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Abstract. The geoid errors for the Canadian 
Gravimetric Geoid 2005 (CGG05) model are 
estimated from the error information of the satellite 
and terrestrial gravity data. Calibration is conducted 
through the application of variance component 
estimation (VCE) with GPS-leveling data and their 
associated covariance matrices. Preliminary results 
suggest that the error of the geoid heights is 
generally smaller than 6 cm in Canada, with a range 
from 6 cm to 31 cm for the Western Cordillera area. 
Overall, the average error of the CGG05 model is 
estimated at 5.5 cm. 
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1 Introduction 
With the increased use of GPS-based positioning, 
the demand for directly converting ellipsoidal 
heights to heights referred to a regional vertical 
datum with sufficient accuracy is also increasing. 
For Canada, the use of a gravimetric geoid as the 
national height reference surface is currently under 
study. The recent revolutionary development of 
space gravimetry (i.e., CHAMP, GRACE and the 
upcoming GOCE mission) offers the opportunity to 
pursue such a dramatic change in the local vertical 
datum. However, before a vertical datum based on a 
gravimetric geoid is adopted, as opposed to one 
based on conventional leveling networks, it is 
important to conduct a reliable assessment of the 
systematic and stochastic errors of the geoid model. 
This is a challenging task as there is limited or poor 
information regarding the quality of the terrestrial 
gravity data, difficulty in quantifying the gravity 
reduction and interpolation errors, as well as only 
approximate estimates of the errors associated with 
the satellite models.  

The purpose of this paper is twofold, namely (i) 
to provide a detailed examination of all error 
sources of the Canadian Gravimetric Geoid 2005 

(CGG05) model (includes the satellite gravity 
model, terrestrial gravity data, gravity reduction 
methods and the far-zone contribution error), and 
(ii) to develop an adequate method for the 
estimation of the gravimetric geoid error from these 
error sources. In particular, the iterative almost 
unbiased estimation (IAUE) scheme is implemented 
to validate/calibrate the geoid error using existing 
GPS-leveling data across Canada. 
 
2 Methodology 
2.1 Estimation of Gravimetric Geoid Error 

The CGG05 model was computed using the degree-
banded Stokes integral, which is described in Huang 
and Véronneau (2005). In order to illustrate how 
errors propagate into the geoid model, the formula 
for the geoid determination is simplified as 
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where the first term on the right hand side of eq. (1) 
represents the geoid components below spherical 
harmonic degree L+1 from a satellite model (SG), R 
is the mean radius of the Earth, γ is the normal 
gravity on the reference ellipsoid, and ∆g denotes 
the gravity anomalies. The degree-banded Stokes 
kernel can be expressed as 
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It is used as a band-pass filter to compute the geoid 
components from degree L+1 to mTG. The upper 
limit mTG is dependent on the terrestrial gravity 
(TG) data spacing.  

The Stokes integration is performed within a 
spherical cap limited to a spherical angular distance 
of 6 arc-degrees. This implies that the band-pass 
filtering is incomplete and renders aliasing geoid 
errors that account for an RMS of approximately 2 
cm over Canada.  



 

 

 

 

Finally, FN is the far-zone contribution outside the 
Stokes integration. It can be evaluated from a 
combined global spherical harmonic gravity 
(GGM) model up to its maximum degree 
(preferably larger than degree 200): 

where 

 
The geoid error is primarily comprised of errors 

from the satellite-only gravity model, the combined 
global gravity models, and the terrestrial gravity 
data. The satellite gravity signal usually dominates 
the low-degree part of the geoid components in a 
combined model while the terrestrial gravity data 
complete the GGM for higher degrees and orders 
(Sideris and Schwarz, 1987). For regional geoid 
determination, the lower limit, L, must be selected 
according to the quality of the satellite data. 
Empirical tests show that it should not exceed 30 
for GGMs prior to the CHAMP/GRACE missions, 
if a decimeter-level accurate geoid is sought. A 
simplified expression for the geoid error is given 
by: 

where 

 
vSG, vTG, and vCG represent the geoid errors from the 
satellite model, the terrestrial gravity data, and the 
combined model, respectively. Given the 
covariance (CV) matrices for each of these three 
types of errors, the geoid standard deviation (std) 
can be estimated based on eqs. (3) to (5) via error 
propagation. In our case, the geoid std may be 
evaluated only approximately because the CV 
matrices for the satellite and combined harmonic 
gravity models are approximate. Furthermore, only 
approximate error values are available for the 

terrestrial gravity data in Canada, which inherently 
contains a combination of errors originating from 
several sources, including gravity measurements, 
height measurements at the gravity points, 
topographic reduction, interpolation of gravity 
values, digital elevation models (DEM) and actual 
topographical density distribution. ∑
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2.2 Calibration of the Geoid Error  

