How to improve impact assessment form etalm ining?; illustrated with a land use biodiversity IA method for LCA

TNO Industrial Technology

Centre for Chain Analysis and Environm ent

- TNO & CM L
- com plicated life cycle studies for decision support
- eco-efficiency studies
- substance flow analyses
- = > extensive study on land use and desiccation in LCA

Possible issues at stake in metalm ining

Within LCA:

- Resource depletion /com petition
- Land competition
- Desiccation impacts
- Noise and dust im pacts
- Fuelexhaust and other chemicals emission impacts
- Land occupation and -transform ation impacts
- ?

Outside of LCA?

- Risk of accidents
- Im pacts on social & cultural structures
- 5

Where to start improving LCA formining?

W ithin impact assessment?

- Skip im pact categories?
- Add im pact categories?
- Change im pact indicators?
- Provide a m odel to sim plify interpretation?

W ithin the inventory?

- Complete globaldata sets for all metals?
- Im prove existing major data sets?

W hy im prove at all? Case: land use LCIA m ethod

- *Discussion on existing methodology:
 - -indicators
 - -reference level
- * Integration of new data:
 - -LCA species density data for many land use types (Koellner)
 - -Global reference data on species density (Barthlott et al.)
 - -Globalecosystem biome-modeldata (Leemans et al.)
- *Globalecosystem level factors proposed (Weidema, 2001)
- *Opportunity due to Delft Cluster (DC) program m e & RW S DW W

Illustrating improvements with a land use LCIA

An LCIA developers dilem m a

- 1 Land competition, land occupation or land transform ation?
- 2 Which impact indicators for biodiversity & life support?
- 3 Include which reference state as baseline?
- 4 How detailed regional differentiation?
- 5 How to attribute transform ation and renaturation?

Ad 1: Including transform ation

Transform ation = A x change in quality

Quality indicator score

Ad 2:W hich biodiversity indicators?

• Ecosystem Occupation

$$EO = A \times t \times SD_{i,ref} \times ES_i \times EV_i \times EQ_i$$

• Ecosystem Transform ation

$$ET = A \times \Delta SD_{i,ini} \times ES_i \times EV_i \times EQ_i$$

(for each biom e i)

- -local plant species diversity (SD_i)
- -globalecosystem scarcity (ES_i)
- -globalecosystem vulnerability (EV;)
- -globalecosystem quality (EQ_i)

Ad 2:which biodiversity indicators?

local species level

Occupation:

• $SD_{i,ref} = 1 - (S_{act}^{0.01} / S_{ref}^{0.01})$

Transform ation:

• $\Delta SD = 1 - (S_{fin}^{0.01} / S_{ini}^{0.01})$

Ad 3:0 ccupation reference state

Occupation = Axtxquality indicator

Occupation with AVERAGE reference

Ad 3:0 ccupation reference state

Occupation = Axtxquality indicator

Occupation with MAXIMUM reference

Quality indicator score

B ______Reference

C ______Reference

Time

Ad 4: data collection for aggregate

extraction

• Floron database: quantitative data on plant species per km²

5 types of aggregate,7 types of indicator

 Expert judgem ents from Ark Foundation on plant species per
 0.1 km²

Ad 4:Globalim pactassessment data: species diversity (Barthlott et al.)

Ad 4:Globalim pact assessment data:

potential

&

actual

biom e area's

(Leem ans et al.)

IIT IMAGE 2.1

Ad 4: Consequence of no regional differentiation

Extraction	Occupation	SDxESxEV		Factor increase	
	(m 2.y/t)	for 2 regions		in range	
		/			
• Iron	0.11	2-6	93–278	15-140	
• Uranium	0.1 - 4	2-6	130–174	22-87	

Ad 5: How to attribute renaturation time?

Occupation during renaturation (with different modelling horizons t3)

Ad 5: How to attribute renaturation time?

Occupation during renaturation (with different modelling horizons t3)

Ad 5: How to attribute renaturation time?

Occupation during renaturation (with different modelling horizons t3)

Ad 1,3,5: Case concrete outer wall: results biodiversity


```
TO = total occupation a = average ref. t = traditional (no renat)

TT = total transform ation m = m axim um ref. m = m odem (renaturation)
```

Uncertainty estimates only for impact assessment!

Requirem ents of the m ethod for inventory data

- Separate occupation and transform ation
- Separate the renaturation part of occupation
- Differentiate at least between regions in continents
- Uniform and specific nom enclature:
 - -Occup landuse_type [specif.] [region] m 2.y
 - -Renat landuse_type [specif.] class1-class2 [region] m 2.y
 - -Trans landuse_type [specif.] class: -class: [region] m 2
 - -Trare landuse_type [specif.] class: class: [region] m 2
- Im plem ent im pact assessm ent m ethod in softw are

Specifying the original questions

How much impact information is desired, and by whom?

How far can and should m ining locations be specified?

W hat precision is possible and desirable?

W ho decides how far to go, and w ho ensures consistency?

Som e requirem ents for answers

- An overview of major use (r) groups
- Realise requirem ents of LCIA m ethods
- Realise lim itations of LCIA m ethods

Steering the process of LCIA development

Conclusions

- Mining industry:

 Understand implications of LCA methodology
- LCA com m unity:

 Understand policy issues

 Decide on including them
- UNEP Life Cycle Initiative:

 Harm onisation or improvement?

 Priority setting procedure required

 Help to build the bigger picture