Diamonds

Michel A. Boucher
The author is with the Mining Sector, Natural Resources Canada.
Telephone: (613) 992-3074

Introduction

World production of natural rough diamonds in 1993, the latest year for which statistics are available, was close to 108 million carats (Mct). This compares with 105 Mct in 1992. Close to 80% by weight and 70% by value of rough diamonds produced in the world are marketed by the Central Selling Organization (CSO), established by De Beers in support of its "single-channel" marketing of diamonds. CSO sales of rough diamonds in 1994 were US\$4.25 billion, compared with US $\$ 4.37$ billion in 1993, a decrease of 2.7%. While sales increased 1% in the first half of the year compared with the previous year, they declined 8% in the second half in response to: a build-up of stocks, particularly of Indian polished goods at the cutting centres; concerns over profitability in the cutting centres, especially Israel and Belgium, but also I ndia; and, according to De Beers, continued direct sales to the markets by Russia in contravention of the CSO sales agreement.

Major events in 1994 included: a decrease in profitability in all the major cutting centres, continued problems concerning direct sales of rough diamonds by Russia, intensified tensions in the CSO-Russia new contract negotiations, the signing of an agreement between Namibia and the CSO regarding a new mining lease in Namibia, and a federal U.S. judge's decision to dismiss charges of price fixing for synthetic industrial diamonds between General Electric Co. and De Beers Centenary AG due to a lack of evidence presented by theJ ustice Department.

Demand for diamond jewellery continued strong in Southeast Asia. Sales in the United States were weak during the first half of the year but they improved in the second half. Demand in Europe and J apan remained weak.

Canada currently is not a commercial producer of natural diamonds. However, Canada's potential to
become a producer was further defined during the year as several companies continued extensive exploration work at a number of locations.

Canadian Developments

A large area of northern and central Canada is underlain by a huge craton, which forms the nucleus of the North American continent. (A craton is part of the earth's crust and upper mantle that has attained stability, has been little deformed over a prolonged period of time, and has segments that are very old.) Studies of the global distribution of diamond-bearing rocks known as kimberlites show that these rocks are mainly confined to ancient cratons such as the one found in Canada. In addition, diamonds and diamond indicator minerals (e.g., subcalcic high-chrome garnet, chrome diopside, high-magnesia ilmenite, and high-chrome chromite) have been found in glacial deposits in numerous localities in Canada. Together these observations suggest that, given sufficient time and funds for exploration, the chances of discovering diamonds in Canada in commercial quantities are very good.

In 1994, exploration for diamonds continued, especially in the Northwest Territories, but also in Saskatchewan, Quebec, Alberta, Ontario, British Columbia, Manitoba, and Labrador. At year-end, BHP Diamonds Inc. reported that the diamonds recovered to date from five kimberlite pipes at its Lac de Gras property, about 300 km northeast of Y ellowknife, compare favourably with those at other diamond mines in the world. The company has stated that, at today's prices for rough diamonds, the project to devel op the pipes is economically feasible. Capital investment is expected to be in excess of US\$500 million.

The five pipes, which are located under lakes that bear the same name, are known as Panda, Misery, K oala, Fox and Leslie. The lakes will have to be drained before mining can start. The pipes will be mined over approximately a 30-year period. Four pipes, starting with Panda to the northeast, followed by Koala, Leslie and Fox, are aligned almost in a straight line a few kilometres from each other in the watershed north of Lac de Gras. The fifth pipe, Misery, is located 27 km to the southeast, adjacent to Lac de Gras. The Panda open-pit would be developed

Figure 1
Major Diamond Exploration Areas in Canada, 1994

Numbers refer to locations on map above.

