Government of CanadaGovernment of Canada
 
 Français    Contact us    Help    Search    Canada site
 Home    National
 assessment
   Project
 database
   Online
 posters
   Site map
Satellite image of Canada
Natural Resources Canada
Climate Change Impacts and Adaptation
.Home


Proactive disclosure


Print version Print version 
 Climate Change Impacts and Adaptation
Natural Resources Canada > Earth Sciences Sector > Priorities > Climate Change Impacts and Adaptation > Project Database
Project Database

34 record(s) found.


An Evaluation of Impact Assessment Procedures

This study examined whether the choice of models and modelling methods affects the results of agricultural impact assessments. Using statistical tests, the researchers concluded that the choice of downscaling, land suitability, and crop yield models does not unduly influence the results of impact assessments.

Contact:Michael Brklacich
Michael_Brklacich@carleton.ca
Carleton University
(613) 520-2600 ext. 7553
Partners:
  • Carleton University
Project Classification:
  • Agriculture
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Climate Change and Public Health in Nunavik and Labrador: What we know from Science and Traditional Knowledge

This project aims to support Northern public health, environment and economic decision makers in developing a better understanding of climate change processes and potential health impacts on the people of Nunavik and Labrador. Western scientific and traditional Inuit knowledge will be collected and synthesized in a balanced and accessible manner, to be used to identify and develop potential strategies to respond and adapt to short and long-term climate changes.

Contact:Pierre Gosselin
pgosselin@cspq.qc.ca
Centre hospitalier universitaire de Québec (CHUQ)
(418) 666-7000 ext. 468
Partners:
  • Centre hospitalier universitaire de Québec
  • Canadian Environmental Assessment Agency
  • Université Laval
  • Nunavik Nutrition and Health Committee
  • Nunavik Regional Board of Health and Social Services
  • Labrador Inuit Association
  • Labrador Inuit Health Commission
Project Classification:
  • Health
Location:
  • Newfoundland & Labrador
  • Québec

Project Status: Complete


Impact of Climate Change on the Risk of Winter Damage to Agriculture Perennial Crops

This study examined the impacts of climate change on winter damage of perennial forage crops and fruit trees in eastern Canada. Researchers found that warmer winters would harm perennial forage crops by reducing the amount of protective snow cover and increasing the occurrence of above-freezing temperatures, while higher fall temperatures would decrease the cold hardiness of the plants. Although deciduous fruit trees would also suffer from loss of cold hardiness due to above-freezing temperatures, they may benefit from a decrease in both cold stress and late spring frosts.

Contact:Gilles Bélanger
belangergf@agr.gc.ca
Agriculture and Agri-Food Canada
(418) 657-7980, ext. 260
Partners:
  • Agriculture and Agri-Food Canada
Project Classification:
  • Agriculture
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Ontario
  • Prince Edward Island
  • Québec

Project Status: Complete

Full Report Location: Link available


Agricultural Adaptation in Atlantic Canada

Researchers applied projections from climate scenarios to investigate the impacts of climate change on agricultural yields in eastern Canada. Models suggest that warmer and longer growing seasons would increase yields of grain corn and soybean. Agricultural production would be expected to shift to crops that are better adapted to warmer climates, although non-climatic factors would continue to influence crop decision-making.

Contact:Andy Bootsma
bootsmaa@em.agr.ca
Agriculture and Agri-Food Canada
(613) 759-1526
Partners:
  • Agriculture and Agri-Food Canada
  • Natural Resources Canada
Project Classification:
  • Agriculture
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Prince Edward Island

Project Status: Complete

Full Report Location: Link available


Impact of Climate Change on Birds in Eastern Canada

This study had two components. The first component studied changes in spring migration dates of birds wintering in Central and South America between 1962-2000. Researchers found that the arrival times of most species were significantly related to annual variation in temperature, with most species arriving earlier in warm springs. The ability of many migratory birds in North America to adjust their migration rate in response to temperature suggests they may be adapted to cope with at least moderate changes in climate. The second component analyzed the timing of breeding in tree swallows on the north shore of Lake Erie. Data indicated that tree swallows started laying their eggs earlier when the weather was warm in early May and later when it was cold. This data will be useful for analysis of the impacts of future climate change on bird migration and reproduction.

