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ABSTRACT 
 

The development and incorporation of the latest enhancements to the PRESAP analysis 

codes are described.  This work includes the development of specialized probabilistic methods 

designed to model precipitation induced slow slope movement using random field modelling 

techniques. 

 

This report is comprised of eight chapters.  The first five provide background 

information dealing with the scope/motivation for this project, a review of the work conducted 

during the previous phase of the PRESAP project, plus a series of literature reviews which 

considered the issues related to random field modelling of soil properties, rainfall, and stochastic 

finite element methods.  In chapter six, a description of the random field modelling strategy 

developed for this project is provided.  In chapter seven, details related to the software 

implementation of the modelling strategy are presented.  In chapter eight, the results from a series 

of rain induced slope movement computer simulations are provided.  The report concludes with 

chapter nine, which provides a summary of the work conducted under this research project and a 

series of recommendations for future work. 
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GLOSSARY OF TERMS 
 
 
Auto-correlation Function 
A function that measures the degree of similarity between values of a random field at different 
locations.  Example slope movements at different locations. 
 
Bayes Theorem 
A theorem concerning conditional probabilities of the form ( ) ( ) ( ) ( )APABPBPBAP *|*| = , 
where P(B) and P(A) are the unconditional (or a priori) probabilities of B and A, respectively. 
 
BLUE 
Best linear unbiased estimator is a technique for estimating the statistically properties of random 
fields or random variables. 
 
Correlation 
This is the measure of the degree of similarity between two random variables. When the two 
random variables that are being compared are the same, for example slope movement at two 
separate locations, the correlation is said to be an auto-correlation. When the two random 
variables represent different properties (i.e.: rainfall and slope movement) the correlation is said to 
be cross-correlation. 
 
Correlation Structure 
A function used to represent the correlation between any two locations in a random field. 
 
Distribution 
A distribution of measures or observations is the frequency of these measurements shown as a 
function of one or more variables, usually in the form of a histogram.  Experimental distributions 
can thus be compared to theoretical probability density functions. 
 
Distribution Function 
The term distribution function is short for cumulative distribution function and describes the 
integral of the probability density function: a random variable X has the (cumulative) distribution 
function F(X), if the probability for an experiment to yield an X < x is 

 ( ) ( ) ( )∫ ∞−
=<=

x
dfxXPxF ξξ

 
Histogram 
Measured or generated data can be grouped into bins, i.e.: discretized by classifying into groups 
each characterized by a range of values in characteristic variables.  The resulting graphical 
representation, usually limited to one or two variables, is called a histogram. 
 
Homogeneous Random Field. 
A random field is considered homogeneous when its mean value and variance do not depend on 
the location and its correlation is dependent solely on the distance between the variables. 
 
IMSL 
The IMSL math library is a collection of FORTRAN routines and functions useful in research and 



 
 
mathematical analysis.  
 
Multi Component Partitioning 
A technique for transforming a non-homogeneous random field into a series of homogeneous 
random fields. 
 
Non-Homogeneous Random Field 
A random field whose statistical properties are a function of location. 
 
Phenomenological Model 
A perceived cause is (i.e.: rainfall) is mathematically linked to an effect (i.e.: ground 
movement) without attempting to model the mechanics of the relationship. 
 
Probability Density Function 
If a random variable X has a cumulative distribution function F(x) which is differentiable, the 

probability density function is defined as ( ) ( )
dx

xdFxf = .  The probability of observing X in the 

interval  is then .  For a collection of several random variables, 

 the joint probability density function is 
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Random Variable 
A real random variable X ( ) ωω , ,Ω , is a set function defined on Ω  such that for every real 
number x, there exists the probability ( )xXP ≤)(: ωω .  In other words, the real function X ( )ω  
maps a sample space  into the real line R.  In this definition, x represents the range of values 
that the random variable X can take. 

Ω

 
Random Field 
A random field can be defined as a family of spatially correlated random variables or random processes. 

Examples of random fields are rainfall, soil properties and slope movement. 

 
Sampling from a Probability Density Function 
Frequently, a random sample is required that exhibits a known probability density function.  
Random number generators, on the other hand, usually supply samples with a uniform 
distribution, typically between 0 and 1.  What is needed is a means for converting the uniform 
probability density function.  If the a random number generator supplies the value r, the 

variable x is obtained by solving  for x. ( )∫ ∞−
=

x
rdxxf

 
Slope Creep 
Slow slope movement.  Typically smaller than 100 mm per year. 
 
Stochastic Finite Elements 
A collection of techniques for incorporating random variables or fields into traditional finite 
element numerical methods. 
 



 
 
Variance 
This is the square of the standard deviation of a random variable. 
 
White Noise Process 
In the frequency domain, white noise is defined by a spectral density function that is constant 
for all frequencies.  This property of white noise implies that the process is completely 
uncorrelated with itself at all time lags expect zero.  Hence, the process is “noise”, i.e.: 
completely incoherent. 
 
 



 
 

NOTATION 
 

r̂ ( ) ( ) ( )( tztytx ,, )  represents a spatial location. 

)ˆ(rω  represents a realization or sample of a random field at location r̂ . 

( )r̂µ  represents the mean value of a random field at location r̂ . 

)ˆ(rτ  represents the trend component of a random field (or mean value) at r̂  

( )r̂2σ  represents the variance of a random field at location r̂ . 

)ˆ(rf  represents the zero trend fluctuating component of a random field at location r̂  

)ˆ())ˆ(cov( 1rr ωω  represents the autocovariance function of a random field at two locations r̂  and r̂ 1. 

)ˆ,ˆ( 1rrρ  represents the autocorrelation function of a random field at two locations r̂  and r̂ 1. 

δ  represents the scale of fluctuation of the correlation function. 

[ ]dĉ  represents the moment estimator of the autocovariance function of a homogeneous random field 

estimated for a separation distance d.  

θ  represents a vector of  parameters used to define the autocovarince function 

( )xf  represents the probability density function for the random variable x. 

( nxxxL ,...,, 21

xx , 21

) represents the joint likelihood function of the collection of random 

variables . ( )nx,...,

K represents the global finite element stiffness matrix. 

U represents the vector of nodal displacement. 

F represents the global nodal load vector. 

β represents the reliability index. 

g(X) represents a limit state function (a function of a series of random variables X). 

t represents time. 

fP  represents the probability of failure for a system. 

xp  represents the joint probability density function of several random variables. 
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1. INTRODUCTION 
 

Scientists have been able to reach some important conclusions about climate change:  

• the basis for concern is scientifically sound;  

• human influence on climate appears to be discernible;  

• the risks of danger are real and significant;  

• the magnitude and distribution of regional danger is not as certain as we would like;  

• the greatest danger may be associated with a change in the frequency and severity of 

extreme weather events; and  

• the rationale for action is clear  

 

While the exact rate and magnitude of regional climate changes are not yet known, 

precautionary action to reduce the risks, both through reductions in emissions of greenhouse 

gases and adoption of measures to adapt to changes in climate appears to be justified 

(McBean and Everall – 1998). 

 

 

1.1 Climate Change Action Fund 
 

In February 1998, the federal government established the Climate Change Secretariat.  The 

Secretariat has three main objectives:  

 

1) Serving as a focal point for the development of the federal government’s domestic policy 

and programming on climate change; 

 

2) Coordinating, in cooperation with provincial officials, the development of a National 

Implementation Strategy to meet the greenhouse gas emission reduction targets 

established in the Kyoto Protocol (aka the “National Climate Change Process”); and  

 

3) Managing the Climate Change Action Fund.  
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The Climate Change Action Fund (CCAF) was established in order to build a policy 

foundation and to initiate early action to address climate change. While the majority of the 

Action Fund will address the reduction of emissions of greenhouse gases to meet the targets 

set out under the Kyoto Protocol, a portion of the funding has been set aside for work on 

climate science, impacts and adaptation. 

 

 

1.2 Adaptation Strategies for Oil and Gas Infrastructure 
 
The "Adaptation" component of the Action Fund will focus on developing a suitable and 

accessible knowledge base for wise and prudent decision making through investment in 

detailed research, consultations and case studies. This body of knowledge will enable 

researchers to better understand the need for greenhouse gas reductions and to identify and 

implement the most appropriate portfolio of response strategies to reduce the negative 

impacts of climate change and take advantage of the positive ones. 

 

Adaptation strategies for oil and gas infrastructure clearly fall within the scope of the Action 

Fund.  The threats posed by climate change to Canadian oil and gas infrastructure are many 

and varied, with significant environmental, social, and economic implications.  In a recent 

study conducted by the Geological Survey of Canada (http://sts.gsc.nrcan.gc.ca/permafrost/), 

it was found that over half of the discontinuous permafrost zone in the Canadian Arctic 

would disappear as a result of a warming of 4 to 5 degrees, and the boundary between 

continuous and discontinuous permafrost would shift northward by hundreds of kilometers.  

In addition, climate change could potentially lead to a more vigorous hydrological cycle.  As 

a result, Canada can expect an increase in flooding events due to more intense rainfall and 

snowfall in some regions, while drought events will rise as the number of dry days increases 

in other areas. 

 

1.3 Rainfall Induced Slope Movement 
 

In addition to the risks posed above, the projected changes in precipitation are also expected 
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to increase the potential for ground movement and slope instability. One of the primary 

causes of slow ground movement is the duration, amount and intensity of rainfall (Konuk, 

1998).  It is well known (McCarthy (1998)) that the infiltration of rainwater into soil 

increases the soil weight, slope load and pore water pressure.  These changes in soil 

properties may result in a decrease in the soil shear strength, and as a result, may lead to an 

increase in the likelihood of soil movement.  Consequently, this soil movement induces 

additional loads on neighboring structure (such as pipelines), resulting in increased strain 

levels that pose a risk to the integrity of these structures.  In addition, existing assessment 

criteria, which are largely based on empirical or semi-empirical methods, do not account for 

the spatial variability of soil properties and are designed to utilize instantaneous (fixed) 

values of important material parameters without providing guidelines for making estimates 

of their impact on future pipeline reliability.  Furthermore, most of the existing 

empirical/semi-empirical methods do not have a framework for modelling complicated 

loading and boundary conditions. 

