

C E T C CANMET ENERGY TECHNOLOGY CENTRE

PROCESSING AND EVIRONMENTAL CATALYSIS

0

CLEAN ENERGY TECHNOLOGIES

BIO-OIL DIESEL MIXTURE FUELS

The BDM Process™

Until the invention of the BDM ProcessTM, the use of bio-oils in conventional heat and power generation systems required major modifications. These bio-oils were usually more viscous than conventional diesel fuel, harder to ignite, strongly acidic, and had low calorific values compared to conventional petroleum-based products. The BDM ProcessTM overcomes these difficulties by producing a stable bio-oil/diesel fuel mixture with properties similar to those of No. 2 fuel oil. CETC-Ottawa invites you to become a licensee of this process.

Mixing Bio-Oils and Diesel Fuel: the BDM Process™

It used to be that bio-oils were insoluble in No. 2 diesel oil. Mix the two and they formed two separate phases (see Figure 2). Now an effective process for mixing them is available: the BDM ProcessTM, (see Figure 1). Once mixed by this process, the two oils form a blend that is stable, less corrosive and easy to ignite. Laboratory evaluation of bio-oil/diesel fuel mixtures (see Table 1) according to ASTM and ISO standard test methods attest to these properties.

The BDM ProcessTM produces a bio-oil/ diesel fuel mixture with properties similar to those of conventional diesel fuel (see Figure 3). Most boilers, turbines and power generation stations can use this blended fuel without major modifications. Significant capital savings can be realized where a site conversion is planned.

Bio-oils are produced from the pyrolysis of various biomass feedstocks such as hardwoods and softwoods, grasses, agricultural wastes, etc.

Above: Figure 1: Operational Bench Scale Unit

Right: Figure 2: (left to right) Ensyn bio-oil only; diesel fuel only; immiscible Ensyn bio-oil/diesel mixture (two phases); BDM ProcessTM fuel (single phase)

CETC – OTTAWA
CANMET Energy Technology Centre
Natural Resources Canada
1 Haanel Drive, Ottawa, Ontario K1A 1M1
Tel: (613) 996-8693 Fax: (613) 995-9584

www.cetc.nrcan.gc.ca

The benefits of using a bio-oil/diesel mixture include:

- comparable combustion performance efficiencies:
- fuel savings:
- only minor adjustments to combustion equipment and fuel;
- lower emissions of NO_x, SO_x and CO₂.

Plans for further development include:

- testing and blending proprietary biomassderived oils produced from pyrolytic processes:
- optimizing BDM ProcessTM to improve or customize fuel physical properties, and making further enhancements to the combustion characteristics of the fuel.

The BDM ProcessTM has also been used effectively to blend heavier fuel oils, such as No. 4 and 6, with bio-oils. This added benefit will greatly accelerate the penetration of blended bio-oil fuels into existing oil-fired facilities used to generate electricity. Formulated BDM ProcessTM fuels could save a power utility hundreds of thousand dollars every year in fuel savings alone, depending on the fuels blended and their relative proportions. Savings accrued will depend primarily on site specifics, e.g., on avoidance or containment of retrofitting costs.

Your Invitation to Work with Us

We are interested in collaborating with you. Please contact the Business Office to discuss your particular needs.

(613) 996-8693

cetc-bdo@nrcan.gc.ca

Parameters		ASTM Test	Diesel Fuel Grade 2	Bio-Oil/Diesel Fuel Mixtures (Wt%)				
				5	10	20	30	40
Flash Point (°C)	(Open Cup)	O-92	92	86	95	82	82	90
	(Closed Cup)	O-93	68	70	71	74	72	75
Fire Point (⁰ C)		O-92	94	90	94	98	94	98
Heat of Combustion (cal g)		ISO-1928	10738	10511	10274	9754	9253	9501
Pour Point (°C)		O-97	-15	NA	-18	NA	-49	NA
Cloud Point (⁰ C)		D-5773	-18	NA	23	NA	22	NA
Corrosion (Cu 3h@100°C)		D-130	1b	NA	1a	NA	1a	NA
Ash (%Wt)		D-482	0	NA	0.02	NA	0.13	NA
Water & Sediment (%Wt)		D-1796	0	NA	0.1	NA	0.2	NA

Table 1: Similarities between Grade-2 Diesel Fuel and Some Bio-Oil/Diesel Fuels

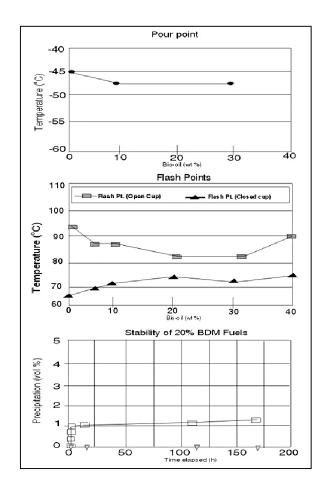


Figure 3: Physical Properties of Ensyn Bio-Oil/Diesel Mixture Fuels

For Further Information Please Contact:

Michio Ikura, Ph.D. Senior Research Scientist (613) 996-0505

mikura@nrcan.gc.ca

CANMET Energy Technology Centre - Ottawa Natural Resources Canada 1 Haanel Drive Ottawa, Ontario, K1A 1M1 Canada

cetc.nrcan.gc.ca