, the model is 
best determined for Canada.  The model has a resolution of 2 minutes of arc in both latitude and longitude 
and is delimited by the following geographical coordinates: 84°N, 20°N, 170°W and 10°W.  The geoid 
heights of CGG2000 represent the separation between the geocentric reference ellipsoid of GRS80 and the 
equipotential surface W0 = (62636855.8 ± 0.5) m2/s2 (Burša et al., 1997). The reference system is ITRF97, 
but it does not correspond to any specify epoch.  EGM96 (Lemoine et al. 1998) defines the long 
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wavelengths up to degree l = 30, while coefficients from degree 31 to 360 contribute to the shorter 
wavelengths of the gravity field outside the six-degree integration cap.  It also defines the mass (M) of the 
actual Earth.   
 
The surface gravity measurements (land and water) are obtained from the following agencies: 690,742 
values from Geodetic Survey Division of Natural Resources Canada, 1,477,300 values from U.S. National 
Geodetic Survey (NGS) and National Imagery and Mapping Agency (NIMA) and 117,086 values from 
Kort Matryxkelrysen (KMS) in Denmark.  The model also includes airborne gravity data for Greenland 
received from NIMA and KMS.  In addition, the shipboard measurements are augmented by a combination 
of satellite altimetry-derived gravity data determined by Sandwell and Smith (v9.2, 1997), KMS v99 
(Andersen and Knudsen, 1998), CLS/SHOM v98 and GSFC v2000.  All gravity measurements are (or 
assumed to be) tied to the IGNS71 in a tide-free system. 
 
The Digital Elevation Model (DEM) for Canada is from provincial and federal sources.  The DEM for the 
provinces of British Columbia and Alberta is derived from maps at a scale of 1:20k while the DEM for the 
province of New Brunswick is obtained from maps at a scale of 1:10k.  The elevations have a vertical 
accuracy better than 10 metres and a horizontal resolution of 25 to 100 metres depending of the 
topography.  The heights for the rest of Canada are obtained from the Canadian Digital Elevation Data 
(CDED), which are elevations scanned from maps 1:250k with a horizontal resolution of 3 seconds of arc 
and a vertical accuracy ranging from 30 metres to 150 metres.  These new DEM allowed the determination 
of improved terrain corrections at the gravity measurements in Canada.  For the USA (including Alaska), 
the original version of the Digital Terrain Elevation Data (DTED) is used again in CGG2000 as it was used 
in GSD95.  These elevations are processed following a similar approach as CDED.  This DTED version in 
CGG2000 is of lesser quality than the DEM used currently in the USA geoid model G99SSS (Smith and 
Roman, 2001).  KMS made available to GSD the DEM and ice thickness model for Greenland.  Finally, the 
elevations for the rest of the world are obtained from GTOPO30.  We also use the spherical harmonic 
model TUG-87 (Wieser, 1987) for the far zone contribution of PITE. 
 
The mean Helmert gravity anomalies used in determination of the CGG2000 geoid model were evaluated 
following equation (6.10) with the exception that we omitted the downward continuation of the Bouguer 
gravity disturbances (eqn. 3.10).  UNB and GSD conducted major efforts in the study of the downward 
continuation using Helmert and Bouguer anomalies, but the results were still unstable.  The experimental 
geoid models that included the downward continuation were statistically worst than models without it when 
compared to geoid heights derived from GPS and levelling.  We even studied and applied the actual 
gradient of gravity to the mean gravity along the plumbline for the determination of accurate orthometric 
height.  Fortunately, the contribution of the downward continuation to the “Bouguer” Earth is relatively 
small; however, it is not negligible and should normally be included in a geoid model.  GSD, in cooperation 
with UNB and UofC, will resume their activities related to the study of downward continuation and make it 
an integral part of the next model. 
 
Even though the effect of topographical density variation on the geoid model could contribute close to 10 
cm (Pagiatakis et al., 2000 and Huang et al. 2001), we decided not to include it into the model because it is 
not taken into consideration in the levelling network yet.  
 
The Stokes integral is solved by 1D-FFT (Haagman et al., 1993).  However, the Stokes kernel is modified 
to filter out the long wavelengths and minimized the contribution outside a six-degree integration cap.  The 
first 30 degrees of EGM96 define the long wavelengths of the CGG2000 geoid model.  These selections are 
based on a series of tests where we tested different degrees of modification (10 to 360), different 
integration cap-sizes (0.5 to 18 degrees of arc) and different global geopotential models (EGM96, GFZ97 
(Gruber et al., 1997) GRIM5-S1 (Lemoine et al., 1999) and PGM2000A (Pavlis et al., 2000)).  For the 
GRIM5-S1 models, which is a satellite only solution to degree 99 and order 95, the far zone contribution to 
the geoid model outside the integration cap were determined from the EGM96 models.   
 