 

 

1.4 Random Field Modelling 
 
In order to assess the effect of rainfall-induced ground movement on the structural integrity 

of pipelines, a rational and systematic procedure that fully accounts for all the spatial and 

temporal variabilities inherent in the rainfall, the soil, the pipeline, and the interactions 

between these parameters must be developed. Such a modelling capability can be provided 

by adopting a random field based probabilistic modelling and analysis strategy (Vanmarcke 

(1983) and Orisamolu, et al. (1999)).   

 

In a previous study, sponsored in part by the Geological Survey of Canada, researchers at 

Martec Limited successfully developed a random field based probabilistic modelling 

software tool for use in the assessment of the structural reliability of damaged pipelines 

(PRESAP – Orisamolu, et. al. (1999)).  This work demonstrated that the random field 

modelling approach is ideally suited for the representation of complex spatial random 

phenomena such as rainfall and slope movement.  Random fields offer an important 
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mathematical framework via which a meaningful representation of parameters defined over a 

given domain can be modeled.  In particular, a random field approach can efficiently account 

for different severity and variability levels for soil properties and rainfall intensity in the 

spatial domain via partitioning of a non-homogeneous random field representation into 

multiple homogeneous segments (each segment having a distinct correlation structure and set 

of statistical parameters).  Furthermore, the correlation structure, which is derived during the 

random field characterization, can be used to measure the degree of similarity in behavior (or 

properties) associated with any two points in the field, and as a result, can reveal the 

heterogeneities and the anisotropy that may be present. 

 

 

1.5 Modelling Rainfall Induced Soil Movement Using PRESAP 
 
This current project has been proposed in order to extend the modelling capabilities of the 

PRESAP software tool to include slope instability (ground motion) damage models.  The 

motivation behind this endeavor stems from the fact that a considerable number of pipeline 

networks are located in areas where potential ground movements pose a real and significant 

threat to structural integrity.  The objectives and goals of this scientific effort will be to 

provide industry and regulators with a software tool capable of: 

 

• Modelling the relationship between rainfall and slope movement for particular pipeline 

routes; 

• Predicting the likelihood of exceeding thresholds for slope movement for various 

levels/intensity of precipitation, and;  

• Providing risk maps for slope movement which can be used as an aid in pipeline route 

selection and adaptation strategies for the design and maintenance of oil and gas 

infrastructure;  

 

The main source of data to be used to characterize the slope movement random fields will 

be supplied by the Scientific Authority and is in the form of monthly time histories.  Data 

related to the mechanical properties of the soil will not be available.  As a result, a 
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phenomenological modelling approach will be used to establish the relationship between 

precipitation and ground movement.  Phenomenological models, which have been used in 

similar applications, relate a perceived cause (i.e.: precipitation) to an effect (i.e.: ground 

movement) without attempting to model the mechanics of the relationship.  This type of 

approach allows for the prediction of soil movement based solely on rainfall or snowfall.  

 

 

1.6 Organization of Report 
 

This report is comprised of eight chapters.  The first five provide background information 

dealing with the scope/motivation for this project, a review of the work conducted during 

the previous phase of the PRESAP project, plus a series of literature reviews which 

considered issues related to random field modelling of soil properties, rainfall, and 

stochastic finite element methods.  In chapter six, a description of the random field 

modelling strategy developed for this project is provided.  In chapter seven, details 

related to the software implementation of the modelling strategy are presented.  In 

chapter eight, the results from a series of rain induced slope movement computer 

simulations are provided.  The report concludes with chapter nine, which provides a 

summary of the work conducted under this research project and a series of 

recommendations for future work. 
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2. PRESAP PHASE I REVIEW 
 

Support for the development of the PRESAP project was motivated by an interest in adopting new 

methodologies for assessing the impact of corrosion damage on the structural integrity of 

pipelines.  Prior to the initiation of PRESAP, corrosion defect assessment criteria, such as those 

embedded in the CSA codes, were largely based on overly conservative empirical or semi-

empirical methods.  In contrast, PRESAP offered a probabilistic mechanics based approach for 

performing residual strength assessment on damaged (or degraded) pipelines.  By adopting a 

probabilistic based approach, PRESAP provided a number of clear advantages over other more 

conventional techniques. 

 

• A probabilistic approach is capable of rationally accounting for the various uncertainties that 

affect structural integrity; 

• Probabilistic modelling allows user’s to perform sensitivity analysis (sensitivity information 

can be used to identify the most important parameters that effect residual strength); 

• The probabilistic approach provides a unique framework for considering the interaction of 

multiple failure modes via stochastic system models, as well as the modelling of the same 

failure mode for several pipeline segments. 

 

 

2.1 Key Elements of the PRESAP System 
 

The methodology and supporting software developed during the initial phase of the PRESAP 

project was comprised of four key elements (see Figures 2.1 and 2.2):  

 

1. Database management (collection and storage of corrosion pit data); 

2. Random variable/random field characterization (i.e.: representation of corrosion as individual 

random variables or collections of random variables within a random field); 

3. Model/System definition (definition of limit state functions used to estimate the probability of 

failure); 

4. Reliability assessment algorithms (used to compute probability of failure, sensitivity 

information, etc.) 
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2.2 Limit State Functions 
 

For readers unfamiliar with the use of limit state functions, consider the case of a structure having 

a load carrying capacity (or strength) defined by the function ( )nuuuR ,...,, 21 , where u  

represent the random variables (or random fields) which influence the structural load carrying 

capacity.  In addition, consider the variable 

nuu ,..., 21

( )321 ,...,, vvvS  that is defined by the random variables 

 and acts as a load on the structure.  Using these definitions for load and resistance, it is 

then possible to define an operational margin of safety for the structure in terms of a limit state 

function Z,  

321 ,...,, vvv

 

Margin of Safety = Z =  - ( )nuuuR ,...,, 21 ( )321 ,...,, vvvS  (2.1) 

 

Figure 2.3 provides a graphical representation of the limit state function using the probability 

density functions for load and strength ( and  respectively).  When R = S (or Z = 0), the 

structure reaches the limit state as defined by Z.  In this case the probability of failure ( ) is 

represented by the shaded volume of the joint probability density function (

Sp Rp

fP

xp ).  Mathematically 

this volume can be calculated using the formula provided in Equation 2.2, 

 

( ) ( )
( )

m
xZ

xf dxdxxpZPP ......0 1
0

∫∫ ∫
<

=<=   (2.2) 

 

where  represent all the parameters used to define the load and resistance for the 

system.  Note that every parameter has its own probability density function, and as a result, the 

evaluation of the probability of failure using Equation 2.2 (i.e. a level III approach) can lead to 

very complex and computationally intensive calculations.  In addition, finding reliable probability 

density functions for all random variables involved is also a difficult and time-consuming process. 

 For situations where direct integration of the joint probability density function is not possible, a 

number of approximate methods are available: 

mxxx ,...,, 21

 

1. Level II:   is represented by means of simplified functions; fP
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2. Level I:  For every parameter involved in the definition of the load or resistance, a partial 

safety factor is used; 

3. Level 0 (deterministic approach):  Some maximum load and minimum strength is established 

on the basis of experience and/or intuition and one overall safety factor is applied.  This is 

clearly not a probabilistic approach at all. 

 

As an example of how limit state functions can be used in practice, consider an analysis involving 

the cantilevered beam represented in Figure 2.4.  For the purposes of this example, we wish to 

compute the likelihood that the tip deflection (u) will exceed 1.92 cm.  As a result, the appropriate 

limit state function is provided below in Equation 2.3. 

 

( )
EI

wLLIEwuuRZ
8

92.1,,,92.1
4

−=−=−=   (2.3) 

 

See Table 2.1 for a list and description of the random variables w, E, I, and L.   

 

Table 2.1: Cantilevered Beam Variable Definition 

 

Variable Symbol Description Distribution Mean Value Standard Deviation 

w Uniform Load Normal 0.08 0.016 

E Young’s Modulus Normal 29000 1740 

I Moment of Inertia Normal 301 15.05 

L Length of Beam Fixed 192 N/A 

 

 

In this case, since we are dealing with only a relatively small number of random variables, Monte 

Carlo simulation can be used to indirectly solve for the probability failure, thus avoiding the direct 

integration of the joint probability failure.  The basis of this method is quite simple.  For all the 

random variables involved in the definition of the limit state function (i.e.: w, E, I, and L) a value 

is generated at random, taking into account the particular probability density function of that 

variable.  Once values for all the variables have been established, the resulting value for Z is 

computed using Equation (2.3).  This procedure is repeated N times, after which  is defined as fP
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N
N F   (where  represents the number of times Z < 0).  For the case of the cantilever beam, 

the Monte Carlo estimate for the probability of failure is 14.7%. 

FN

 

 

2.2.1 Series and Parallel Limit State Functions 
 

In many applications the limit state of structure cannot be defined in terms of a single function.  In 

such cases, it is more appropriate to define failure in terms of a combination of limit state 

functions, which together can be modelled as series and/or parallel systems (each individual limit 

state function is modelled as “component” in the system).  If a series system analogy is adopted, 

then failure of any single component will result in the failure of the system as a whole.  In a 

parallel system, however, all components must fail before the system itself reaches failure.   
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Figure 2.1: PRESAP System
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Figure 2.2: PRESAP Components
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Figure 2.3: Probability Density Function
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3. A REVIEW OF PROBABILITY RANDOM FIELDS MODELS FOR SOIL 

PROPERTIES AND RAINFALL 
 

3.1 Introduction 
 

Slow soil movements, rainfall, soil properties and other geotechnical events exhibit 

space and time variabilities.  These inherent variabilities are continuous and are related from point 

to point in the space stratum.  Thus, the closer the points, the closer the relationships between 

events at two locations, and vice versa.  Analysis of pipeline structural integrity, planning of 

routes and decisions related to pipeline inspection; repair and maintenance involve the use of 

characteristic values of the above-mentioned events.  Experimental measurements are usually 

executed at selected discrete locations in the space stratum to obtain characteristics values of the 

events.  The high cost of experimentation and the difficulty with measuring values of an event at 

all locations requires that the measured values be characterized such that “true” representations of 

the event at all locations in the continuum can be readily extracted. 