Contact:Charles M. Francis
cfrancis@bsc-eco.org
Bird Studies Canada
(519) 586-3531
Partners:
Project Classification:
  • Ecosystems
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Ontario
  • Québec

Project Status: Complete

Further Research Information: Link available

Full Report Location:

Link available
Link available


Effects of Climate Change on Migratory Birds

Researchers reviewed literature to produce an annotated bibliography of recent scientific papers and reports on the potential impacts of climate change on birds. The bibliography focused on (1) the climatic variables to which birds have been found to respond, and (2) the most common responses that birds have been found to show to those changes. Climatic variables most commonly identified as influencing bird responses include increases in air and sea surface temperature, sea level rise, drying of wetlands, and sea ice variability. Much of the literature correlated recent advances in breeding with warmer air temperatures in the spring.

Contact:Tony Diamond
diamond@unb.ca
University of New Brunswick
(506) 453-5006
Partners:
  • Environment Canada
Project Classification:
  • Ecosystems
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available


Climate Change Impacts on Agriculture/Forestry Land Use Patterns: Developing and Applying an Integrated Impact Assessment Model

In this project, researchers developed an integrated assessment model to predict how agriculture and forestry land use could change over time in response to alternative scenarios of climate change, ecosystem change and economic change. The project also involved estimating the impacts of climate change on forest land values and agriculture at the national level. Results suggest that while all regions of Canada would benefit from climate change, the relative gain would be greatest for the Prairies and lowest for coastal regions. In absolute terms Ontario would experience the largest gains. Forest land values are generally expected to change in the same direction as agriculture land values.

Contact:Grant Hauer
Grant.Hauer@ualberta.ca
University of Alberta
(780) 492-0820
Partners:
  • Natural Resources Canada — Canadian Forest Service
Project Classification:
  • Crosscutting
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Enhancing Water Supply Infrastructure Investment Planning Practices
for a Changing Climate

The aim of this project is to improve practices in investment in infrastructure to protect water supply systems from changes in hydrology and consumptive patterns resulting from climate change.

Contact:François Bouchart
bouchart@ucalgary.ca
University of Calgary
(403) 220-4822
Partners:
  • University of Calgary
  • Dr Caterina Valeo
  • valeo@geomatics.ucalgary.ca
Project Classification:
  • Water Resources
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress


The Implications of Climate Change for Canada´s Boundary and
Transboundary Water Management

This project will analyze the potential impacts of climate change on boundary and transboundary water basins between Canada and the United States and between provinces and territories. It will also examine existing water-related agreements and procedures and assess their ability to adapt to climate change.

Contact:James P. Bruce
info@gcsi.ca
Global Change Strategies International
(613) 232-7979
Partners:
  • Institute for Catastrophic Loss Reduction
  • University of Western Ontario
  • Dr. Gordon McBean
Project Classification:
  • Water Resources
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available


Adaptation Strategies for Oil and Gas Infrastructure

Changes in the duration, amount and intensity of precipitation have the potential to increase ground movement and slope instability. This soil movement could, in turn, threaten the structural integrity of linear infrastructure, including pipelines, roads and railroads, by placing additional strain on these structures. In this study, researchers examined the integrity of pipelines in western Canada by using a modelling approach to predict the effect of changes in precipitation on slope movement rates. Results allowed the identification of critical thresholds that will help industry and government regulators plan for potential impacts of climate change.