The experimental geoid models based on different global geopotential models give similar solutions when 
the modification is equal to or less than degree 30.  However, the size of the integration cap plays a 
significant role in the accuracy of the geoid model.  The larger is the integration cap, the larger is the 
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systematic error in the geoid model, but the systematic error diminishes by increasing the degree of 
modification.  Thus, the final selection of the integration cap size and degree of modification is based on 
minimizing the systematic error without jeopardizing its relative accuracy vis-à-vis geoid heights derived 
from GPS and levelling.  Hopefully, the results from satellite gravity missions will bring accurate gravity 
information above degree 45 in order to minimize the integration cap size to 4 degrees or less.  Thus, the 
surface gravity measurements would only contribute the high frequency part of the geoid model. 
 
 
9 Accuracy and validation of CGG2000 
 
An estimated accuracy model at 66% confidence level (1σ) of the CGG2000 geoid model is determined by 
error propagation and it is depicted in Figure 1.  The accuracy for CGG2000 ranges from 0.2 cm to 18 cm.  
The average error is 2.6 cm with a standard deviation of 1.7 cm.  However, the error model does not 
include the long wavelength errors of the EGM96 geopotential model below degree 30, i.e., wavelengths 
longer than approximately 600 km.  Furthermore, the error model in Figure 1 does not illustrate local 
systematic errors that might be part of Helmert gravity anomalies.  The accuracy of the CGG2000 may be 
too optimistic for some regions of Canada, but it can be used as an indicator of the quality of the geoid 
model across Canada.  
 
Currently, the best independent technique for validating geoid model is its comparison to geoid heights 
derived from GPS ellipsoidal heights and spirit-levelled orthometric heights.  To cover as much of the 
country as possible, a network of GPS surveys conducted by GSD across Canada was assembled and 
integrated into ITRF97 (epoch 97.0) using the Canadian Base Network (CBN) as the framework (Craymer 
and Lapelle, 1997).  This network is referred to as the GPS Supernet (v3.1a).  All GPS surveys from 1986 
to 2000 that included occupations of vertical control benchmarks were considered for inclusion in the 
Supernet (v3.1a).  
 
These surveys used a broad variety of equipment and observing procedures and session lengths (from less 
than an hour to a few days).  Consequently, the computed coordinates were of varying precision, with the 
95% confidence interval for ellipsoidal heights ranging mostly from 2 to 10 cm.  There were, however, 
some older surveys which displayed vertical confidence intervals up to a few decimetres, mainly due to the 
use of single frequency receivers and the mixing of different types of antennae (no estimates of the relative 
phase centre offsets were available). Parts of the 1989 “GPS on BM” project in British Columbia suffered 
from these problems.  In general, the 95% confidence limit is a good indicator of the precision of the 
ellipsoidal heights, while the average observation length of each project is a useful indicator of their 
reliability. 
 
On the other hand, the orthometric heights were determined from a minimum constraint adjustment of 
geopotential number differences observed after 1981. Benchmark “7629325” in Rimouski, Québec was 
held fix.  In order to increase the number of benchmarks with GPS measurements, we complemented the 
levelling network by adding all levelling observations since 1972 to the initial adjustment for which the 
stations were held fix.  This approach was chosen in order to minimize the post-glacial rebound effect on 
the levelling network.  Finally, the adjusted geopotential numbers are divided by mean gravity obtained 
from the 0.0424 factor (Heiskanen and Moritz, 1967).  Thus, the orthometric heights are actually the so-
called Helmert heights.  This adjustment is referred to as Jan01d.  It indicates that the mean sea level of the 
Pacific Ocean in the vicinity of Vancouver is higher than the mean sea level of the Atlantic Ocean next to 
Halifax by 81 cm.  The CGG2000 geoid model indicates a difference of 34 cm between the two coasts.  
These results are presented in Table 2, which also shows results for previous adjustments of the Canadian 
primary levelling network and the GSD95 geoid model. 
 
There are a total of 1102 out of 2834 stations in the Supernet (v3.1a) for which heights were available from 
the Jan01d adjustment.  Only twelve heights (1%) were rejected because their discrepancies (h-H-N) were 
too large vis-à-vis other discrepancies in the immediate neighbourhood.  Five of these have ellipsoidal 
heights with standard deviation larger than 10 cm (95% confidence).  For the remaining 7 stations, 
monument stability must be considered, particularly when reconciling heights, which were measured at 
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different epochs.  In some cases the levelling surveys and the GPS surveys have been carried out three 
decades apart.  Thus, l090 stations were available to validate the CGG2000 geoid model.   
 