 

Probability techniques, namely, random variable and random field models have been 

used in the literature to represent events with variabilities.  A random variable model of a space 

dependent event such as slow soil movement assumes that the event has the same statistical 

values, namely, mean and variance at all locations.  The model also assumes that there is no 

relationship between statistical values of the event at various locations and that the event can be 

effectively represented by a single mean value and a single mean value and a single variance.  

Thus, the model does not acknowledge the existence of spatial variability, implying that a spatial 

event such as slow soil movement can be completely characterized by measurements taken at a 

single location.  The model is, therefore, unrealistic, inaccurate and can be overly conservative 

(Vanmarcke, 1983). 

 

This has given birth to the use of random fields that realistically account for spatial 

variability in modeling these events. A random field can be defined as a family of spatially 

correlated random variables or random processes.  Random fields have been used in modeling and 

analysis of soil of properties and rainfall. Most of the analysis have focused on homogeneous 

random fields (Vanmarcke, 1977a, 1977b, 1983; Bowles and Ko  1984; Soulie et al, 1990; 

Kulhuway et al, 1991; Li and Lumb, 1987; Li and Lo, 1993; Gui et al, 2000, Griffits and Fenton, 

1993; Asaoko and Grivas, 1982; de Marsily, 1985; Young, 1984; Tang, 1984; Baecher, 1981; 
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Christakos, 1987;  Yang et al, 1996; White, 1993 ). Soil Properties such as soil strength, pore 

pressure, hydraulic conductivity, permeability, porosity, and relative density have all been 

modeled as random fields. Estimation techniques for characteristic parameters of random fields, 

such as correlation structures have also been developed (DeGroot and Baecher, 1993; Mardia and 

Marshall, 1984;  1995). A summary of all the pertinent issues discussed in the afore-mentioned 

random field paper and other papers on the subject is presented in this section. 

 

 

3.2 General Representation of a Random Field 
 

The general representation of an event that is space dependent as a random field  

(DeGroot and Baecher, 1993) is 

 

)ˆ()ˆ()ˆ( rfrr += τω  (3.1) 

where 

)ˆ(rω  is the realization or sample of field at r̂  

r̂ =  is the spatial location ( ) ( ) ( )( tztytx ,, )
)ˆ(rτ  is the trend component of field (commonly referred to as mean value) at r̂  

)ˆ(rf  is the zero trend fluctuating component of field at r̂  

t is time. 

 

Equation (3.1) represents the realization of a random field at any specified location. Random fields 

have been classified based on the statistical properties of the field or on the dimension of the field 

(Vanmarcke, 1983). 

 

3.3 Classification Statistical Properties 
 

 Statistical properties are representative values of a field based on the ensembles of various 

realizations.  The statistical properties of a random field ( )r̂ω  that are of primary interest are the 

trend, the variance and the autocovariance or autocorrelation function.  These properties are 

defined below: 

 

Trend: 
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 The mean or the trend or average value at  is given by 
~
r

 

 )ˆ()]ˆ([)]ˆ([ rrErE µτω ==  (3.2) 
 

Variance: 

  The variance of the random field at r̂  is given by 

 

 ( ) ( )[ ] )ˆ()]ˆ([ˆˆ))ˆ(var( 222 rrfErrEr στωω ==−=  (3.3) 
 

It is a measure of the average deviation from the trend at r̂ . 

 

Autocovariance Function or Autocorrelation function: 

 

 The autocovariance function of a random field at two locations r̂  and r̂ 1 is given by 

 

 
( ) ( )( ) ( ) ( )( )( )[ ]

( ) )]ˆ(ˆ[

ˆˆˆˆ)ˆ())ˆ(cov(
1

111

rfrfE
rrrrErr

=

−−= τωτωωω
 (3.4) 

 

A scaled value of the autocovariance function is the autocorrelation function.  Specifically, the 

autocorrelation function of the field at locations r̂  and r̂ 1 is given by 

 

 ))ˆ(var())ˆ(var(
))ˆ()ˆ(cov()ˆ,ˆ(

1

1
1

rr
rrrr
ωω

ωωρ =  (3.5) 

 

The autocovariance and autocorrelation functions describe the average dependents of values of the 

random fields at two different locations.  The symbols E[.], var[.], cov[r] used in the above 

equations have the following meaning: 

 

E [.] is the expected value; 

var [.] is the variance; 

cov[.] is the autocovariance function; 

ρ(.) is the autocorrelation function. 
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Equation 3.2 and 3.3 describe statistical properties at a particular point or location in the field. 

These properties are commonly referred to as point properties.  Equations 3.4 and 3.5 present 

cross moments between two points in the field and are generally called cross point properties.  A 

random field is completely characterized by its point and cross point properties.  The point and 

cross point properties of a field can be used to classify a field as either homogeneous or non-

homogeneous. 

 

3.3.1 A Homogeneous Random Field 
 

  A random field is said to be homogeneous when the statistical values of the point 

properties are constant and the statistical value of the cross-point properties depends only on the 

distance or separation between point.  Specifically, the statistical values of a homogeneous field 

are given by 

 

µτω == )]ˆ([)]ˆ([ rErE     (3.6) 
( ) ( )[ ] 222 )]ˆ([ˆˆ))ˆ(var( στωω ==−= rfErrEr  (3.7) 

( ) ( )( ) ( ) ( )( )( )[ ] ( ) )ˆˆ()]ˆ(ˆ[ˆˆˆˆ)ˆ())ˆ(cov( 121111 rrrfrfErrrrErr −===−−= ρστωτωωω  (3.8) 
 
When the cross point properties, namely autocovariance and autocorrelation is a function of 

absolute distance between the points, the field is said to be isotropic.  That is 

  

  (3.9) 
|)ˆˆ(|)ˆ())ˆ(cov( 121 rrrr −= ρσωω

 

3.3.2 A Non-Homogeneous Random Field 
 

  A random field is said to be non-homogeneous when any of the statistical values of the 

point or cross point properties is dependent on the location.  Specifically, the statistical values of 

point and cross point properties is given by  

 

)ˆ()]ˆ([)]ˆ([ rrErE µτω ==     (3.10) 
( ) ( )[ ] )ˆ()]ˆ([ˆˆ))ˆ(var( 222 rrfErrEr στωω ==−=  (3.11) 
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( ) ( )( ) ( ) ( )( )( )[ ] ( ) )ˆ,̂()]ˆ(ˆ[ˆˆˆˆ)ˆ())ˆ(cov( 121111 rrrfrfErrrrErr ρστωτωωω ==−−=  (3.12) 
 

It is noted that the only requirement for a field to be non-homogeneous is that either Equations 

3.10, 3.11 or 3.12 is dependent on location.  A non-homogeneous random field can be 

decomposed into a series of homogeneous fields.  An alternative classification of a random field is 

based on the dimension of the field.  Four possibilities exist, namely, one-dimensional, two-

dimensional, three-dimensional and space-time random field. 

 

3.3.3 Auto Correlation Function of a Random Field 
 

  The autocorrelation function or the autocovariance or the cross point property is a 

measure of a field similarity between the values of the field at two locations.  It is reflection of the 

effect of separation distance on values of field at two locations and it simply states that values of a 

field at two points close to each other are likely to be similar while values for points remote from 

each other are likely to be independent of each other.  The autocorrelation function is a 

distinguishing feature of a random field and must, therefore, be characterized for the field.  Two 

indices of correlation, namely, scale of fluctuation (Vanmarcke, 1983) and autocorrelation 

distance (DeGroot and Baecher, 1993) have been used to describe the degree of similarity or 

correlation.  The autocorrelation distance is defined as the distance  to which the autocorrelation 

function 

or

( )r̂ρ  decays to 
e
1  while the scale of fluctuation,δ  , is defined as 

 

( )∫
∞

=
0

drrρδ  (3.13) 

 

is a measure of the distance within which the random field shows relatively strong similarity with 

itself.  The values of the field at location lying within a distance ρ  of each other are both likely to 

be above or below the trend.  Thus, a small ρ  implies rapid fluctuation about the trend and a large 

reduction in variance. Autocorrelation functions can be 1, 2 or 3 dimensional.  Various functions 

have been used to model autocorrelation and are generally of the exponential form.   

 

3.4 Estimation Technique for Autocorrelation Structure 
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 Various methods for estimating the statistical properties of a random field (DeGroot and 

Baecher, 1993), namely, trend, variance and correlation function have been reported in the 

literature.  The methods can be classified into three categories namely: 

 

(i) Method of Moments; 
(ii) Blue linear Unbiased Estimators; 
(iii) Maximum Likelihood Estimators. 

 

These methods have been applied in the literature (DeGroot and Baecher, 1993) to homogeneous 

random fields. Summary review of the methods is presented in the following sections for the sake 

of completeness. 

 

3.4.1 Method of Moments 
 

  This method employs the moments of the realizations of a random field to estimate its 

statistical values.  It is the most common method for estimating the statistics of a random field.  