Contact:Ibrahim Konuk
ikonuk@NRCan.gc.ca
Natural Resources Canada
(613) 992-1952
Partners:
  • University of Ottawa
  • TransCanada Energy
  • Westcoast Energy International
  • SNAM (National transmission company in Italy)
  • MMS-US Department of Interior
  • Martec Ltd
  • C-Core
  • McGill University
  • Rensellaar University
Project Classification:
  • Transportation
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available


National Transportation Impacts and Adaptation Workshop

Transport Canada held a two day workshop that: (1) discussed the potential and current, short and long term, climate change impacts on transportation infrastructure and operations; (2) facilitated network development; and (3) gathered stakeholder input to assist the assessment of priority areas of research to aid decision-makers. While uncertainties remain, especially in predicting local effects, sensitivities and vulnerabilities were identified. The need for developing inter-jurisdictional mechanisms for establishing priorities, coordinating activities, and sharing resources, is apparent; suggested approaches included a pilot program in the territories where adaptation strategies are most urgently needed. In attendance were sixty transportation professionals and climate change experts. Climate change adaptation should be integrated into federal, provincial and territorial government business planning.

Contact:Kathleen Nadeau
nadeauk@tc.gc.ca
Transport Canada
(613) 990-3047
Partners:
  • Office of Critical Structure Protection and Emergency Preparedness
  • Environment Canada
Project Classification:
  • Transportation
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Climate Change Impacts and Adaptation in Newfoundland Coastal Communities

Consulting with community residents to identify impacts of local concern was the critical first step of this study in Conception Bay south, Newfoundland. These concerns included coastal erosion, infrastructure damage and implications for town management and development. Researchers then used historic data to evaluate past climatic impacts and to identify which parts of the coast are most sensitive to flooding and erosion. Finally, options (preventing development in areas of known vulnerability, implementing setback limits) were recommended as a proactive means of limiting future impacts.

Contact:Norm Catto
ncatto@mun.ca
Memorial University of Newfoundland
(709) 737-3119
Partners:
  • Memorial University
  • Newfoundland and Labrador Dept. of Mines & Energy
  • Natural Resources Canada
  • Municipality of Conception Bay South
  • Newfoundland Environmental Industry Association
  • Fisheries and Oceans Canada
  • Newfoundland and Labrador Dept. of Environment and Labour
Project Classification:
  • Coastal Zones
Location:
  • Newfoundland & Labrador

Project Status: Complete


Climate change and Canadian road transport: assessing impacts and adaptations

There is limited information available on the vulnerability and adaptive capacity of the road freight system to changes in weather and climate. To address this knowledge gap, researchers will conduct a, quantitative assessment of road transport's vulnerability to climate conditions (both chronic and acute) as well as an in-depth evaluation of existing management and operations. The project will provide a comparative analysis of current approaches to dealing with climate variability in various regions of Canada as it affects the road transport system. This project has four main objectives: 1) To understand the historical pattern of climate and weather events affecting the road transportation system across Canada, focussing on the TransCanada Corridor, other major corridors and border crossings; 2)To identify and understand the operational effects and management approaches associated with current climate and weather events with an emphasis on critical vulnerability thresholds; 3) to establish the net socio-economic impacts of the operational effects and management approaches identified above; and4) To apply climate change scenarios and explore the socio-economic implications of various adaptation strategies.

Contact:Clarence Woudsma
cwoudsma@fes.uwaterloo.ca
University of Waterloo
(519) 888-4567 poste 3662
Partners:
  • McMaster University
  • St. Mary's University
Project Classification:
  • Transportation
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress

Further Research Information: Link available


Afforestation of Marginal Agricultural Land

This study determined the location, extent and forest potential of soils that are currently marginal for farming, and assessed the socioeconomic impacts of converting those areas to forest production. Researchers applied geographic information systems (GIS), ground-truthing, and socio-economic data to complete the analysis.

Contact:Ted Huffman
huffmant@em.agr.ca
Agriculture and Agri-Food Canada
(613) 759-1846
Partners:
  • Agriculture and Agri-Food Canada
  • Statistics Canada
Project Classification:
  • Agriculture
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete


Projecting Canadian Forest Fire Impacts in a Changing Climate: Laying the Foundation for the Development of Sound Adaptation Strategies

This project examined the relationship between fire activity and climate in Canada over the past 50 years, and evaluated how an increase in the number and severity of fires would affect forest communities, timber supply, and carbon budgets. Researchers used high-resolution regional climate models to generate scenarios of future forest fire danger. They found that the seasonal fire severity rating would increase in much of Canada under the projected impacts of climate changes.