Geoid heights can also be determined at co-located 
GPS and leveling stations, which provides an 
independent external means to validate and calibrate 
the gravimetric geoid model and its precision. 
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The discrepancies between the GPS/leveling-
derived and gravimetric geoid heights can 
(predominantly) be attributed to a combination of 
systematic and random errors in the ellipsoidal 
heights (h), the orthometric heights (H), and the 
gravimetric geoid heights (N), as discussed in 
Kotsakis and Sideris (1999). The following general 
linear functional model was used for the combined 
(multi-data) least-squares adjustment of the 
heterogeneous height data: 
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The deterministic term, Ax, introduced in eq. (6) 
represents the parametric model used to 
approximately model the systematic errors inherent 
in and among all three types of heights. The 
selection procedure for the type of model and 
assessing its validity has been discussed extensively 
in Fotopoulos (2003). For this particular case a 
simple four-parameter model was found to be 
sufficient and therefore incorporated for all 
calculations.  

Individual variance components are estimated 
using the adjustment model in eq. (6) to (9) and the 
a-priori CV matrices for each of the data types (see 
Fotopoulos, 2003 for the detailed procedure). This 
procedure was followed in this study in order to 
achieve a more realistic estimate of the geoid model 



 

 

 

 

error that incorporates five individual variance 
components for the ellipsoidal heights and the 
orthometric heights at the GPS-leveling 
benchmarks, denoted by  and , 
respectively. The geoid height errors are separated 
for the satellite gravity model, terrestrial gravity 
data, and the combined gravity model, denoted by 

 and , respectively.  
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3 Gravity and GPS-leveling data 
The lower degrees (2 to 90) of the GRACE-based 
GGM02C model (Tapley et al., 2005) are used for 
the determination of the long wavelength 
components of the geoid while the higher degrees 
(91 to 200) determine the far-zone contribution of 
the Stokes integration. EGM96 (Lemoine et al., 
1998) is used to extend the GGM02C up to degree 
and order 360. The local residual terrestrial gravity 
data, i.e., ground, airborne, shipboard (including 
satellite altimetry-derived), are used to compute the 
geoid components above degree 90. These 
terrestrial data are the same as those used for the 
CGG2000 model (Véronneau, 2002). The latest 
model, CGG05, is a high-resolution geoid model 
for North America with a geographical spacing of 2 
minutes of arc along latitudes and longitudes. Its 
reference ellipsoid is GRS80 and the reference 
frame is ITRF (no specific realization). 

Canadian GPS surveys after year 1994 were used 
in a least-squares adjustment to compute the 
ellipsoidal heights with respect to the GRS80 
reference ellipsoid and their associated 
variances/covariances (Craymer and Lapelle, 2004; 
pers. comm.). The reference frame is ITRF97.  

The geopotential numbers are determined from a 
minimally constrained least-squares adjustment (via 
Helmert-blocking) of the geodetic leveling 
observations after year 1981. The single fixed 
station is a benchmark located along the St-
Lawrence River in Rimouski, Québec, which is the 
same constraint used for the North American 
Vertical Datum of 1988 (NAVD88). Gravity values 
are interpolated at each benchmark from local 
measurements and converted to mean values along 
the plumbline (from geoid to topography) by 
correcting for the variable terrain. The variances 
and covariance within each Helmert block are 
implemented for the calibration of the geoid error, 
while the correlation between neighboring Helmert 
blocks have been omitted at this stage. 

The CGG05 geoid model is validated using 430 co-
located GPS-leveling stations with a distribution as 
depicted in Figure 1. The computed h-H-N residuals 
for the 430 stations plotted as a function of 
longitude and latitude are shown in Figure 2. The 
overall standard deviation of these residuals is 10.2 
cm. A negative mean value of -40 cm indicates that 
the zero-height point of the leveling network is 
approximately 40 cm lower than the CGG05 geoid 
model. 