The height discrepancies between Jan01d heights and GPS-derived orthometric from GSD95 and 
CGG2000 geoid models as shown in Figures 2a and 2b, respectively.  The modification of the Stokes 
kernel allowed the removal of a significant east-west systematic error in GSD95.  This east-west tilt in 
GSD95 is probably due to systematic errors in the gravity measurements and gravity reductions.  The same 
systematic error would show up in CGG2000, if the standard Stokes kernel was used.  The remaining of the 
systematic error seen in Figure 1b may be from inaccuracy of the global geoid model or systematic error in 
the levelling.  The water level difference between the two coasts may not be as large as 81 cm. 
 
Table 1. Sea surface topography (SST) and water level difference at tide gauges in Vancouver (V), 

Rimouski (R) and Halifax (H) for different adjustments of the primary levelling network and 
geoid models.  All adjustments use the so-called Helmert heights. 

 
Sea Surface Topography (cm) ∆SST (cm) Datum 

V H R1 V - H 
Comments 

Adj. 07-28 -6 -29 -41 +23 Levelling from 1907 to 1928 
Adj. 66-71 +159 -46 -41 +205 Levelling from 1966 to 1971 
NAVD88 +100 -51 -41 +151 North American Adjustment 
GSD95 -60 -41 -41 -19 Geoid Model 
Jan98 +54 -49 -41 +103 All Levelling (1907 to 1997) 
Jan01d +34 -47 -41 +81 Levelling from 1982 to 2000 
CGG2000 -5 -39 -41 +34 Geoid Model 
Jan01d* -5 -47 -41 +42 Levelling from 1982 to 20002 

1. Fixed station: (h ITRF97 epoch 97.0 – N CGG2000)*g = 4.2158 m kGal. 
2. Same as Jan01d but constrained in Rimouski and Vancouver to CGG2000. 

 
New digital elevation models for British Columbia and Alberta contributed significantly in enhancing the 
geoid model in these two provinces.  These new DEM allowed the determination of more accurate terrain 
corrections to the gravity measurements.  In addition, the new Canadian Digital Elevation Data  (CDED) 
available contributed significantly in improving the geoid model in central Québec and Baffin Island.   
 
The discrepancies (h-H-N) for CGG2000 have a standard deviation of 18 cm while it is 41 cm for GSD95.  
However, the standard deviation for CGG2000 is 8.5 cm after fitting out the systematic biases and tilt by 
using a four-parameter transformation (Sideris, 1993), which absorbs long wavelength errors.  By using the 
same process, the standard deviation for GSD95 improved to 15 cm, but it remains almost twice as large as 
the one for CGG2000.  These results are summarized in Table 2.  If we limit the discrepancies for 
CGG2000 to GPS measurements forming the CBN adjustment network and levelling lines observed after 
1981, the standard deviation improved to 6.7 cm after absorbing the long wavelength errors.  By restricting 
the discrepancies to Western Canada, the standard deviation becomes 4.5 cm. 
 
Table 2. Comparison of different geoid models (GSD95 and CGG2000) to geoid heights derived from GPS 

ellipsoidal heights (Supernet v.3.1a) and Jan01d primary levelling network.  
 

Geoid Model Levelling 
Datum No Min 

(m) 
Max 
(m) 

Mean 
(m) 

Std Dev* 
(m) 

GSD95 Jan01d 1090 -1.214 0.404 -0.564 0.410 (0.149) 
CGG2000 Jan01d 1090 -0.799 0.238 -0.260 0.179 (0.085) 
* The results in parentheses indicate the standard deviation after fitting out systematic biases and 

tilts by using a four-parameter transformation. 
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While the goal of CGG2000 is to provide a high-resolution geoid model for Canada, the computation 
extends over all the conterminous United States, Alaska and Greenland to reduce edge effects.  This 
overlap provides a comparison with the latest purely gravimetric geoid model for USA, G99SSS (Smith 
and Roman, 2001), developed at the National Geodetic Survey (NGS).  The differences (CGG2000 minus 
G99SSS), ranging from –0.860 m to 1.32 m, are illustrated in Figure 3.  These extreme values over the US 
territory are located in northern Idaho and along the Atlantic coast in the southeast.  The large disagreement 
in the Pacific NorthWest may be related to terrain correction sources while the different technique to 
combine shipboard gravity data and satellite altimetry data could explain the disagreement along the 
Atlantic coast.  The most significant differences over Canada are due to NGS using an old DEM version.  
 