Contact:Brian Stocks
bstocks@NRCan.gc.ca
Natural Resources Canada
(705) 541-5568
Partners:
  • Natural Resources Canada - Canadian Forest Service
  • Environment Canada
  • University of Toronto
  • Provincial and Territorial Fire Management Agencies
  • Parks Canada
  • Millar Western Forest Products
  • Weldwood Forest Products
Project Classification:
  • Forestry
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available


Impacts of Climate Change on Permafrost in Canada

In this project, researchers examined potential changes in the temperature and extent of permafrost in Canada due to projected climate warming. This was done by applying a climate-permafrost model within a geographical information system (GIS). They found that under a 2xCO2 warming scenario, total permafrost area would be reduced by about 28%, resulting in most of the western mainland, all of northern Quebec and the Mackenzie Valley becoming permafrost-free. Cold, stable permafrost would be confined largely to the Arctic Archipelago.

Contact:Michael Smith
Mike_Smith@carleton.ca
Carleton University
(613) 520-2600 ext. 2566
Partners:
Project Classification:
  • Landscape Hazards
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Effects of a Warmer Ocean Climate Under a Doubled CO2 – Atmosphere on the Reproduction and Distribution of Snow Crab in Eastern Canada

Researchers found that small changes in temperature could have significant impacts on snow crab reproduction, development and distribution in Eastern Canada. This is especially true for snow crab populations located on the Eastern Scotian Shelf and the Grand Bank of Newfoundland. Changes in water temperature were found to impact the survivorship and long-term growth of juveniles, influence the distribution of different age-classes of snow crab, and affect the amount of time that females incubate their eggs.

Contact:Denis Gilbert
gilbertd@dfo-mpo.gc.ca
Fisheries and Oceans Canada
(418) 775-0570
Partners:
  • Fisheries and Oceans Canada
  • Maurice-Lamontagne Institute
  • Northwest Atlantic Fisheries Centre
  • Bedford Oceanographic Institute
Project Classification:
  • Fisheries
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Prince Edward Island
  • Québec

Project Status: Complete

Full Report Location:

Link available
Link available


Susceptibility of Canadian Forests to a changing fire regime: defining and costing sound fire management adaptation strategies

This study will address the susceptibility of Canada's forests to a changing fire regime as a result of climate change. Knowing the location and the level of susceptibility of Canadian forests to fire will greatly aid in the development of adaptation strategies. An altered fire regime could have important consequences for fire management agencies and for silvicultural practices that are being developed to emulate natural disturbances. In this study, researchers will determine the impact of a changing climate on the level of fire activity in Canadian forests, estimate the economic effect and impact of the altered fire activity on fire management agencies and develop a range of adaptation strategies that balance economic costs and environmental impacts for fire management agencies to address the altered fire activity.

Contact:Mike Flannigan
mflannig@NRCan.gc.ca
Natural Resources Canada
(705) 541-5541
Partners:
  • Ontario Ministry of Natural Resources
  • University of Toronto
  • Environment Canada~ Meteorological Service of Canada
Project Classification:
  • Forestry
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress


Storm and wind impacts and transportation, southwest Newfoundland

One of the key issues for transportation throughout Newfoundland is whether storm and wind activity is increasing in frequency, magnitude, or both. The island is dependent on maintaining regular ferry service through the harbour at Port-aux-Basques, and all road traffic leaving that harbour must travel the Trans-Canada Highway from Port-aux-Basques northeast to Corner Brook. At present, storm activity causes disruptions to ferry operations at Port-aux-Basques, and during storm or wind events, transport truck traffic is unable to travel along the Trans-Canada Highway through the Wreckhouse area, as wind strength is sufficient to overturn large vehicles. Without a better understanding of the likelihood of increases in either storm frequency or magnitude, Marine Atlantic and trucking operators are unable to adapt effectively to the uncertain impact of climate variability. This project will assess the frequency and magnitude of extreme storm surges and high tide events in southwest Newfoundland; document decadal-to century scale change in sea level, storm surges, and extreme high-tide events caused by climate change; and determine the vulnerability of Port aux Basques, and the Marine Atlantic ferry terminal in particular, to future extreme storm surges and high tide events.