Figure 1. 430 GPS-leveling stations
 

Figure 2. Height residuals (h-H-N) versus 
longitude and latitude 

 

The observed north-south and east-west slopes 
evident in Figure 2 result in a standard deviation of 
about 8 cm and are caused by systematic errors 
attributed to all three types of heights. In general, 
the uncertainty in the location of the ITRF97 
reference frame geocenter can generate systematic 
errors of a few centimeters in the ellipsoidal heights 
(Altamimi et al., 2002), while the GRACE data may 
introduce systematic errors of less than a few 



 

 

 

 

centimeters in the low-degree components of the 
gravimetric geoid heights. However, the leveling 
data are most likely the major source of systematic 
errors that accumulate over the 6000 km separation 
between the east and west coasts. Current 
knowledge about the mathematical and physical 
characteristics of the systematic errors in the 
leveling data is limited and therefore it is difficult 
to accurately model and correct for these 
discrepancies.  

 
4 Geoid Error from the GGM02C Model 
The error model of the GGM02C model propagates 
into the low-degree components and far-zone 
contribution of the Canadian geoid model. The 
error information of the GGM02C model is 
provided in terms of error coefficients obtained 
from the diagonal elements of the covariance 
matrix. Figures 3a and 3b show the low-degree 
geoid error estimates from the diagonal-only terms 
and from the fully-populated covariance matrix of 
the GGM02C model, respectively. In this case, the 
use of diagonal-only elements does not provide 
sufficient information for the estimation of the 
geoid errors.  

 

The far-zone contribution error was found to be 
closely approximated by a constant of 1.6 cm 
according to the diagonal CV matrix and 0.7 cm to 
1.8 cm if the fully-populated form of the CV matrix 
is utilized. Again, it was determined that the fully-
populated covariance matrix is needed to evaluate 
the far-zone contribution error. 

Initial covariance matrices of the low-degree and 
far-zone contribution components of the geoid 
heights at the 430 GPS-leveling stations have been 
estimated from the CV matrix of the harmonic 
coefficients of GGM02C. 
 
5 Geoid Error from the Terrestrial Data 
The terrestrial gravity error is comprised of 
measurement, datum, data reduction and 
interpolation errors. A fully populated covariance 
matrix for this data is not available; however, the 
standard deviation at each gravity station can be 
estimated from the measurement and elevation 
standard deviations. By neglecting the covariance 
between any two gravity stations, and the datum and 
interpolation errors, the initial geoid error standard 
deviations can be estimated via simple error 
propagation of Stokes integration (Li and Sideris, 
1994). Figure 4 depicts the computed geoid error 
standard deviations based on the terrestrial gravity 
data, which provides an average error of 1.5 cm 
across Canada and a maximum of 15.7 cm in the 
western region. These values are most likely too 
optimistic due to the obvious omissions mentioned 
previously. However, since this is the best 
information currently available, these values were 
used to construct the initial CV matrix for the 
terrestrial gravity component at the 430 GPS-
levelling points.   
  
6 Estimation of Variance Components 
Given the initial covariance matrices corresponding 
to the h, H, NSG, NTG and NCG data, the geoid errors 
estimated from the GGM02C model and from the 
terrestrial data can be verified and calibrated at the 
GPS-leveling stations as per the procedure described 
in section 2.2.  

Figure 5 shows the mean covariances with respect 
to the spherical distance computed from the initial 
CV matrices for the (a) ellipsoidal heights, (b) 
orthometric heights, (c) satellite and (d) terrestrial 
geoid errors at the 430 GPS-leveling stations, 
respectively.  

Figure 3. GGM02C geoid error estimates for 
degrees 2 to 90 based on (a) diagonal-only 
CV matrix and (b) fully populated CV matrix 



  

Figure 4. Regional geoid error propagated from estimated errors of the terrestrial gravity data through the degree-
banded Stokes integration 

 
Figure 5. Initial mean covariance (in mm2) via spherical distance for (a) ellipsoidal heights, (b) orthometric heights, (c)
satellite geoid heights, and (d) residual terrestrial geoid heights 
  



 

 

 

 

The ellipsoidal heights are weakly correlated across 
the GPS-leveling network with a range in standard 
deviations from 0.2 cm to 7.6 cm and an average 
value of 1.3 cm. In general, these values obtained 
directly from the results of the post-processing 
software tend to be on the optimistic side. 