Unfortunately, the analysis of these two geoid models against 6129 GPS/levelling data across the USA and 
sea surface height (separation between the ellipsoid and mean sea level) derived from satelliet altimetry 
could not confirm which model is more accurate.  The standard deviation of the discrepancies (h-H-N) for 
G99SSS (0.217 m), is significantly smaller than for CGG2000 (0.405 m).  However, the standard deviation 
for G99SSS becomes slightly larger than for CGG2000 after removing a tilt by using the four-parameter 
transformation (see Table 3 and Figures 4a and 4b).  The tilt may be coming from the NAVD88 levelling 
datum, which indicates a mean sea level difference of 1.5 m between Vancouver and Halifax (see Table 1).   
NGS and GSD will cooperate in solving these large disagreements. 
 
 
Table 3. Comparison of different geoid models (G99SSS and CGG2000) to geoid heights derived from 

GPS ellipsoidal heights and NAVD88 orthometric heights.  
 

Geoid Model Levelling 
Datum No Min 

(m) 
Max 
(m) 

Mean 
(m) 

Std Dev* 
(m) 

G99SSS NAVD88 6129 -1.127 0.113 -0.524 0.217 (0.163) 
CGG2000 NAVD88 6129 -1.905 0.584 -0.731 0.405 (0.135) 
* The results in parentheses indicate the standard deviation after fitting out systematic biases and 

tilts by using a four-parameter transformation. 
 
 
 
10 Discussion 
 
The theory described in this paper is the first step towards the realization of a one-centimetre accuracy 
geoid model for Canada.  The paper investigates the formulation of the Bruns equation and gravity anomaly 
for a Helmert Earth.  Furthermore, the “Bouguer” Earth, an Earth where all topographical masses have been 
removed, is used to ease the downward continuation by creating a smooth gravity field and minimizing its 
contribution.  Even though the downward continuation and the topographical density variation is not 
considered in this model, the CGG2000 geoid model is the stepping stone of the next generation of geoid 
models in Canada.  This new model is an improvement by a factor of two vis-à-vis the previous geoid 
model for Canada (GSD95).  The main enhancement comes from the modification of the Stokes kernel by 
filtering out the long wavelength contribution from the surface gravity measurements, which includes 
systematic errors.  As importantly, the new DEM for Canada allowed the determination of more accurate 
terrain corrections, in particular for the Canadian western Cordillera, and more accurate mean Helmert 
anomalies.    
 
Future activities in geoid modeling at the centimetre level in Canada are encouraging with progress 
accomplished in airborne gravity survey from a consortium of Canadian private industry, the University of 
Calgary and Natural Resources Canada and with the in-coming results from the current and future satellite 
gravity missions (CHAMP, GRACE and GOCE).  In addition, the current project at Natural Resources 
Canada to create a DEM from maps at 1:50k will allow a better definition of the topography over CDED 
1:250k. 
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The determination of the one-centimetre geoid model is not achieved with this current model, but the 
theory, data collection (gravity measurements, DEM and topographical density) and computer capability 
are improving so rapidly that the objective is highly feasible in a reasonable future.  Finally, the increasing 
cooperation between GSD, NGS (USA), KMS (Denmark) and INEGI (Mexico) will culminate to the 
creation of a unified and accurate geoid model for North America.     
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Figure 1: Accuracy of the CGG2000 geoid model above degree 30 (wavelengths longer than 

approximately 600 km).   (Unit: m, C.I.: 5 cm) 
 
 
Figures 2a: Discrepancies between GSD95 geoid model and geoid heights derived from GPS ellipsoidal 

heights (Supernet v3.1a) and Jan01d Helmert orthometric heights. 
 

 
 
Figures 2b: Discrepancies between the CGG2000 geoid model and geoid heights derived from GPS 

ellipsoidal heights (Supernet v3.1a) and Jan01d Helmert orthometric heights. 
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Figure 3: Differences between G99SSS and CGG2000.   (Unit: m, C.I.: 10 cm) 
 
 
Figures 4a: Discrepancies between G99SSS geoid model and geoid heights derived from GPS ellipsoidal 

heights and NAVD88 Helmert orthometric heights after fitting out systematic biases and tilts 
by using a four-parameter transformation. 

 

 
Figures 4b: Discrepancies between CGG2000 geoid model and geoid heights derived from GPS ellipsoidal 

heights and NAVD88 Helmert orthometric heights after fitting out systematic biases and tilts 
by using a four-parameter transformation. 