Contact:Norm Catto
ncatto@mun.ca
Memorial University of Newfoundland
(709) 737-8413
Partners:
  • Environment Canada
Project Classification:
  • Transportation
Location:
  • Newfoundland & Labrador

Project Status: In Progress


A multi-centre Approach to Investigate the Health Impacts of Extreme Heat and Cold Events due to Climate Change and Climate Variation

In order to assess the effects of extreme heat and cold periods on the health of the population, it is necessary to understand the relationship between health and climate under current and past conditions. This project will attempt to assess the prevalence of illness, injury and death as a result of extreme heat and cold events through the collection and evaluation of administrative health data in the form of mortality, hospital admissions, emergency room, physician billing files, and trauma data from different sentinel health centres across Canada. These centres include: Vancouver, Calgary, Winnipeg, Quebec City, Ottawa and Halifax. Linking the regional health data to synoptic weather classifications of extreme heat and cold events over an approximate 10 year period, will provide new knowledge regarding the vulnerability of certain populations and/or regions and establish the need for a surveillance system to monitor associated health impacts to climate variability. This information can then be used for more accurate assessments of health effects of climate change in Canada, and provide policy and decision-makers with a scientific basis for adaptation measures needed.

Contact:Yang Mao
Yang.Mao@hc-sc.gc.ca
Health Canada
(613) 957-1765
Partners:
  • Environment Canada
  • Canadian Institute for Health Information
  • Dalhousie University
  • University of Alberta
  • Ottawa Hospital-Civic Campus
Project Classification:
  • Health
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress


Yield Variability under Climate Change and Adaptive Crop Management Scenarios

Using a simulation model that integrates major biophysical processes and soil and crop management practices, the researchers examined the impacts of climate change on crop yields across Canada. Results indicate that under a 2xCO2 climate change scenario, yields of soybean, potato and winter wheat would generally increase, while yields of corn would tend to decrease. The role of adaptations in reducing losses and increasing gains was also demonstrated.

Contact:Reinder DeJong
dejongr@em.agr.ca
Agriculture and Agri-Food Canada
(613) 759-1520
Partners:
  • Agriculture and Agri-Food Canada
Project Classification:
  • Agriculture
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Climate change and thermal sensitivity of commercial marine species

Climate changes have the potential to affect coastal and marine ecosystems with impacts on the spatial distribution of species important to commercial fisheries. The waters of Atlantic Canada include the northern or southern limit of many species and observations of temporary northward shifts of southern species have been reported during short-term periods of climate warming in the last century. This study will compile information on the thermal sensitivities for various life stages and pathogens of a selection of economically important marine species and identify critical thresholds in their life stages and survival. The information will be synthesized to demonstrate the most vulnerable characteristics of each species in terms of thermal parameters. The focus will be on near-shore waters of eastern Canada, including species with their southern or northern limit in or near Canadian waters. The investigators have developed a list of 33 species to study that includes invertebrate and vertebrate fauna, as well as seaweeds that are harvested.

