
Copper Cliff Waste Water Treatment Plant

Glen Watson

COPPER CLIFF CREEK WASTEWATER TREATMENT PLANT

Effluent Chemistry (typical values) IN OUT

pН	4.5		pН	11.0	
NH_3N	6.0	mg/L	NH_3N	6.0	mg/L
Ca^{2+}	100	mg/L	Ca^{2+}	300	mg/L
Na^+	100	mg/L	Na^+	100	mg/L
K ⁺	30	mg/L	\mathbf{K}^{+}	30	mg/L
Mg^{2+}	80	mg/L	Mg^{2+}	80	mg/L
Cl-	75	mg/L	Cl-	75	mg/L
SO_4^{2-}	1200	mg/L	SO_4^{2-}	1200	mg/L
NO ³ -	5.0	mg/L	NO^{3-}	5.0	mg/L

Effluent Chemistry (typical values)

IN

OUT

(total metal concentrations in mg/L)

Fe	30.0	Fe	0.30
Mn	1.0	Mn	0.02
Ni	10.0	Ni	0.25
Cu	1.2	Cu	0.05
Zn	0.10	Zn	0.01
Al	1.5	Al	0.15
Co	0.25	Co	0.01

Environmental Concerns

- pH of effluent > 9.5 (MISA limit)
- Effluent frequently toxic to Rainbow Trout and *Daphnia magna* (> 50% mortality)
- Toxicity Identification Evaluations (TIE) determined that toxicity was possibly due to high ammonia and/or high metal concentrations.

Ammonia toxicity in alkaline effluent: The influence of atmospheric carbon dioxide on pH and un-ionized ammonia.

- S.J. Clark Laurentian University, Biology Dept.
- J.R. Morris Laurentian University, Biology Dept.
- C.E. Hunt Inco Ltd., Ont. Div., Copper Cliff
- G.D. Watson Inco Ltd., Ont. Div., Copper Cliff

4 main studies initiated between 1993 and 1997 to investigate the cause of toxicity

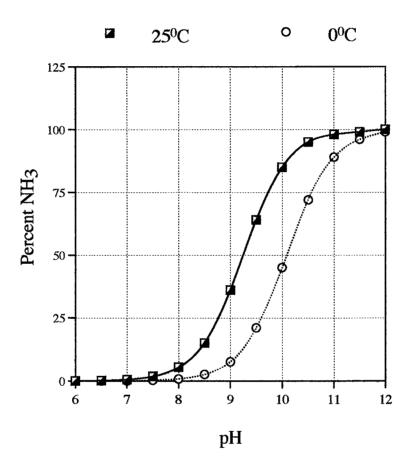
- The first two studies completed by consultants/commercial laboratories.
 - Modified Phase I TIE and Phase I TIE
- Next two studies completed by an M.Sc. Student and University professor (L.U.).
 - pH adjustment and treatability investigations

1993 Modified Phase I TIE Study <u>Conclusions</u>

- Effluent was more toxic at high pH than at neutral pH and reduction in pH was accompanied by a decrease in toxicity;
- Effluent pH and total ammonia concentration was in the toxic threshold range for trout;
- Reduction in daphnid toxicity with pH 11 filtration and EDTA tests suggested that residual daphnid toxicity at pH 7 was mostly due to metals, however, specific metals not identified.

1995 Phase I TIE Study Conclusions

- Toxicity was reduced with lower pH and that the pH of the effluent and total ammonia concentration was in the toxic threshold range for trout;
- pH adjustment was the main factor in altering the effluent toxicity to rainbow trout;
- cationic metals were not a likely source of toxicity, but could not be ruled out as a possible secondary source of toxicity.


Objectives

- 1) To determine toxicity to rainbow trout and *Daphnia* magna after using sulfuric acid to adjust the pH of alkaline effluents from the Copper Cliff Waste Water Treatment Plant (CCWWTP) to levels < 9.5.
- 2) To confirm the primary role of carbon dioxide uptake in the reduction of alkaline effluent pH during bioassay tests.