1. Lac de Gras
2. Southeastern British Columbia
3. Peace River
4. Jasper
5. Badlands
6. Prince Albert
7. Snow Lake
8. Southeastern Manitoba
9. James Bay Lowlands
10. Kirkland Lake
11. Temiscamingue
12. Desmaraisville
13. Northern Labrador
first, followed by Misery (open-pit), K oala (open-pit), Panda (underground), Fox (open-pit), K oala (underground), and Leslie (open-pit). Preliminary results on two pipes are as follows: Koala, $0.75 \mathrm{ct} / \mathrm{t}$ at an average of US $\$ 110 / \mathrm{ct}$, for a value of US $\$ 82 / \mathrm{t}$ ore; and Panda, 1.18ct/t at an average of US\$127/ct, for a value of US $\$ 150 / t$ of ore.

The processing plant will receive $9000 \mathrm{t} / \mathrm{d}$ of ore during the first nine years of operation, and $18000 \mathrm{t} / \mathrm{d}$ of ore thereafter. The cut-off grade will be $1.0-\mathrm{mm}$ particle size (equivalent to about 0.01 ct). A single, centralized processing plant will be located southwest of the K oala pit. Processing will involve mainly crushing, scrubbing and dense media separation, plus some high-intensity magnetic separation and X-ray concentration, and sorting. No chemicals will be
used in the process, and waste rock, it is reported, has a negligible potential for acid generation. The mine and processing plant will operate 24 hours per day, 365 days per year. The work force during construction will reach 1000 at its peak. Production will employ a total of approximately 650 workers, of which 400 will be on shift and housed in a camp facility at the mine and processing plant site.

World Production

Natural Diamonds

An estimated 5000 kimberlite and lamproite pipes have been identified in the world. Between 300 and 500 contain diamonds. Of this number, less than

50 have proven to be commercial, and 25 have become major producers. Currently, 16 are producing mines. As noted earlier, world production of natural rough diamonds in 1993 was estimated at 108 Mct. Of the total production, some 50 Mct consisted of low-value industrial diamonds, 40-45 Mct were near-gems, and about 15-17 Mct were gemquality diamonds. In terms of value, however, gems represent more than 75% of the total, near-gems about 20%, and industrial, 2-5\%. World production of natural diamonds grew from 43 Mct in 1980 to 108 Mct in 1993; this represented an increase on average of $5 \mathrm{Mct} / \mathrm{y}$. A large proportion of this increased production was absorbed through increased sales toJ apan during the 1980s.

According to De Beers, 380000 stones weighing over 1 ct each were produced in 1993; the total weight of the stones was 510000 ct for an average of 1.34 ct per stone.

Natural diamonds are currently produced by some 20 countries. However, almost 95\% of world production by weight has come from only five countries in recent years. They are, in decreasing order:
Australia (38-42 Mct), Botswana (15-17 Mct), Zaire (15-18 Mct), Russia (11-18 Mct) and South Africa ($8-10 \mathrm{Mct}$). In terms of value, Botswana is the leader, followed by Russia, the Republic of South Africa, Namibia, Australia, Zaire and Angola.

Australia and Zaire account for about 50-55\%, by weight, of world production; however, more than 90% of their production consists of low-value industrial and near-gem diamonds. Diamonds mined in recent years have averaged about US\$10/ct in Australia and US\$15-\$20/ct in Zaire. At the other end, Namibia, which produces less than 2% by weight of world production, has a very high proportion (+95\%) of gemquality diamonds, averaging US\$220-\$260/ct.

Grade (the weight of diamonds expressed as carats per tonne (ct/t) of ore) varies widely from one mine to another. However, the grade generally falls between 0.3 and $1.3 \mathrm{ct} / \mathrm{t}$. Grades as low as $0.05 \mathrm{ct} / \mathrm{t}$ and as high as 7.0 ct/t have been exploited. The value of the ore per tonne equals the grade times the average value per carat of all the individual diamonds.