Contact:Gail Chmura
Gail.Chmura@McGill.ca
McGill University
(514) 398-4958
Partners:
  • McGill University
  • Fisheries and Oceans Canada
  • Huntsman Marine Science Centre
Project Classification:
  • Fisheries
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Prince Edward Island

Project Status: In Progress

Further Research Information: Link available


Municipal Infrastructure Risk Project (Across Canada)

Researchers conducted interviews in six municipalities across the country to better understand the barriers to climate change adaptation at the municipal level. These interviews revealed that financial constraints, attitudes of the public and council members, and the nature of municipal politics were key factors limiting the consideration of climate change in infrastructure decisions. For example, municipalities were not comfortable undertaking long-term financial and infrastructure planning without guarantees of funds from provincial government. In addition, priorities are set, and final decisions are made by council members, many of whom may not consider climate change to be a priority issue within their three-year term of office. Indeed, lack of awareness of the importance of climate change issues among both the public and councillors, was an often-cited barrier to adaptation. Another significant constraint was insufficient municipal staff time and resources to plan for future climate change impacts. To begin to overcome these barriers, researchers recommend increasing awareness and understanding of climate change, and providing municipal staff with detailed information on potential climate change impacts on infrastructure. Improving relationships and communication between scientific researchers and municipal staff was also suggested, as were various ideas for dealing with financial barriers (e.g., funding opportunities).

Contact:Azzah Jeena
ajeena@fcm.ca
Federation of Canadian Municipalities
(613) 241-5221 ext. 264
Partners:
  • Federation of Canadian Municipalities
  • Natural Resources Canada
  • University of Ottawa
  • Global Change Strategies International Inc.
Project Classification:
  • Communities
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available


Water Sector: Vulnerability and Adaptation to Climate Change

Regional workshops were used to identify broad scale vulnerabilities in the water resources sector across Canada. The resulting report addresses the nature and reliability of the new generation climate models; regional vulnerabilities for the major regions of Canada; and outlines an adaptation strategy for water management.

Contact:James P. Bruce
info@gcsi.ca
Global Change Strategies International
(613) 232-7979
Partners:
  • Global Change Strategies International Inc.
  • Environment Canada - Meteorological Services Canada
Project Classification:
  • Water Resources
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Assessment of the Capacity of the Emergency Response and Public Health Systems in Atlantic Coastal Communities to Cope with and Adapt to Extreme Weather Events Exacerbated by a Changing Climate

The goal of this project is to assess the capacity of coastal management systems in two Atlantic coastal communities to cope with extreme weather events exacerbated by a changing climate. The project involves the design and delivery of a simulation exercise involving key participants from two coastal management systems – one responsible for Channel-Port-aux-Basques area in south western Newfoundland, the other for the Shédiac-Cap-Pelé area in south eastern New Brunswick. The project will engage participants in a functional simulation exercise to explore how the coastal management systems manage risks associated with extreme coastal weather events, how planned and unplanned actions influence outcomes in coastal communities, and the system's capacity to deliver appropriate responses to coastal zone challenges.

Contact:Jacinthe Seguin
Jacinthe_Seguin@hc-sc.gc.ca
Health Canada
(613)954-0161
Partners:
  • Environment Canada
  • Memorial University of Newfoundland
  • Global Change Strategies International
  • New Brunswick Department of Public Health
  • New Brunswick Department of Environment and Local Government
  • New Brunswick Emergency Measures Organization
  • Village of Cap-Pelé
  • Health Canada
  • Newfoundland and Labrador Emergency Measures Organization
  • Public Safety and Emergency Preparedness Canada
  • Town of Channel-Port-aux-Basques
Project Classification:
  • Coastal Zones
Location:
  • New Brunswick
  • Newfoundland & Labrador

Project Status: In Progress


The Vulnerability of Land Management in the Grassland-Forest Transition to Climate Change Impacts on Ecosystems and Soil Landscapes

This project will examine critical thresholds in climate variability, and in particular drought severity, that cause a significant ecological and geomorphic response. Subhumid ecosystems and soil landscapes are sensitive to fluctuations in the surface and soil water balances. The link between aridity and erosion is well established from paleoenvironmental records and from the monitoring of geomorphic processes and regional sediment yields. Sustained periods of low precipitation and soil moisture lower resistance to disturbance such that increased climatic variability may exceed thresholds for landscape degradation. In general, biophysical systems react to short-term climate variability and to extreme events before they respond to gradual changes in mean conditions. GCM forecasts of increased aridity, in both average conditions and extremes (drought), have major implications for rates of erosion and sediment yield. Less protection of the soil surface from wind and rain is generally given or implied as the cause of higher rates of erosion in semiarid landscapes, however, plants also reduce runoff erosion through the transpiration of soil water and the positive influence of stems, roots and organic matter on the infiltration of rain and snowmelt water.