Ammonia Toxicity and pH

 $NH_3 + H_2O \longrightarrow NH_3 \cdot H_2O \longrightarrow NH_4 + OH_2$

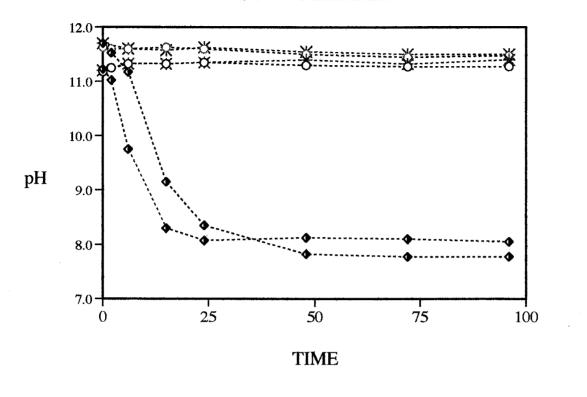
✓ increasing pH✓ increasing temp.

Percent of non-ionized ammonia (NH₃) present in aqueous solutions at temperatures of 25 and 0°C.

Cause of pH decline

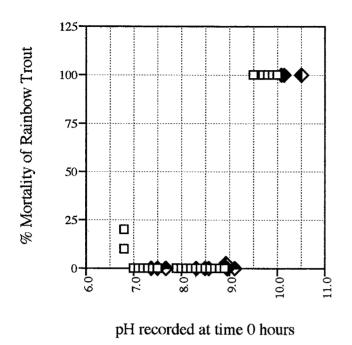
Oxidation of thiosalts via Thiobacillus sp.?

• pH 2-8 and temperature range 20-43 °C required for optimal growth.

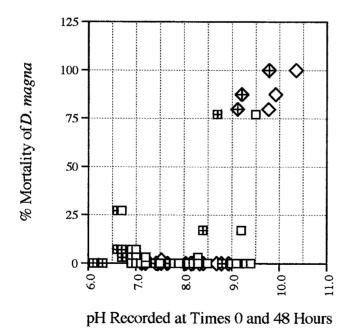

CO₂ imbalance in effluent?

CO₂ (atmospheric) + H₂O (effluent)
$$\longleftrightarrow$$
 H⁺ + HCO₃^{-- (1)}

$$Ca^{++} + 2OH^{-} + 2H^{+} + CO_{3}^{--} \longleftrightarrow Ca^{++} + CO_{3}^{--} + 2H_{2}O \quad (2)$$

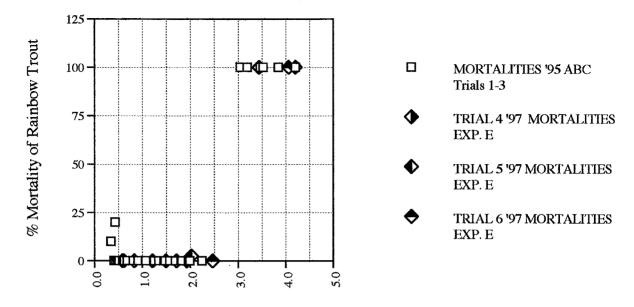

- base thus begins to be neutralized.

COLD CHAMBER

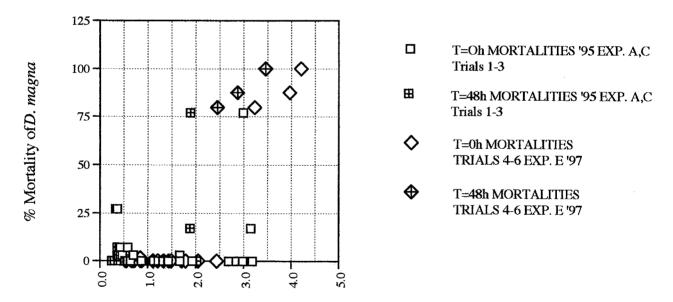


----♦---- AIR Trials 10 &11 ----**--- SEALED Trials 10 &11 ---- NO CO₂ Trials 10 &11

Observations of pH recorded over 96 h for trials 10 and 11 for manipulations of aeration, sealed, and CO₂ absent samples. Observations of pH for each trial time interval were based on means (n=4). Standard error for means were <0.16.



- MORTALITIES '95 EXP. ABC Trials 1-3
- TRIAL 4 '97 MORTALITIES EXP. E
- TRIAL 5 '97 MORTALITIES EXP. E
- TRIAL 6 '97 MORTALITIES EXP. E



- ☐ T=0h MORTALITIES '95 EXP. AC Trials 1-3
- T=48h MORTALITIES '95 EXP. AC Trials 1-3
- T=0h MORTALITIES
 TRIALS 4-6 EXP, E '97
- T=48h MORTALITIES
 TRIALS 4-6 EXP. E '97

Scattergram of results of pH determined at critical periods of mortality for trout and *Daphnia* toxicity tests.