Diamonds are mined from pipes (mainly kimberlites, but also lamproites), from alluvial deposits, and from beach and offshore (marine) deposits. During transport of alluvial materials, the weak portions (cracks, inclusions, and other defects and impurities) of the diamonds are removed. This means that the gem ratio increases with transport and that, as a result, beach and offshore deposits usually have the highest gem ratio. Currently, there are less than 20 pipes being mined in the world in the following countries: Australia, Botswana, Russia, South Africa, Tanzania, and Zaire. Nearly two thirds of world production by weight comes from only five pipes situated in Australia, Botswana, Russia, and South Africa.

Synthetic Diamonds

Synthetic diamonds compete with natural industrial diamonds as an abrasive mineral and with silicon carbide (SiC), alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, and cubic boron nitride (CBN) as a manufactured abrasive material. World production of synthetic diamonds in 1993 was estimated by the U.S. Bureau of Mines at 456 Mct; this compares with close to 420 Mct in 1992. The value of world synthetic diamond production is estimated at US $\$ 600$ million- $\$ 800$ million. Most marketed synthetic diamonds are 0.6-0.8 mm and smaller. A very popular type of synthetic diamond is called Saw Diamond Abrasives "SDA"; it is used for sawing, drilling or milling hard stones, concrete aggregate, refractory materials, masonry, and asphalt. Synthetic diamonds were invented in Sweden in 1953 and have been produced commercially since the late 1950s.

The production of synthetic diamonds using highpressure and high-temperature methods is labourintensive. Contrary to competing abrasive materials such as silicon carbide and alumina, the production of synthetic diamonds is not electricity-intensive. In 1994, synthetic diamonds were produced in at least 16 countries. The most important producing countries were, in decreasing order of importance, the United States, Russia, South Africa, I reland, J apan, Belarus, Sweden, Germany, and China. Smaller plants exist in Serbia, Slovakia, Romania, France, England, K orea, and Greece. The two leading producers are De Beers of South Africa and General Electric of the United States. Each controls approximately 40% of world production; both produce a full range of synthetic diamond products. The smaller producers specialize in certain sizes and types of products. De Beers has plants near J ohannesburg in the Republic of South Africa; in Sweden; and in Shannon, Ireland. General Electric has plants at Worthington, Ohio, and in Dublin, Ireland. Tomei of J apan is also a very important producer.

Consumption of synthetic diamonds continues to grow at a very healthy rate as industry conversion to super-abrasives continues. Although they are expensive compared with competing materials such as silicon carbide and alumina, synthetic diamonds are more cost-effective because they cut much faster and last much longer. In many applications, synthetic diamonds are preferred to natural industrial diamonds because they can be tailored to the customer's needs. There are many types of synthetic diamonds, including those coated with metals such as copper or nickel for specific applications. Superabrasives include synthetic diamonds, cubic boron nitride (CBN), polycrystalline synthetic diamond shapes (PDS), and compacts (PDC). More than 60\% of all abrasive products used in J apan have diamond components, compared with about 40\% in E urope and 20-30\% in N orth America. F or Canada, the gradual conversion from traditional abrasives (alumina and silicon carbide) to newer and better performing
super-abrasives is slowly eroding markets for traditional abrasives.

Because of their declining prices and technical superiority in industrial applications, synthetic diamonds continue to replace natural industrial-grade diamonds. The latter already make a relatively insignficant contribution to the revenue of most diamond mines. However, since they are recovered al ong with gem-quality diamonds, mines will continue to produce and sell industrial-grade diamonds.

Crystalline Manufacturing Ltd. of Calgary produces synthetic diamond films by the Chemi cal (also called Carbon) Vapour Deposition (CVD) method at a plant in Calgary, built in 1993 at a cost of some $\$ 4$ million, excluding research and development. The process uses methane gas, argon and electricity as the key raw materials. Large quantities of electricity are required to disassociate methane gas at high temperature and to separate carbon from hydrogen before carbon is precipitated in the form of diamonds.