The method is easy to use for homogeneous random fields.  The moment estimators of the mean or 

trend and the variance of a random field ( )r̂ω  are: 

 

 ( )∑
=

=
n

i
ir r

n 1

ˆ1ˆ ωµ   (3.14) 
 

 ( )(∑
=

−
−

=
n

i
rirn 1

2 ˆˆ
1

1ˆ µωσ )  (3.15) 
 

 The moment estimator of the autocovariance function of a homogeneous random field 

measured at uniform intervals along one dimension is: 

 

 [ ] ( )( ) ( )(∑
−

=
+ −−

−
=

dN

i
rdirii rr

dN
dc

1

ˆˆ1ˆ µωµω )  (3.16) 
 

where rµ̂  is given by Equation 3.14 (or by a trend removal from the data), d is the lag distance 

between pairs of observations and N-d is the number of data pairs separated by d.  At lag distance 

d=0, Equation 2.16 reduces to the variance of the data set.  It is a non-parametric technique in that 

no assumption is made on the form of the autocovariance function. 
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3.4.2 Best Linear Unbiased Estimators 
 

  Best linear unbiased estimators (BLUE) are used to make point estimates of a 

homogeneous random field using a weighted combination of existing measurements.  It is a form 

of stochastic interpolation.  A linear estimator, )ˆ( irω ,of the random field )ˆ( irω  is chosen such 

that: 

 

∑
=

=
h

i
iii rwr

1
)ˆ()ˆ( ωω      (3.17) 

such that 

∑
=

=
h

i
iw

1
1     (3.18) 

where n is the number of observation of the random field property )ˆ(rω , )ˆ( irω  is the i-th 

observation of the random field property at location and is the  is the weighting factor 

assigned to the i-th observation. The estimator 

ir̂ iw

)ˆ(ˆ irω  becomes a BLUE estimator if the weights, 

, are determined by a three-step procedure (Spikula, 1983): iw

 

Step 1: Apply the unbiased condition, thereby restricting the  such that: iw

∑
=

=
h

i
iw

1
1     (3.19) 

Step 2: Determine the estimator variance , for the estimator )ˆ(ˆ 2 rωσ )ˆ(ˆ irω  of the true random field 

property at location *r̂  

 

 ( )[ ]2*2 )ˆ()ˆ(ˆ rrE ωωσ ω −=  (3.20) 
 

∑∑ ∑
= = =

+−=
n

i

n

j

n

j
iijiji rrcrrcwrrcww

1 1 1

*** )ˆ,ˆ()ˆ,ˆ(2)ˆ,ˆ(  (3.21)  

 

where ( )ji rr ,c  is the autocovariance of ω between points r   ˆ and1̂ jr

Step 3: Minimize Equation 3.21 over all wi subject to equation 3.20.. This yield optimal values of 

wi and the BLUE estimator 
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  BLUE estimators can be used indirectly to estimate the parameters describing the 

autocovariance function of a random field.  The method is parametric in that the shape of the 

autocovariance function must be assumed.  Usually two parameters are used to define the 

function, (1) , the autocovariance distance, and (2) b, the ratio of spatial variability to the 

variance of the data set.  For example, using these two parameters the exponential autocovariance 

function is written as  

or

 

  [ ] orded /2 −bc = σ  (3.22) 
 

The objective of the method is to select the optimal values of r . b ando

 

 Once the form of the autocovariance function is assumed, each observed value is 

iteratively removed from the data set and then estimated from the remaining n-1 data points.  This 

is performed for a given combination of .  For each estimate, two statistics are computed: br  ando

 

1. Estimation Error 

   ()ˆ )( ii rr ωωε −=  (3.23) 
 

2. Error Ratio 

  2
nσ2ˆ

ER
σ

ε

ω +
=  (3.24) 

 

where  is equal to the noise component of the variance 2
nσ ( )( )b−1ˆ 2

ωσ .  For each combination of b 

and , n values of or ε  and ER are computed.  Minimizing the variance of ε  yields the optimal 

value of  while minimizing the variance of EF yields optimal value of b. or

 

3.4.3 Maximum Likelihood Estimators 
 

  Maximum likelihood estimators are found by considering the possibility of having 

observed the data { nxxxx ,...,, 21= }, conditioned on possible values of the parameter(s) θ  to be 

estimated. θ  is a vector of the parameters defining the autocovarince function. The method takes 

as an estimate that value of θ , which provides the greatest probability of having observed x , as 
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)

calculated from the joint probability distribution of the observations. 

 

  For example, take the case of a random variable X for which the form of the probability 

density function ( θ|xf  is known.  If the parameter θ , which defines the function ( )θ|xf  is 

also known, then the joint probability of a random sample { }nxxxx ,...,, 21=  of X is given by: 

 
( )

n
xxx

xxx dxdxdxf n

n
...21

|,...,,
,...,,

21

21

θ

 

( ) ( ) ( ) nnxx dxxfdxxfdxxfx
n

...22111 2
=  (3.25) 

( )dxxfx

n

i
θπ |11=

=    (3.26) 

 

 However, the parameter θ  is not known; θ  is the parameter we wish to estimate from 

the observations x.  On the other hand, the outcomes { }nxxxx ,...,, 21=  are known, and thus 

Equation 3.26 can be considered a function only of θ , and it gives the relative likelihood (i.e., the 

relative probability of having observed the sample x.  This is the joint likelihood function of the 

sample and is more commonly written as 

 

   (3.27) ( ) θπθ |,...,,|
121 ix

n

in xfxxxL
=

= ( )
 

 The maximum likelihood estimator  of θ̂ θ  is found by selecting the value of  which 

maximizes the likelihood function (Benjamin and Cornell, 1970). 

θ̂

 

 One common method used to solve for the maximum likelihood estimator is to 

differentiate the likelihood function and set it equal to zero.  Since it is easier to differentiate a 

sum than a product, one generally prefers to work with the log likelihood function: 

 

 ( )[ ] ( )]|[,...,,| 21 xLLnxxxLLn n θθ =  (3.28) 

             (3.29) ( )



=

=
θπ |

1 ix

n

i
xfLn

             (3.30) ( ){ }θ|
1

ix

n

i

xfLn
=

Σ=
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 The method can also be generalized to estimate a vector of parameters, ( )nθθθθ ,...,, 21= , 

by selecting the vector of estimates ( )nθθθθ
)

,...,ˆ,ˆˆ
21=  which maximizes the log likelihood function 

( )x|LL θ , 

 

 ( )[ ] ([∑
=

=
n

i
ixn xfLnxxxLLn

1
21 |,...,,| θθ )] (3.31) 

 

 

3.4.4 Limitations of Current Random Field Models 
 

Unfortunately, all of the soil properties/rainfall random field models reviewed for 

purposes of this project have limitations that make them unsuitable for slow soil movement.  

These limitations include: 

(i) They only have spatial variability and the effect of time is ignored; 
 
(ii) The spatial variability is usually assumed to be homogeneous, that is, the mean 

value of the field is the same at all locations.  However, for soil movement, the 
average values depend on locations; thus, the need for a non-homogeneous 
random field model; and 

 
(iii) The models do not consider or recognize the existence of variation of field 

characteristics with changes in seasons. 
 

 

Decomposing the data into a series of seasonal (or monthly) time series is a relatively easy 

way to remove the seasonal trends from the original time series.  For rainfall and snowfall data 

this means that the original time series data can be partitioned into twelve monthly random 

variables, each with its own unique set of statistical properties.  Slope movement data can be 

handled in a similar fashion, although random fields must be used to represent monthly slope 

movement in order to account for the spatial dependence of slope movement.  

 

Long term trends refer to systematic changes in the mean rainfall/ground movement over a 

period of time. The general practice when investigating long term trends in seasonal data is to 

calculate and compare successive yearly averages. It should be noted, however, that what is 

considered “long term” is relative, and depends on the extent to which data is available.  For 

example, if rainfall data is available for 100 years, it may be possible to observe eleven year 
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cycles.  However, if data is available for only ten of fifteen years, the same eleven-year cycle 

could only be detected as a long-term trend.  In practice, long-term features are usually defined 

as those that span more than a fifth of the length of the available data.  For the present study, 

since most sites have rainfall records for the past fifty or more years, long-term features are 

roughly 10 years in length.  

 

In the event that long-term trends can be established in the data, it is recommended that the 

series be partitioned, or decomposed, into periods corresponding to the length of the trends (in 

a manner similar to what was done with corrosion depth in PRESAP phase I).  
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4. A REVIEW OF STOCHASTIC FINITE ELEMENT METHODS 
 

4.1 Introduction 
 
The finite element method (FEM) has been a successful tool in solving engineering problems 

including soil mechanics problems (Britto and Gun, 1987). However, the deterministic FEM has 

several limitations especially for soil pipeline problems. For example, soil properties, such as soil 

strength, pore water pressure and hydraulic conductivity, which exhibit a great deal of spatial 

variability are usually modeled as deterministic constants without regard to their variance and 

spatial correlation and this could limit the applicability of the result. In order to overcome the 

limitations of deterministic finite element methods, stochastic finite element methods (SFEM) that 

apply probability theory have been developed. A review and summary of the various stochastic 

finite element formulations is the focus of this chapter . 

 

Stochastic finite element methods can be broadly classified into four groups: 

 

(i) Perturbation based SFEM approach; 

(ii) Reliability based SFEM approach; 

(iii) Response Surface Methods; 

(iv) Monte Carlo Simulation Methods; and 

 

4.2 Perturbation-Based SFEM Approach 
 

 The perturbation approach to probabilistic structural analysis was introduced about two decades 

ago. Initial applications were directed at the study of the eigenvalue problem related to the free vibration of 

structures with stochastic mass and stiffness matrices and the solutions of linear static problems involving 

loading and system stochasticity.  The work of Hisada and Nakagiri (1985) represents one of the modern 

applications of this approach to structural safety and reliability analysis. In that work, SFEM was applied 

for the evaluation of the reliability index and design point within the framework of the Advanced First-

Order Second Moment (AFOSM) method. 

 

 Consider the linear finite element equation 

 F  (4.1)  = KU

where K is the global stiffness matrix, U is the vector of nodal displacement and F is the global nodal 



 4.2
 
load vector.  These stochastic quantities can be expressed as 

 
F + F = F
U + U = U
K + K =K 

0

0

0

∆
∆
∆

 (4.2) 

   
 
  

where K0, U0 and F0 are considered to be deterministic parts and the increments ∆K, ∆U and ∆F are 

considered to be the stochastic parts of K, U, and F, respectively.  Substituting Equations (4.2) into 

(4.1) gives 

 [ ][ ] [ ]. F + F = U + U K + K 000 ∆∆∆  (4.3) 

on neglecting the product (∆K∆U) and separating the deterministic and stochastic parts of Equation 

(4.3) gives: 

  (4.4) F = UK 000

and 

 KUF- = UK 00 ∆∆∆  (4.5) 

 
Equation (4.4) gives the finite element solution at the deterministic expansion point.  From the 

solution of Equation (4.5), the second-order variation of the response may be computed. 

 

 A more rigorous and general formulation of the perturbation approach can be 

constructed using Taylor series expansion.  This also paves the way for higher-order 

approximations.  The stiffness matrix in Equation (4.1) may be expanded about a deterministic 

stake as: 

 ,)x)(x-x(x-’K   
2
1 + )x(x-’K  + K =K jiij

n

1]j=

n

1=i
ii

n

1=i
0 ΣΣΣ  (4.6) 

where Ki′ and Kij′ are the first-order and second-order partial derivatives of the stiffness matrix with 

respect to the basic variables X.  The displacement and load vectors in Equation (4.1) may be 

expanded in a similar fashion and the response computed as previously described. 