Contact:Dave Sauchyn
sauchyn@uregina.ca
University of Regina
(306)337-2299
Partners:
  • 1.PARC
  • 2.University of Regina
  • 3.Adaptation Research Collaborative
  • 4.Saskatchewan Research Council
  • 5.University of Regina
  • 1. Université Memorial de Terre-Neuve
  • 2. Labrador Institute
  • 3. Parc national Gros?Morne
  • 4. Environnement Canada
  • 5. Nation innue de Sheshatshiu~ Labrador
  • 6. Gouvernement de Terre-Neuve-et-Labrador
Project Classification:
  • Ecosystems
Location:
  • Newfoundland & Labrador
  • Saskatchewan

Project Status: In Progress


Seal / Salmon Fisheries Interactions: The Relationship between climate Change and Seal Predation Pressure on Salmon in Newfoundland and Labrador Rivers

This project will contribute knowledge to the relationships between climate change, changing distribution of forage fish in estuarine habitats, and an increased potential for seal predation on salmon. More specifically, it aims to evaluate the potential impact of predation on the abundance and availability of salmon for sustainable resource uses such as a subsistence food fishery or a non-commercial fishery.

Contact:Becky Sjare
Becky.Sjare@dfo.gc.ca
Fisheries and Oceans Canada
(709)772-4049
Partners:
  • 1. Fisheries and Oceans Canada
  • 2. Memorial University of Newfoundland
  • 3. Newfoundland Salmonid Council
Project Classification:
  • Food Supply
Location:
  • Newfoundland & Labrador

Project Status: In Progress


A Comparative Assessment of the Capacity of Canadian Rural Communities to Adapt to Uncertain Futures

Changes in ecosystems supporting communities in coastal Newfoundland and British Columbia, central Canada and northern Saskatchewan have already occurred and climate change in conjunction with other socio-economic and political factors will continue to effect livelihoods in these rural communities. This comparative assessment will employ a human vulnerability-security research framework to assess each community's capacity to cope with and, if necessary, adapt to uncertain futures including climatic change.

Contact:Michael Brklacich
Michael_brklacich@carleton.ca
Carleton University
(613) 520-2561
Partners:
  • Prince Albert Model Forest Association
  • Saskatchewan Research Council
  • South Nation Conservation
  • Town of Change Islands
  • Inner Coast Natural Resource Centre
  • Integrated Land Management Agency~ BC
  • Environment Canada
Project Classification:
  • Communities
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress

Further Research Information: Link available


Climate and climate change vulnerability assessment of northern renewable resource based communities (NRRBC)

The project will combine biological modeling and socioeconomic analysis to develop an integrated assessment approach for assessment of factors contributing to the vulnerability of renewable resource based communities in Canada. The assessment methodology will be tested on two Canadian communities. An important and relatively unique dimension of this project is that the analysis of impacts and community capacities will be undertaken at scales relevant to community decision makers (i.e. relatively high spatial resolution compared to most vulnerability assessments). Through partnership with the Model Forest program communities will be engaged in the project and examination of the results.

Contact:Tim Williamson
twilliam@nrcan.gc.ca
Canadian Forest Service
(780) 435-7372
Partners:
  • Canadian Model Forest Network
  • Alaska Communities and Forest Environments Team~ United States Department of Agriculture
  • Province of Manitoba Energy~ Science and Technology~ Energy Development Initiative~ Climate Change Branch
  • Natural Resources Canada~ Canadian Forest Service
  • Rural Municipality of Victoria Beach
Project Classification:
  • Communities
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress


Impacts of Climate Change on Hydroelectric Generation in  Newfoundland

The aim of this project is to assess the impact of climate change on hydroelectric generation on the island portion of Newfoundland. The project will address both historic and current sensitivity of generation to climate variation and the potential sensitivity under future climate change conditions.