Major producers of industrial CVD products in the world are, in decreasing order: Sumitomo, De Beers, General Electric, St. Gobain (Norton), and Crystallume. Other important producers are: Diamonex (M onsanto), SI Diamond Tech, Asahi, Astex, ATM, Cemecon, Idemitsu, Mitsubishi, Nachi-Fiji, and Toshiba. World sales of CVD diamonds are estimated by General Electric at less than US $\$ 50$ million. The industry reports that growth has slowed in recent years due to competition with polycrystalline synthetic diamonds. CVD products are used in three major fields of applications: (1) coatings on tool subject to wear; (2) optical-quality films (diamond is very hard and transparent to X rays, infrared and visible light); and (3) heat sinks and electronic substrates (diamond dissipates thermal energy very rapidly and has a heat conductivity five times that of copper). Future growth is expected to be in the computer, medicine, and thermal management fields.

Canadian Trade and Consumption

Canada's imports of gem-quality and industrial diamonds were valued at $\$ 211$ million in 1990, $\$ 189$ million in 1991, $\$ 187$ million in 1992, $\$ 173$ million in 1993, and $\$ 215$ million in 1994. Some 90% of the imports were estimated to be gem-quality diamonds. Imports of synthetic diamond dust or powder were 5.92 Mct valued at $\$ 4.64$ million in 1990, 7.36 Mct valued at $\$ 4.45$ million in 1991, 5.32 Mct valued at $\$ 4.24$ million in 1992, 2.11 Mct valued at $\$ 5.38$ million in 1993, and 3.27 Mct valued at $\$ 8.71$ million in 1994.

The Diamond-Cutting Industry

Natural diamonds are cut in some 30-40 countries. The major diamond-cutting centres in the world are

Antwerp and Kempen, Belgium; Ramat-Gan and Tel-Aviv, Israel; New York City; and Surat and Bombay, India. With the exception of India, which is a very small producer of diamonds, none of these countries mines diamonds. Other countries with important cutting centres include the Republic of South Africa, Russia, Ukraine, Belarus, and Uzbekistan. Newcomers include Australia, Thailand, China, Botswana, Sri Lanka, Indonesia, Malaysia and, more recently, Yakutia in Russia. Many other countries also cut diamonds, but their industries are small. In recent negotiations with De Beers, the Nami bian government indicated its desire for further processing in Namibia. As a consequence, De Beers and Namibian authorities are currently investigating the setting up of a cutting factory in Windhoek to be based on the supply by the CSO of rough diamonds on normal commercial terms.

Belgium is known as the world's largest trading centre for rough and polished diamonds, with a value of US $\$ 17$ billion in 1993; close to 50% of the CSO's sales go to Antwerp. India cuts more carats of rough diamonds than any other country and, in 1993, it was the largest exporter of polished diamonds with a value of US $\$ 3.5$ billion, followed by Israel at US $\$ 3.0$ billion. Israel is the leader in diamondcutting technol ogy, and cuts a very wide range of diamonds; New York cuts the largest and bestquality stones.

In Russia, most production of rough diamonds comes from Yakutia. Yakutia has only recently established its own diamond-cutting industry and there were reportedly five cutting plants with capacities varying from 30000 rough ct/y to dose to 100000 rough ct/y. The plants have been built as joint ventures with Belgian, Israeli, J apanese, and South K orean companies. Several more plants are planned over the next few years. Recently, Yakutia started sorting some of the diamonds it produces, with some being sold to its own cutting plants. An exchange facility for wholesale and retail trade in rough and cut diamonds is also planned.

Diamond-cutting is relatively labour-intensive in comparison with many other sectors. Automated cutting techniques are increasingly being used to compete with low-wage operations. The types of automated equipment being acquired include automatic girdling machines (sometimes connected with stroboscopes), automatic facetting machines, lasers to shape the roughs, and computers that suggest an optimal cut based on the shape, dimensions and inclusions in a rough stone. Major diamond-cutting centres invariably have a very wide range of indirect jobs associated with them.