 

 When the mean state is chosen as the expansion point the approach is referred to as the 
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mean-centred perturbation approach.  Using mean-centred perturbation results in the computation of 

reliability indices according to the First-Order Second Moment (FOSM) approach of structural 

reliability analysis. In the AFOSM, however, the performance function is expanded not about the 

mean values of the basic variables, but about the most probable failure point.  Hisada and Nakagiri 

(1985) utilized this approach and also presented a second-order perturbation formulation.  A notable 

feature of the formulations is that the stiffness matrix is inverted only once in contrast to simulation 

or response surface methods in which many inversions of the stiffness matrix are required. The key 

to successful solution using the perturbation approach is the ability to compute and assemble partial 

derivative matrices for stiffness, displacements, and loads. Second-order approximations are 

obviously more accurate than the first-order approximations; however, these involve the 

computation and assembly of second-order partial derivative matrices. 

 

 Numerous applications of the perturbation approach have been reported in the open 

literature.  Prominent in this connection are the works of Liu et al. (1986,1988), in which 

applications were investigated for linear and nonlinear structural dynamics and a variational 

formulation of probabilistic finite elements established. 

 

 Although the formulation of the perturbation approach is mathematically elegant, its 

application to reliability analysis has several disadvantages. The mean-centred perturbation method 

suffers from invariance problem associated with FOSM. Furthermore, the perturbation methods do 

not use the distribution information about the basic random variables, even if it is available.  This is a 

serious limitation, unless for the exceptional cases in which all the variables are normally distributed. 

 The method is also not capable of producing accurate results when there are large variations in the 

random variables defining a problem. 
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4.3 The Reliability-Based SFEM Approach 
 

 Current methods for reliability analysis compute the reliability index β by solving the 

limit state equation g(X)=0 explicitly. However, search algorithms that do not rely on an explicit 

solution of the limit state equation are available. These algorithms only need the value and the 

gradient of the performance function at each iteration point. 

 

 The reliability based SFEM approach has been formulated and applied for several 

structural problems by Der Kiureghian and his co-workers.  Der Kiureghian and Ke (1988, 1985) 

used the first-order reliability method for static analysis of linear structures with random properties 

and in Igusa and Der Kiureghian (1988) applied the method to dynamic analysis. In a more recent 

work Liu and Der Kiureghian (1991), a general framework for reliability based SFEM analysis based 

on FORM and SORM was presented. New expressions for the required gradients of the response of 

geometrically nonlinear structures were derived and implemented. This work represents the first 

application of the finite element reliability method (FERM) in conjunction with SORM with non-

Gaussian random fields, and with system reliability analysis.  Arnbjerg-Nielsen and Bjerager (1988) 

and Mahadevan (1988) has also developed and implemented a reliability-based SFEM approach and 

applied it to the modelling of frame structures. 

 

 The reliability approach has a significant advantage over the perturbation approach in that 

information about the distribution of the random variable is used. Furthermore, in the reliability 

approach, the probability density function of the response variable (not just second moment 

statistics) can be obtained. Since the computation of response gradients is a key operation in the 

implementation of this procedure, the use of the adjoint method has been recommended for this 

operation (Liu and Der Kuireghian, 1991 and Reh at al, 1991). This technique is estimated to be 

capable of reducing computation times by a factor equal to the number of random variables. The 

reliability-based approach to SFEM structural reliability analysis is especially compatible with the 

algorithmic structure of existing FEA codes. 

 

 

4.4 Response Surface Methods 
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 The response surface method is a classical statistical technique in which a complex 

(computer) model is approximated by a simple functional relationship between the output quantities 

and the input (basic) variables. The approximation is usually based on polynomial functions and, 

often, linear or quadratic response functions are applied. Adopting the simpler response functions 

allows an efficient repeated computation, for example, as may be needed in simulations or parameter 

studies in structural reliability analysis. This is because the approximation to the response surface 

rather than the original limit state function is used in the calculation of failure probabilities. 

 

 The concept of response surface methods has been used when approximating costly to 

compute and/or non-differentiable limit state functions. Within the framework of the stochastic finite 

element method, the steps required for the implementation of the response surface technique were 

described by Favavelli (1989). This involves the application of regression analysis to obtain the 

polynomial coefficients involved in the representation of the limit state function using the results of 

several numerical experiments. 

 

 The explicit representation of the limit state function g(x), for the quadratic 

approximation for example, takes the form: 

 xxc   + xb + a = (x)g jiij

n

1j=

n

1=i
ii

n

1=i
ΣΣΣ  (4.7) 

where n is the number of basic random variables (xi) and the coefficients a, b, and c are to be 

determined from numerical experiments. 

 

 The works of Schuëller et al. (1991), and Bucher and Bourgund (1990) are among recent 

efforts at promoting the application of response surface methods.  The work of Böhm and Brückner-

Foit (1990), in particular, introduced a special lack of fit measure and formulated criteria for 

accepting response surface models in structural reliability analysis.  Ghanem and Spanos (1990) 

proposed a Galerkin-based response surface approach in which the surface is approximated by its 

projection onto a complete set of polynomials that are orthogonal to the Gaussian measure.  These 

polynomials are known as polynomial chaos functions and are believed to be capable of yielding 

accurate approximations of the response surface. 
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 So far, no general scheme has been developed to efficiently establish linear and quadratic 

response surfaces for reliability computations. Further research is needed to establish general, 

efficient, and robust response surface methods for reliability analysis. Nevertheless, this 

methodology appears to be a promising tool for large scale structures. 

 

 

4.5 Monte Carlo Simulation Methods 
 

 The direct Monte Carlo simulation method was used in many early works in stochastic 

finite element analysis. In this simple method, deterministic analysis is carried out for a series of 

parameters generated in accordance with their probability distribution. The desired statistics of the 

response quantities, such as the mean, variance, and exceedance probabilities, are then evaluated 

based on the generated sample sets/space.  Applications of this procedure can be found in 

Vanmarcke et al. (1986) and Takada (1991). 

 

 The Monte Carlo simulation method has the advantage that it is adaptable to all types of 

problems and the results can be obtained to desired accuracy. However, for practical problems with 

many random variables or small failure probabilities this procedure is usually too expensive, since a 

large number of solutions are needed to obtain reliable results.  Shinozuka and his co-workers (1988) 

have introduced the Neumann (Monte Carlo simulation) expansion technique. Computation time for 

this technique is reduced significantly since only the mean stiffness matrix needs to be decomposed 

with this formulation. Other schemes have also been proposed to improve the efficiency of the 

simulation method. However, for pipeline soil interaction, this procedure is not recommended. 
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5. REVIEW OF RANDOM FIELD MODELING APPLICATIONS IN GROUND 

MOVEMENT STUDIES  
 

5.1 Introduction 
 

The great majority of published reports related to random field modeling of ground movement 

have focused on the spatial and temporal variation of earthquake ground motions (see Fenton 

and Vanmarcke, 1991, Harichandran and Vanmarcke, 1986).  During the course of this review, 

only a few studies were found which had any direct relevance to the current study (i.e. slow 

slope movement or creep).  Of particular note are a series of papers/reports published by 

Grivas et. al. (1995, 1996, and 1998), who used a probabilistic methodology to analyze 

landslides and their effects on the safety of buried pipelines.  While this work did not use a 

random field modeling approach, it is still relevant because, in addition to the use of 

probabilistic methods, Grivas developed a phenomenological model linking slope creep 

movement to environmental factors such as precipitation.  

 

In addition to Grivas’ work, Evgin (1997) reviewed the current state-of-the-art and identified 

research needs that would improve the methods of analysis used in the current design practice 

of assessing the integrity of pipelines in creeping slopes.  Although the Evgin report is not 

strictly focused on the use of random field modeling for slow slope movement, the background 

information it contains and the accompanying recommendations it makes are quite relevant to 

the present study.  

 

In the sections which follow, brief reviews of both Evgin’s findings and Grivas’ work will be 

presented.  

 

5.2 Slow Slope Movement 
 

As Evgin describes, slow slope movement of natural slopes is a well-known, complex, and 

time dependent phenomenon.  The main purpose of Evgin’s work was to identify the research 

needs for cost-effective design of pipelines buried in creeping slopes.  As part of this work a 

comprehensive list of factors causing slope movements were identified and summarized 

below:  
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1. Creep 

2. Change in pore pressure due to intense rainfall or rapid snowmelt 

3. Erosion or excavation at the toe of the slope 

4. Freeze-thaw cycles 

5. Weathering 

6. Change in groundwater level 

7. Tectonic uplift and glacial rebound 

8. Temperature variations 

 

Of these factors, Evgin focused most of his literature review work on creep effects and the 

changes that take place in pore water pressure due to rainfall.  

 

As mentioned above, the objective of Evgin’s work was to identify the research needs that 

would improve analysis methods used in assessing the structural integrity of pipelines in 

creeping slopes.  Based on his review Evgin made the following suggestions:  

 

1. Develop a 3-D finite element program capable of simulating the slope movements and 

predicting pipeline strains.  Use environmental loads such as rainfall and temperature 

changes as direct input into the calculations. 

 

2. Develop and validate constitutive relations for cyclic creep in soils and soil-structure 

interfaces for natural soils under both saturated and unsaturated states.  Use wetting and 

drying cycles for the unsaturated state.  For the saturated condition, alternate the pore 

water pressure between two values to simulate the groundwater fluctuations in slopes. 

 

3. Develop a stochastic finite element modelling capability. 
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5.3 Phenomenological Based Modeling 
 

In a series of studies, Grivas et. al. (1995, 1996, and 1998) developed probabilistic models to 

analyze landslides and their effects on the safety of buried pipelines.  In one particular study 

involving the case of the Simonette River crossing (Grivas (1995)), ground movements were 

divided into two groups: (1) instantaneous movements, (2) gradual movements.  The 

instantaneous movement represented the failure case.  The factor of safely for the stability of 

the slow moving slopes, the annual rate of movement, M, was expressed as a function of the 

annual precipitation, R as:  

 

48.0089.0 += RM  

 

where the units for both M and R were mm/year.  It was assumed that the accumulated ground 

movements would be hazardous to the pipeline if the reached a given threshold level.  The 

probability of the ground movements exceeding a specified value was determined.  