Ammonia Levels (mg/L) Calculated from time 0 Hours

Ammonia Levels (mg/L) Calculated from Times 0 and 48 Hours

Scattergram of results of ammonia calculated at critical periods of mortality for trout and *Daphnia* toxicity tests.

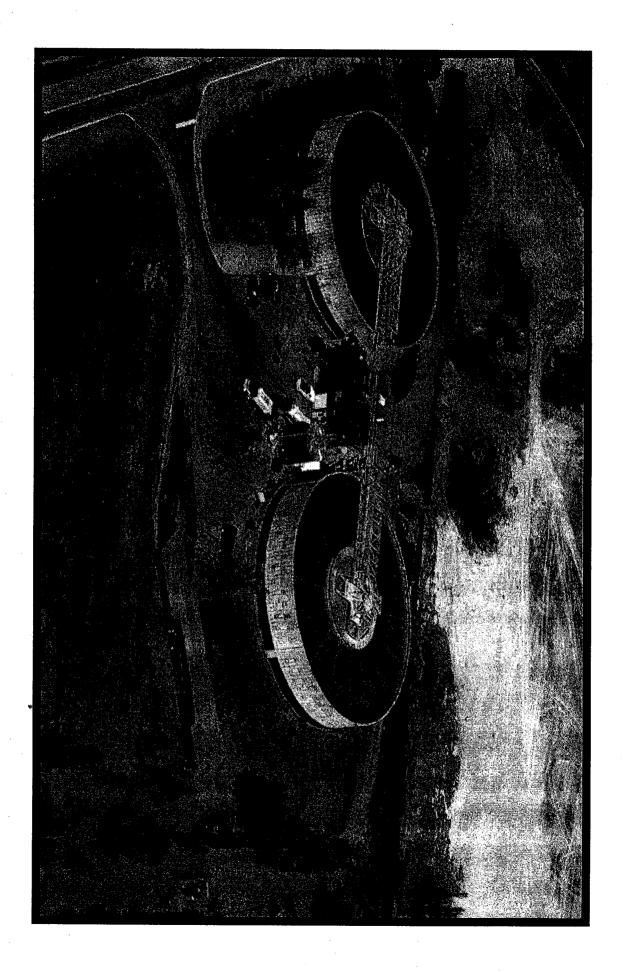
pH Declines and Mortality: Considerations for assessing pH and ammonia related toxicity

- Total ammonia, temperature, and pH variables required for the calculation of non-ionized ammonia (Emerson *et al.* 1975).
- Total ammonia values were utilized for each trial prior to toxicity testing.
- Temperature was constant for bioassay tests (15°C trout; 20°C Daphnia)

pH?

- Mortalities were determined to be within 15 hours for trout. (observed within 2 hours in some instances)
- Mortalities were determined only upon completion of *Daphnia* tests (48 h). Indications of stress (immobility) were observed early into testing
 24h.
- Consequently, pH measured at t=0h for trout and t=0h and 48h for *Daphnia* was used to assess pH and ammonia toxicity.

Assessment Problems


- Lack of replication in previous studies
- Inconsistencies in toxicity results in identical effluent samples
- The recurrence of spontaneous decline of pH in effluent samples

Observations

- Alkaline non pH adjusted effluents were highly toxic to both rainbow trout and D. magna.
 (Failure criterion for static acute tests > 50% mortality)
- Test failures were eliminated from every level of pH adjustment. (ie. pH 9.3- 7.6)
 (mortality rates were generally ≤ 10%)
- Mortality rates observed in experimentally filtered effluents (0.45 μ m) were not significantly different from non filtered effluents.
- pH declined after initial pH recorded and continued to descend during the course of toxicity testing.

Summary

- Toxicity in alkaline effluents was highly associated with high pH and elevated ammonia.
- Recommend that effluent be pH modified with H₂SO₄ to 8.7-8.9 to significantly reduce toxicity of effluent to both trout and *D. magna*.
- pH declines during toxicity testing were associated with carbon dioxide imbalance in effluent.
- Recommend that sample aeration protocols be uniform to ensure consistency in effluent toxicity testing.