A review of the literature suggests that, on average, an employee cuts close to 800 rough ct/y. However, this number varies widely, depending on the size of the rough diamonds to be cut (usually, more carats can be cut from bigger diamonds), the difficulty of
the cut, and the level of automation in the factory. Because of high labour costs, factories in the United States usually cut bigger and better-quality diamonds. Belgium and Israel are in the middle of the labour-cost spectrum and, as a consequence, are generally involved in cutting stones of intermediate size and quality. India, with the lowest labour costs, cuts the smallest and least expensive diamonds. The literature also indicates that the average price per carat of polished production from New York is about US\$1400; from Antwerp, US\$750; from Tel Aviv, US\$720-\$750; and from India, US\$250.

Employment related to diamond-cutting varies widely from factory to factory, running anywhere from 1 to 1000 workers. Total employment in diamond-cutting varies widely from country to country. F or example, there are 500-600 cutters in the United States, 4000 in Bel gium, some 8000 (35 factories) in Thailand, close to 10000 each in I srael (600-650 factories) and Russia and more than 800000 in India.

The major steps in diamond-cutting are: (a) studying the stone to locate the flaws (i.e., inclusions and imperfections in the stone), and marking with a pen where the stone is to be cut; (b) sawing (to remove flawed areas of the stone) with a saw impregnated with diamond dust or with a laser, or cleaving; (c) rounding or bruting (also known as "girdling") to shape the diamond into a round, pear, oval or other form; (d) facetting (also known as "brillianteering") by grinding sides into the diamond; and (e) polishing to remove surface irregularities and allow more light to penetrate the stone.

Valuation and Sales Procedures

Rough Diamonds

The valuation of rough diamonds mined in the world is complex, with diamonds being classified into some 5000 categories, according to the industry. Rough diamonds are first sieved and sized; they are then classified. The stones are classified according to their shape("sawables," which can be sawn with a diamond saw or laser, and "makeables," i.e., unsawable and which must be shaped by cleaving or other methods), clarity (five categories), and col our (five grades, which are further sub-divided into categories). Brilliant-cut gem diamonds usually have a yield (weight of the cut and polished stone/weight of the rough diamond) of $35-50 \%$ for sawables and $15-35 \%$ for less expensive makeable rough diamonds. The major sorting centres at or near diamond mines are Kimberly, Republic of South Africa; Gabarone, Botswana; Windhoek, Namibia; Perth, Australia; and Mirny, Russia. De Beers' main sorting house is in London, England. De Beers also sorts rough diamonds in Lucerne, Switzerland.

The CSO has been successful in maintaining a balance between the supply of and demand for rough diamonds for some 60 years. It buys surplus production of rough diamonds from mines and stockpiles during periods of weak demand in the jewellery market and sells off its stockpiled roughs as demand picks up. Production quotas may be applied to major producers when sales fall.

About 80% by weight of rough diamonds are marketed by the CSO and released to the market in a controlled way (to maintain a balance between the supply of and demand for different quality diamonds) by the CSO at "sights," which are held about every five weeks in Europe (London and Lucerne) and in South Africa, to about 170 carefully chosen buyers known as "sightholders." Some 40\% of the sightholders reside in Bel gium, 25\% in India, some 25\% in I srael, and about 10\% in the United States. The majority of the sighthol ders are manufacturers that cut and polish the stones in their factories, although some whol esale firms that deal in rough diamonds also attend the sights. Once the stones are cut and polished, they are sold to diamond merchants or wholesalers of polished diamonds. Finally, the diamonds are in turn sold to manufacturing jewellers and retail outlets.

Cut and Polished Diamonds

To determine the value of an individual polished diamond, an appraiser looks at its combination of all the four "C"s: cut, colour, clarity, and carat (weight).