 

Grivas (1997), through his association with Arista International, also participated in a research 

and development project sponsored by both NOVA Gas Transmission Ltd. (now TransCanada 

Pipelines) and the National Energy Board of Canada.  The process used in that study diverged 

from traditional landslide analysis procedures in three important aspects, namely:  

 

1. It focused on gradual ground movement 

2. It was concerned with the analysis of numerous sites distributed over large geographical 

areas where only limited data was available 

3. It used phenomenological modeling, rather than mechanistic or kinematic approaches, to 

predict ground movement. 

 

According to the authors of the Arista report, traditional techniques for predicting ground 

movement are based on standard slope stability analysis methodologies and/or extrapolation of 

monitored slope performance data.   When the goal is to analyze numerous sites located across 

large areas, the traditional approach becomes infeasible.  The authors go on to suggest that 

phenomenological models offer an alternative approach.  Using this technique, a perceived 
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cause (rainfall) is mathematically related to an effect (ground movement), without attempting 

to model the mechanics of the relationship.  This approach allows for the prediction of 

movement based solely on rainfall.  

 

In order to develop the relationship between slope movement and rainfall, the Arista 

researchers used the relatively extensive historical movement and rainfall measurements and 

other data available for the few instrumented (slope indicators) sites to develop rainfall-

movement prediction models that can be generalized at new (unmonitored) sites where very 

little geotechnical information is known,  

 

The approach adopted by Arista was comprised on three key components: 

 

1. Rainfall data analysis. 

2. Movement data analysis. 

3. Site-specific rainfall-movement modeling. 

 

The objective of the rainfall analysis process was to generate a composite rainfall record for a 

specific site.  Essentially this involved computing a weighted average of rainfall amounts 

recorded at weather stations neighboring the specific site of interest.  Once this composite 

rainfall time series record was generated, the Arista software (SLIDER) then perform a series 

of statistical checks (i.e.: elimination of redundant weather stations) and analyses (i.e.: 

temporal analysis of the composite rainfall record).  

 

In the Arista movement analysis phase, movement data from various inclinometers available at 

the site of interest is used to generate a composite movement record.  Additional processing is 

also performed in order to estimate a series of other slope parameters, including the associated 

slip surface, the rate and magnitude of movement, and the direction of movement.  

 

In rainfall-movement modeling phase culminates in the development of models which can be 

used to predict ground movement based on rainfall values.  The first step in this stage of the 

analysis is establishing whether the movement and rainfall data sets are amenable for 

modeling.  The second step involves what the authors call “quantification of the similarities 

between rainfall and ground movement data sets.  This essentially involves computing 
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correlation and cross-correlation coefficients for the rainfall and ground movement data.  In 

the third step, empirical and time-series models are fitted to the data.  In the fourth and final 

step of the analysis, cross-validation techniques are used to assess the accuracy of the 

predicted slope movement and estimate uncertainties in the modeling.  

 

 

5.3.1 Limitations of Arista Model 
 

Overall, the rainfall/slope movement modelling technique developed by Arista appears to be 

an excellent tool for predicting rainfall induced soil movement.  Unfortunately, there appears 

to be some limitations inherent in the way “composite” time series records are created.  By 

performing a simple weighted average, it is not clear how non-homogeneity in the data is 

accounted for in the Arista model.  In the PRESAP code, for example, a technique known as 

MCM (Multi-Component Mapping technique) has been adopted in order to systematically 

account for non-homogeneity when generating composite data samples (generating sample 

data at locations where data was not previously available).  Without a similar approach, the 

methodology used in Arista’s SLIDER code may be limited to slopes having homogeneous 

rainfall and slope movement data. 
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6. PRESAP PRECIPITATION – SOIL MOVEMENT MODELLING 

REQUIREMENTS 
 
This chapter provides a description of the software requirements to be addressed in order to 

provide a precipitation/ground movement random field modelling capability within the 

PRESAP system.  In general, the requirements for this new PRESAP modelling capability are 

essentially the same as the original (i.e.: database management, data characterization, system 

definition, and reliability assessment – see Figure 6.1), however some new requirements have 

been added in order to address the limitations associated with the other techniques proposed in 

the literature (i.e.: spatial non-homogeneity and seasonal dependence). 

 

 

6.1 Database Management 

 

The main tasks to be performed by the PRESAP database manager will include the following: 

 

1. Extraction of monthly precipitation and soil movement time series data from formatted 

ASCII files; 

 

2. Interaction with the other components of the PRESAP system (i.e.: retrieving/storing 

precipitation and ground movement data); 

 

3. Decomposition of the time series data into 12 monthly random variables/fields (i.e.: 

rainfall data for a particular site must be decomposed into random variables representing 

rainfall for January, February, March, etc.); 

 

 

It is anticipated that the decomposition of the time series data will lead to statistically 

stationary monthly random processes (i.e.: a time series having statistical properties, such as 

mean, variance, and autocorrelation, that are not a function of time).  A conversion to 

stationary processes means, in effect, that seasonal trends in the original data have been 

removed. 
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At the suggestion of the Scientific Authority, a web site maintained by the Climate Monitoring 

and Data Interpretation Division of the Climate Research Branch of the Meteorological 

Service of Canada (http://www.cccma.bc.ec.gc.ca/hccd/) will be used as the source for 

precipitation data.  An example of the format of this data is provided in Figure 6.2.  Data 

representing ground movements recorded at individual inclinometers will also be expected to 

follow this general format. 

 

 

6.2 Data Characterization 

 

In order to satisfy the data characterization requirements of the precipitation/ground movement 

analysis tool, a number of statistical analyses must be performed on the data, including: 

 

1. Calculation of statistical properties (mean and variance); 

2. Distribution fitting (i.e.: what form of distribution best fits the data – normal, lognormal, 

Rayleigh, etc.); 

3. Organization of ground movement data into random variables; 

4. Computation of correlation coefficients between individual random variables; 

5. Computation of the correlation structure for non-homogeneous random fields using the 

MCM technique; 

6. Computation of cross correlation between different variables (i.e. rainfall and ground 

movement); 

7. Generating samples of random variables (or fields) at locations where data had not been 

collected; 

 

Subroutines originally developed for use in Martec’s probabilistic software tools COMPASS 

(LIU (1999)) and PRADAC (LIU (1997)) will be used extensively in order to satisfy the 

numerical modelling requirements listed above. 

 

 

6.2.1 MCM Technique 
 

Due to the fact that the MCM method was designed to compute the statistical properties 

http://www.cccma.bc.ec.gc.ca/hccd/
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(including the correlation structure) of non-homogeneous random fields, it will address the one 

of the most serious limitations inherent in other soil modelling algorithms.   

 

In order to gain an appreciation for the versatility of the MCM technique, consider Boissieres’ 

(1992) case study involving a non-homogeneous field.  The field under consideration is a 

square domain consisting of two rectangular regions (each having a unique set of statistical 

properties): a lower region (R1) corresponding to the area below the line and an upper 

region (R2) corresponding the area above the line . The correlation structure used in 

this example is provided below in Equation 6.1. 
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where a  and b  3.0,15.0 1 == b 2.02 =

 

Comparisons of the correlation results are provided below in Figures 6.5 and 6.6, and appear 

to show excellent agreement between with Boissieres’ published results. 

 

It is also important to note that the MCM method can be used to estimate the mean and 

variance at locations in the field where data has not been pre-defined.  For example, consider a 

one dimensional random field defined by 10 random variables positioned along the x-axis 

starting at location x = 0 and terminating at location x = 9 (see Figure 6.7).  The mean value of 

the field is defined using the following expression:  

 

4
xMean = ,  for 0 0.50. ≤≤ x  

( )
4

51 −
+=

xMean ,  for 95 0.0. ≤< x  
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The MCM predictions for the mean value along the x-axis are provided below in Figure 6.8, 

and show excellent agreement with the prescribed values. 

 

 

6.3 Model/System Definition 

 

Users’ of the PRESAP precipitation/ground-movement code must be able to perform two basic 

types of analyses:  

 

1. Computation of the probability of event occurrence (i.e.: the probability that November 

rainfall will exceed 100 mm and slope movement at location x-y-z is less than 5 cm); 

 

2. Computation of the conditional probability of occurrence (i.e.: what is the most likely 

value for ground movement in June if rainfall in May is less than 10 mm). 

 

 

6.4 Reliability Assessment 

 

In the reliability assessment phase of the analysis, Monte Carlo simulation will be used to 

compute both the probability of event occurrence and the conditional probability of 

occurrence.  As discussed in section 2.2 of this report, Monte Carlo simulation is an indirect 

way of integrating the joint probability density functions and solving for the probability of 

failure for the system. 

 

 

6.4.1 Computing the Probability of Occurrence 
 

For cases involving the computation of the probability of occurrence, the algorithms 

developed for PRESAP must be able to compute the probability of failure for parallel systems. 

 An example of such a system is provided below in Figure 6.9.  For this type of analysis, the 

individual limit state functions are relatively simple to define: the first limit state function 

defines failure as June rainfall amounts exceeding 5 mm, while the second limit state function 

defines failure as September ground movement for site location ( )zyxP ,,  failing below 3 cm. 
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 The combination of these two limit state functions amounts to computing the probability that 

September ground movement at location ( )zyxP ,,  will exceed 3 cm when rainfall amounts 

for June are less than 5 mm.  

XXR

 

 

6.4.2 Computing the Conditional Probability of Occurrence 
 

By way of extension, the techniques used above to estimate the probability of occurrence can 

also be used to compute the conditional probability of occurrence of a random variable.  As an 

example consider the steps involved in attempting to calculate the most likely value for ground 

movement during the month of May at a particular site ( )zyxP ,, , given rainfall amounts at the 

same for the month of March and April which are less 5 mm.  First, a large number of samples 

(N) must be generated for all three variables used to define the system.  The computation of 

these samples requires that distributions for each random variable must be available, and that 

the correlation between each variable must also be established.  Once the samples have been 

generated, they are filtered according to the whether they satisfy the limit state functions used 

to define the system.  Next, the samples satisfying the conditions defined in the system limit 

state function are then sorted according to the ground movement value.  Once the samples are 

sorted a conditional probability density function can be established. 