Contact:Susan Richter
srichter@sgeacres.com
Acres International Limited
(709) 754-6933
Partners:
  • Acres International Limited
  • Donmec Consulting
  • Newfoundland Power
Project Classification:
  • Water Resources
Location:
  • Newfoundland & Labrador

Project Status: In Progress

Full Report Location: Link available


Climate Change and Seasonality in Canadian Outdoor Recreation and Tourism

This study focuses on evaluating how climate change will effect outdoor activities such as alpine skiing, snowmobiling, golfing and camping; vital parts of the recreation and tourism industry. Researchers will assess the risks and opportunities climate change poses for these activities in selected locations across Canada, assess the implications for intra- and inter-regional competitive relationships and tourism product development and explore supply and demand-side adaptations to altered recreational season lengths.

Contact:Daniel Scott
dj2scott@fes.uwaterloo.ca
University of Waterloo
(519) 888-4567 ext. 5497
Partners:
  • Environment Canada
  • Ouranos
Project Classification:
  • Tourism
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: In Progress

Further Research Information: Link available


Transient simulations of climate change impacts on Canada´s forests 2000-2100: Vulnerability and implications for forestry and conservation

Canada's forests are of critical importance to our national heritage as well as to our economy. Globally our forests contribute to climatic stability, the water cycle and the sequestration of carbon. Climate change threatens these ecosystem services. In this study researchers will assess (1) the impacts of a range of plausible climate change scenarios on the distribution and composition of Canada's forests, and (2) the implications for forestry and conservation interests.

Contact:David Price
dprice@NRCan.gc.ca
Natural Resources Canada
(780) 435-7249
Partners:
  • Environment Canada
  • University of Wisconsin-Madison
  • U.S. Department of Agriculture Forest Service
  • University of Sheffield
  • University of Waterloo
Project Classification:
  • Forestry
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Full Report Location: Link available


Farm-level adaptation to multiple risks: climate change and other concerns

This study's purpose is to assess the prospects for farm-level adaptation to climate change and other risks in Canadian agriculture. Focusing on the lower Fraser Valley, BC, Manitoba, and southwestern Ontario, the main objectives are: 1) conceptualize and empirically assess the place and the interaction of climate related risks relative to other risks of production, marketing, and finance in Canadian agriculture; 2) assess the suitability of conventional farm-level climate change adaptation options in Canadian agriculture given other sources of risk, and; 3) develop a revised inventory of farm-level options for adapting to climate and other risks in Canadian agriculture.

Contact:Benjamin Bradshaw
bbradsha@uoguelph.ca
University of Guelph
(519) 824-4120 ext. 58460
Partners:
  • Brandon University
  • Simon Fraser University
Project Classification:
  • Agriculture
Location:
  • Alberta
  • British Columbia
  • Manitoba
  • New Brunswick
  • Newfoundland & Labrador
  • Northwest Territories
  • Nova Scotia
  • Nunavut
  • Ontario
  • Prince Edward Island
  • Québec
  • Saskatchewan
  • Yukon

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available


Modelling potential changes in demand for freight transportation in Atlantic Canada due to climate change impacts

The demand for freight transportation in Atlantic Canada is predominantly generated by the manufacturing, agriculture, forestry, energy, tourism and recreation sectors of the economy. In this project, researchers will analyse the impacts of climate change on demand for freight transportation in Atlantic Canada as a result of shifts in sector specific demand. The project will model climate change impacts as productivity shocks in relevant sectors of the regional economy and trace the consequences of these shocks for demand for freight transportation.

Contact:Yuri Yevdokimov
yuri@unb.ca
University of New Brunswick
(506) 447-3221
Partners:
Project Classification:
  • Transportation
Location:
  • New Brunswick
  • Newfoundland & Labrador
  • Nova Scotia
  • Prince Edward Island

Project Status: Complete

Further Research Information: Link available

Full Report Location: Link available

2006-10-06Important notices