The orthometric heights are strongly spatially 
correlated within each of the Helmert blocks.  The 
corresponding standard deviations increase as the 
distance with respect to the ‘fixed’ station in 
Rimouski increases. These values reach a 
maximum of approximately 9 cm with a mean 
standard deviation of 5.4 cm. 

The low-degree geoid components from the 
GRACE model values are correlated because they 
are evaluated from the same set of spherical 
harmonic coefficients. Standard deviations for this 
data vary from 0.5 cm to 1.4 cm with a mean of 0.9 
cm. The covariance matrix for NCG is similar to that 
of NSG (Figure 5c) and therefore not shown. 

The residual geoid components evaluated from 
the degree-banded Stokes integral exhibit a high 
correlation only when common data have been used 
between any two computational points. In this 
study, the integration cap radius is 6 arc-degrees, 
which indicates a correlation for any two 
computational points located within a spherical 
angular distance of less than 6 arc-degrees. The 
standard deviations of the residual components of 
the geoid model are evaluated from the errors of the 
gravity anomaly data and range from 0.3 cm to 8.8 
cm with a mean value of 1.4 cm.  

 Using the iterative almost unbiased variance 
component estimation scheme (Horn and Horn, 
1975; Fotopoulos, 2003) and the a-priori CV 
matrices described above, five individual variance 
components were estimated. These values are 
tabulated in Table 1 for two scenarios, namely (i) 
diagonal-only CV matrices and (ii) fully-populated 
CV matrices (where available). The sensitivity of 
the estimated variance factors to the a-priori 
covariance information is evident from the 
differences between the estimated variance factors 
in each scenario. As expected, if only the diagonal 
information of the matrices is used as an 
approximation, the computed variance components 
are (in general) low for data where correlation is 
evident (e.g., orthometric heights).  

The estimates in Table 1 suggest that the a-priori 
CV matrices corresponding to the ellipsoidal, 
orthometric and geoid heights are too optimistic, 

with final estimated variance components 
suggesting a re-scaling of the a-priori CV matrices 
of more than 3. The result for the far-zone 
contribution is less conclusive. In all cases, the 
number of iterations remained constant at 
approximately 70. 
 
Table 1. Estimated variance factors using fully- 
populated and diagonal a-priori covariance matrices 
(n is the number of iterations) 

CV 2
hσ̂  2

Hσ̂  2
SGσ̂  2

TGσ̂  2
CGσ̂  n 

Diagonal 2.24 0.03 7.71 2.69 6.00 72 
Full 9.09 5.85 3.19 3.61 0.01 69 

 
  
7 Total Geoid Error 
The total geoid error is finally computed from the 
scaled CV matrices (after variance component 
estimation) of the three estimated components 
corresponding to SG, TG and CG. Assuming that 
the variance factors in Table 1 are applicable for 
non-GPS/leveling points (albeit a bold assumption), 
the total calibrated geoid error for CGG05 is 
illustrated in Figure 6 on a 2' × 2' grid. This 
assumption will be further tested using additional 
data that was not implemented in this study. 

 The calibrated geoid error ranges from 1 cm to 32 
cm, with a mean error of 5.5 cm across the entire 
Canadian landmass. The mountainous areas of 
western Canada (up to Alaska) exhibit the largest 
errors due to sparse gravity anomaly error 
information (i.e., 2' in the mountains is insufficient). 
The geoid error in central Canada is generally 
smaller than 6 cm, with the hilly regions in eastern 
Canada showing slightly larger geoid errors. In 
particular, the geoid errors in the Fox Basin and 
Ungava Bay are significantly larger than those of 
the surrounding regions, due to the lack of terrestrial 
gravity data. 

 



  

Figure 6. Regional geoid error map for Canada estimated using GPS-leveling data 

 
8 Discussion of Future Work 

The progress made in this study represents a 
significant step forward to achieving realistic error 
estimates for the Canadian gravimetric geoid 
model. However, it should be stated that the total 
geoid errors shown in Figure 6 are preliminary and 
refinements are ongoing. In particular, major 
improvements are expected on three fronts, namely 
(i) the inclusion of additional GPS-leveling data for 
a regional calibration based on the geographical 
heterogeneity of the data, (ii) the incorporation of 
the correlation between the terrestrial gravity data 
and (iii) the verification of the reliability of the 
estimated variance components, through an external 
validation process. Further tests will also be 
conducted to re-evaluate the suitability of the 
deterministic term  introduced in the functional 
model for the systematic errors (i.e., type of 
parametric model).  
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