 

 

6.4.3 Sample Generation 
 

It is clear from the computational requirements listed above that the ability to generate 

realizations of correlated random variables (either as individual random variables representing 

different quantities or as collections of random variables representing a single random field) is 

a key element in the computational process.  In order to provide this capability within 

PRESAP, a covariance matrix decomposition procedure has been proposed.  The basic steps 

involved in this process include: 

 

1. Generation of the covariance matrix , where  represents the correlation between 

random variable i and random variable j; 

ijR
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2. Transformation of the covariance matrix R into standard normal space ( R ) using the Natif 

method; 

 

3. Computation of the eigenvector matrix H and diagonal eigenvalue matrix S of R . 

 

4. Transformation the random variables (X) into standard normal form (U); 

 

5. Using a random number generator, compute the realizations of the independent standard 

normal form of the random variables; 

 

6. Application of the linear transformation equation HSUX xx σµ +=  in order to obtain 

realizations of the correlated random variables X (where xµ  represents the mean vector of 

X and xσ  represents the variance matrix of X); 

 

7. Using the inverse transformation technique, convert the samples generated in step 6 into 

the original distribution used to represent the random variables. 
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Figure 6.1: PRESAP Ground Movement / Precipitation Requirements
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Figure 6.2: Sample of Rainfall Data From Web Site
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Figure 6.3: Non-homogeneous Random Field (Reproduced from Boissieres)

 
 

Figure 6.4: Contour Plot of Correlation Structure Computed by Boissieres for Location (3.5,1.75)
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Figure 6.5: Comparison Between Correlation Structure Computed by PRESAP

and Boissieres - Between Locations (x=3.5,y=1.75) and (x=3.5, y=5.25)
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Figure 6.6: Correlation Structure Computed by PRESAP

Between Locations (3.5,1.75) and (3.5, 6.75)

Location x = 3.5, y = 1.75 Location x = 3.5, y = 6.75
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Figure 6.7: One Dimensional MCM Test Case Modeled Using PRESAP (Screen Capture of 
Actual Code) 

 
 

Figure 6.8: Mean Value Distribution Predicted by PRESAP (Screen Capture of Actual Code) 
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Figure 6.9: Probability of Occurrence Limit State Functions

June Rainfall > 5 cm

September Ground Movement  < 3 cm
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7. SOFTWARE DESIGN 
 

This chapter provides a description of the software designed to address the 

precipitation/ground movement functional requirements listed in the previous chapter.   

 

 

7.1 Software Development Tools/Environment 

 

Due to the experience of the project team, the Microsoft developers’ studio 

(http://msdn.microsoft.com/) was used as the software development platform for this study.  In 

general, all new code was written in C++, and compiled using Microsoft’s Visual C++ 

compiler.  In order to avoid any language incompatibility problems with the legacy 

FORTRAN codes, all subroutines and functions extracted from Martec’s COMPASS and 

PRADAC programs were assembled into a series of dynamic link libraries (DLL’s).  

 

In order to provide user’s with a convenient means for manipulating the slope movement and 

precipitation data, a windows-based graphical user interface for the prototype code has been 

developed.  In order to take full advantage of the tools supplied with the Visual C++ compiler, 

all new classes were derived from one of two base classes: CObject or CObArray. CObject is 

the principal base class for the Microsoft Foundation Class Library and provides a number of 

basic services, including: 

 

1. Serialization (I/O) support; 

2. Run-time class information; 

3. Object diagnostic output; 

4. Compatibility with collection classes. 

 

The CObArray class supports the management of CObject pointers.  These object arrays are 

similar to C language arrays, but have additional functionality which allow them to 

dynamically shrink and grow. 

 

7.2 Class Hierarchy 

 

http://msdn.microsoft.com/
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Figure 7.1 provides a class hierarchy chart for the new slope stability classes.  Near the top of 

the chart is the CSlopeObject class.  For the purposes of this application, CSlopeObject acts as 

a base class, providing all classes derived from it with all the basic functionality of CObject 

plus additional graphics capabilities (i.e.: drawing and picking).   

 

Also near the top of the hierarchy chart is the SceneGraph class, which is derived from 

CObArray.  The main responsibility of the SceneGraph class is to provide database 

management support.  All precipitation and ground movement data required for a slope 

analysis can be accessed via the SceneGraph.  User’s can gain direct access to the objects 

stored in the SceneGraph via the SceneGraph interface.  This interface (a dockable tool bar) is 

located on the left-hand side of the PRESAP window frame (see Figure 7.2).   

 

Next on the hierarchy chart are a series of classes derived from CSlopeObject and used to 

represent random variables and random fields. The CRanVariable class has been designed to 

act as a generic random variable object capable of representing either rainfall, snowfall, or 

ground movement.  Some of the principle attributes of this class are: an array of “raw” data 

variates, a reference to a COMPASS distribution object (COMPASS supports up to seventeen 

different distribution types), plus a number of statistical properties (i.e.: mean, variance, etc.).   

 

The most important methods developed for the CRanVariable class are related to the 

computation of the random variable statistics (mean and standard deviation) and correlation 

with other random variables.  In addition to these, random variables developed for use in 

PRESAP also have the ability to generate a series of realizations.  These realizations are based 

on the fitted distribution type (i.e.: normal or lognormal).  The code responsible for generating 

these samples was modified from routines originally developed for use in Martec’s COMPASS 

software.  It was anticipated that the ability to generate samples of random variables (either in 

groups or individually) would be an effective means for computing conditional probabilities 

for cases involving multiple random variables contained within random fields. 

 

In addition to the features listed above, the CRanVariable class can be assigned global x-y-z 

coordinates.  As a result, the instances of this class can be graphically displayed (see Figure 

7.2).  

 



 7.3
 
The CRanField class has been designed to act as a generic random field / random process 

object.  Both rainfall and snowfall can be represented as individual random processes, each 

consisting of twelve random variables (a single random variable corresponding to each month 

of the year).  Essentially, random field objects will be instantiated as collections of random 

variables.  Most of the functionality built into this class is focused on managing the child 

random variable objects, i.e.: 

 

1. adding new random variables to the field; 

2. deleting random variables from the field; 

3. providing users with access to the attributes of individual random variables; 

4. generating samples/realizations of the random variables; 

5. initializing the statistical properties of the population of random variables; 

6. modifying/prescribing the correlation structure; 

7. creating a grid-work of new random variables; 

8. graphically displaying the random variables contained in the field; 

9. Computing the joint probability of a set of random variables; 

10. Computing the conditional probability of a particular random variable. 

 

 

7.2.1 CSlopeField Class 
 

Like precipitation data, slope movement data may be represented by a series of monthly slope 

movement objects.  However, because of the spatial dependence of slope movement data, a 

collection of 12 random fields should be used to manage the slope movement data The 

CSlopeField class has been developed to manage all slope movement data used in the slope 

stability analysis.  The individual random fields, representing slope movement for each of the 

twelve months, can be accessed through the property pages of the interface property sheet 

developed for the CSlopeField class (see Figure 7.3). 

 

 

7.2.2 CCoupledField Class 
 

In order to manage all precipitation and slope movement data, a CCoupledField class has been 

implemented into the PRESAP code.  The CCoupledField class has three principal attributes: 
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1. A CSlopeField object responsible for managing the slope movement data. 

2. A CRainField object responsible for managing the rainfall data. 

3. A CSnowField object responsible for managing snowfall data. 

 

The interface property sheet designed for the CCoupledField class provides quick access to the 

data stored in each of the three attributes described above (see Figures 7.4 and 7.5). 

 

 

7.2.2.1 CCoupledField Class Functionality 
 

In its present state, the functionality of the CCoupledField class is limited to one key method: 

computing the conditional probability of slope movement given input related to either rainfall, 

snowfall, or both.  In order to accomplish this task, the VSlope code allows the user to select 

the months of rainfall and snowfall (see Figure 7.6) to include in the conditional slope 

movement probability calculations (the default is for the user to include all months of rainfall 

and snowfall).  Following this selection, the user can then define the month and location at 

which the conditional slope movement estimate is to be computed (see Figure 7.7).  

 

During the implementation of the CCoupledField class difficulties arose when attempting to 

compute correlation between different random fields (i.e.: slope movement and rainfall data).  

It is important to note, however, that computing correlation between random fields is only a 

problem at locations where “raw data” is not available.  However, when attempting to compute 

correlation at locations where raw data is not available, the method developed for use in this 

project modelled correlation between precipitation and slope movement, as a function of 

position.  For example, if we are interested in establishing the correlation coefficient between 

the September rainfall random variable and the November slope movement at a location x-y-z, 

we could estimate this correlation coefficient as a weighted average of the correlation at 

neighboring locations (see Figure 7.8).  Note that the correlation at these neighboring locations 

can be calculated because raw data is available at these sites.  The calculation of this weighted 

average can be performed using tools already developed for the project, namely the MCM 

method
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Figure 7.1: Class Hierarchy
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Figure 7.2: Graphical Representation of Child Random Variables in a Random Field

(Screen Capture of Actual Code)

SceneGraph Window
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Figure 7.3: Interface Property Sheet Representing the CSlopeField Class (Screen Capture of 
Actual Code)

 
 

 

Figure 7.4: Interface Property Sheet Developed for the CCoupledField Class (Screen Capture of 
Actual Code)
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Figure 7.5: Accessing Slope Movement Random Field Data (Screen Capture of Actual Code)

 
 

Figure 7.6: Selecting the Precipitation Data to be Used in the Conditional Probability Calculations
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Figure 7.7: Defining the Particular Slope Location to be Considered in the Conditional Probability 
Analysis

 
 
 

Figure 7.8: Computing Precipitation Correlation Coefficients at Locations Where Raw Data is not 
Available

( )654321 ,,,,, ρρρρρρρ fX =

Rain fall

1ρ 2ρ

3ρ

4ρ

5ρ

6ρ

Xρ

 
 
 



 7.9
 

Figure 7.8: Computing Precipitation Correlation Coefficients at Locations Where Raw Data is not 
Available

( )654321 ,,,,, ρρρρρρρ fX =

Rain fall

1ρ 2ρ

3ρ

4ρ

5ρ

6ρ

Xρ

 
 



 8.1
 
 
 
8. ILLUSTRATIVE EXAMPLES 
 

In order to demonstrate how the new ground movement analysis code can be used in practice, 

consider the slope represented in Figure 8.1.  The overall length and height of the slope is 100 

m and 10 m respectively.  Slope indicator positions are hi-lighted by green dots. 

 

For the purposes of this example, we wish to establish how the expected ground movements 

for the month of June vary with changes in April rainfall amounts.  Table 8.1 provides a list of 

the simulated statistical properties for each of the 11 slope indicators plus the rainfall (April 

rainfall amounts were assumed to be constant over the area of interest).  All variables are 

assumed to behave as lognormally distributed random variables 

 

Table 8.1:  Statistical Properties of Slope Model Random Variables 

 

Variable Mean (cm) Standard Deviation Correlation with Rain

Slope Indicator 1 5.42 0.542 0.33 

Slope Indicator 2 4.78 0.478 0.36 

Slope Indicator 3 7.02 0.702 0.4 

Slope Indicator 4 8.50 0.850 0.45 

Slope Indicator 5 9.40 0.940 0.5 

Slope Indicator 6 12.86 1.286 0.55 

Slope Indicator 7 11.82 1.182 0.60 

Slope Indicator 8 13.76 1.376 0.67 

Slope Indicator 9 14.58 1.458 0.74 

Slope Indicator 10 16.84 1.684 0.81 

Slope Indicator 11 19.19 1.919 0.9 

April Rainfall 10.00 1.000 1.0 

 

 

For the purposes of this demonstration, slope movement estimates where modelled using two 

different rainfall scenarios: April rainfall less than or equal to 8 cm and April rainfall less than 

or equal to 12 cm.  Figure 8.2 provides the numerical estimates for the most likely slope 
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movements generated by PRESAP for both cases.  As expected, the PRESAP 

phenomenological model of the rainfall and ground movement predicts an increase in expected 

ground movement with increasing levels of rainfall.  Ninety-five percent confidence levels for 

both cases are provided in Figures 8.3 and 8.4 respectively.  
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Figure 8.1: Simulated Slope Geometry
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Figure 8.2: Variation in Slope Movement Due to Changes in Rainfall
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Figure 8.3: 95% Confidence Interval for 8 cm of April Rainfall
 

 

Figure 8.4: 95% Confidence Interval for 12 cm of April Rainfall
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9. RECOMMENDATIONS AND CONCLUSIONS 
 
During the course of this present work the probabilistic modelling software tool PRESAP has been 

upgraded in order to provide random field modelling of precipitation induced slow slope 

movement.  It is anticipated that this new modelling capability will provide the pipeline industry 

and government regulators with a software tool capable of (1) modelling the relationship between 

precipitation and slope movement for particular pipeline routes and (2) predicting the likelihood of 

exceeding thresholds for slope movement for various levels/intensity of precipitation.   

 

Continued development of the PRESAP program is of importance in order to provide and 

maintain a state-of-the-art computational tool in the field of probabilistic random field modelling 

of pipeline hazards.  Some considerations for the next phase of development are listed below. 

 

1. Application to seabed mobility; 

2. Application to ice scour; 

3. Modelling of permafrost; 

4. Incorporation of stochastic finite element methods; 

5. compare slope movement estimates generated by PRESAP with data collected by the pipeline 

industry. 
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APPENDIX A1: Computing the Likelihood of Event Occurrence 
 
An essential element of the slope stability analysis is the ability to estimate the probability of 

occurrence for a prescribed event (i.e.: the probability that November rainfall will exceed 100 

mm and slope movement at location x-y-z for December will exceed 5 cm).  For example, 

suppose a random field is populated by two random variables: X and Y.  If the distributions for 

both variables are known, and the correlation between the two is also known, it is then 

possible (in theory) to establish their joint probability density function.  Once this is 

established, the joint probability density function can be used to calculate the probability that, 

for example, X lies between the threshold values A and B, and Y lies between the threshold 

values C and D.  For the special case where both X and Y have standard normal distributions, 

this probability calculation can be performed by solving the following integral equation:  
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Algorithms designed for solving the above integral are available as part of the IMSL numerical 

toolkit (1990).  Unfortunately, a more general algorithm, capable of handling an arbitrary 

number of input random variables, having distributions other than standard normal, has not 

been identified.  Fortunately, the solution of the joint probability can also be estimated through 

the use of simulation.  The steps involved are actually quite simple.  First, a sufficiently large 

number of realizations representing samples of all the random variables must be generated 

(say 50,000 samples of each random variable).  Following this, each realization is compared to 

the threshold conditions which define the event (i.e: x > 1.0 and Y < -1.0).  Once the 

evaluation of all samples is complete, the probability of the event occurring can then be 

calculated by simply dividing the number of realizations satisfying the threshold condition by 

the total number of samples generated. 

 

 

Estimating Joint Probabilities Via Simulation 
 

Using the sample generation capability recently developed for PRESAP, the joint probability 

of two random variables was estimated and compared to results computed using the IMSL 

routines.  The case considered involves two normally distributed random variables (X and Y), 
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both having means of 0.0 and standard deviations equal to 1.0.  For the purposes of this 

example we defined the correlation between the two variables to be 0.9, the lower threshold 

for X was –10.0, the upper threshold for X was set as 0.0, the lower threshold for Y was set as 

–10.0, and the upper threshold for Y was set as 1.0.  A comparison of the IMSL results and the 

PRESAP results, which show excellent agreement, are provided below in Table A.1.  Figure 

A.1 provides an example of the output provided by VSlope.  

 

Table A.1: Comparison between IMSL and PRESAP Probability Estimates 

 

Method Probability 

IMSL 0.4993 

PRESAP/VSlope:   2000 Samples 0.4990 

PRESAP/VSlope:   5000 Samples 0.4996 

PRESAP/VSlope:  10000 Samples 0.4984 

 

 

Extending the estimation of joint probabilities to more than two random variables is relatively 

straightforward using PRESAP’s simulation algorithm.  For example, consider the procedure 

required to estimate the joint probability related to the event that rainfall for Halifax in the 

months of July and August does not exceed 200 mm.  This can easily be handle in VSlope by 

setting the upper threshold values for both July and August to 200 (see Figure A.2 for the 

results). 

 

 

APPENDIX A2: Computing Conditional Probability Density Functions 
 

By way of extension, we can use the simulation techniques described above to estimate the 

conditional (or marginal) probability of one random variable given prescribed values for other 

random variables.  For example, consider once again our random field populated with the 

standard normal variables X and Y.  For the purposes of this example, assume that the 

correlation between the two is 0.7.  Given this data we could ask the question, “What is the 

most likely value of Y if X is less than or equal to 0.0?”  One way of answering this question 

is to estimate what is called the conditional probability density function of Y, or more 

precisely, the conditional probability density function of Y given X <= 0.0.   
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As is implied by its name, the conditional probability density function of a random variable is, 

by definition, a distinctly new probability density function, having its own statistical properties 

(i.e.: mean and standard deviation).  In the example posed above, the mean value of this new 

(or conditional) probability density function is equal to –0.56.  This value was computed using 

routines supplied from the IMSL library of routines.  As a result, the answer to the 

question,”What is the most likely value of Y given X is less than or equal to 0.0?” can be 

interpreted as the mean value of the conditional probability density function (in this case –

0.56).  In fact, we could also provide additional information, such as confidence bounds and a 

standard deviation along with the estimate for the mean value because the result (the 

conditional probability density function) is in the form of a distribution. 

 

 

Estimating Conditional Probabilities Via Simulation 
 

Just as the joint probabilities can be estimated by simulation, the conditional probability 

distribution functions can also be computed using simulation.  For the case of conditional 

probability estimates, samples are again generated for all random variables in the population 

under consideration (for example a single slope movement random variable and 12 rainfall 

random variables – one for each month of rainfall).  It is important to note that in order for the 

samples to be generated properly, the correlation coefficients between all the random variables 

must be specified.   

 

Once all the samples have been generated (say 10,000 in total), and thresholds (or conditions) 

have specified for each of the conditional random variables (in this case the rainfall random 

variables), each of the 10,000 realizations must be evaluated to see if the conditions for rainfall 

amounts have been satisfied.  In this case there may only be a small fraction of the 10,000 

realizations that pass the conditional tests, say 850.  Once these 850 realizations have been 

identified, the slope movement values associated with these realizations can then be used to 

define the conditional probability density function. 

 

The simulation technique described in the previous paragraph has been implemented into the 

PRESAP code and validated with a number of examples.  Once such example involved the two 

random variable case described above.  As was stated, the theoretical value computed for this 
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example had a mean of –0.56 (no standard deviation was reported).  The results computed by 

PRESAP are provided below in Figures A.3 and A.4.  The mean estimated by PRESAP was –

0.55, very close to the exact. 

 

As a second example, consider the case where the conditional probability of slope movement 

for a particular field location is desired for the month of September.  The random variable 

representing this slope movement has a mean value of 10 cm and a standard deviation of 1 cm 

(fictional data).  Using the rainfall data for Halifax, VSlope was used to compute the 

conditional slope movement probability given that rainfall for the month of July was twice the 

“normal” amount.  Estimates for the conditional slope movement probability, computed by 

VSlope, are provided below in Figure A.5. 
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Figure A.1: PRESAP Output for Joint Probability Calculations (Screen Capture of Actual Code) 

 
 

Figure A.2: Joint Probability Calculations for Monthly Rainfall (Screen Capture of Actual Code) 
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Figure A.3: Conditional Probability Density Function Statistical Parameters (Screen Capture of 
Actual Code) 

 
 

Figure A.4: Conditional Probability Density Function (Screen Capture of Actual Code) 
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Figure A.5: Conditional Probability Density Function for Slope Movement (Computed for Double 
the Normal Amount of July Rainfall - Screen Capture of Actual Code)
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