Cut

Polished diamonds come in a variety of shapes, the most common being round (also known as "brilliant"); other shapes (called "fancies") include oval, pear, marquise, heart, square, or triangle. Polished stones also vary in terms of their number of facets (surface planes). However, more important than these two factors to the value of the diamond is the quality of its cut. This is determined by: (a) the relative proportions of the table size, the crown height, and the pavilion depth of the diamond (which determines its brilliancy, i.e., the amount of light reflected through the stone); and (b) the angles of the facets (which determine the dispersion of light that creates the fiery rainbow colours). The quality of the cut is also determined by: (a) the symmetry of the table and the girdle and the location of the cullet (base); and (b) the quality of the polish. By far, the most popular cut diamond sold in the markets is the brilliant (58 facets). Fancy cuts represent about 10-20\%, and single cuts (17 facets) represent about 10\%.

Colour

The rarest and best colour in diamonds is no colour at all. The colour grade is a measure of the amount of colour present in a diamond. Most diamonds have a tinge of some colour (most often yellow or brown).

Strong (intense)-coloured diamonds called "fancies" command very high prices. Among the fancies, the browns (cognac) are the most common, followed by champagne and intense canary yellow. Orange and yellowish greens are rare; pink, blue, and dark green are the rarest colours and command the highest prices.

Clarity

This is a measure of the number, size, placement, and nature of flaws (inclusions and/or imperfections) within and on the surface of a diamond, visible at 10-power magnification. Inclusions are crystals, while imperfections are feathers, blemishes, cracks, etc.

Carat

One carat is equivalent to 0.2 grams. A carat is normally divided into 100 points. Because larger diamonds are rare, a 1-carat diamond will cost more than a cluster of 20 diamonds weighing a total of 1 carat.

Uses

World retail sales of diamond jewellery in recent years have had a diamond content value of some US $\$ 9$ billion and a diamond content weight of some 15-17 Mct. De Beers reports that, in 1993, world diamond retail jewellery sales had a di amond content valued at some US $\$ 9.1$ billion. The major markets for diamond jewellery in 1993 in terms of diamond content value were approximately as fol lows: the United States, 32\%; J apan, 23\%; Europe, 13\%; East Asia, 17%; and other countries, 15%. Since a considerable proportion of the rough stone is lost during cutting and polishing, only about $15-17 \%$ by weight of rough stones mined end up in jewellery. World retail sales of diamond jewellery reached highs of US $\$ 42.6$ billion in 1992 and were estimated at US $\$ 42.5$ billion in 1993. The East Asian market is growing steadily while, since the late 1980s, the markets of Europe, J apan and the United States have shown minimal growth.

Because they are the hardest substance known to man, natural and synthetic industrial diamonds are used in equipment that drill, cut, grind, and polish rocks (such as granite and marble), other materials (such as nonferrous metals, carbon fibre, and composites), and a range of nonmetallic materials (such as glass, refractories, ceramics, concrete, plastics, and masonry bricks). Natural and synthetic diamonds are widely used in the automotive, advanced technology, and aerospace industries.

Prices

Published average mine prices of rough diamonds in recent years, including gem, near-gem and industrial diamonds, varied widely across producing countries: US $\$ 7-\$ 8 /$ ct in Australia, US $\$ 27 /$ ct in Zaire, US $\$ 67 /$ ct in Botswana, US\$95/ct in Russia, US\$105/ct in South Africa, US\$157/ct in Angola, US\$208/ct in Sierra Leone, and US $\$ 300 /$ ct in Guinea and Namibia. This wide variation in prices has been mainly a function of the proportion of gem-qual ity diamonds produced by each country. As an example, in Australia the diamonds have a very low gem ratio, while in Namibia the gem ratio is very high. South Africa produces rough diamonds that vary in price from US $\$ 60$ to $\$ 300 / \mathrm{ct}$. In 1993, the average value of gem production in the major producing countries was as follows: US $\$ 250 /$ ct in Namibia; US $\$ 150 /$ ct in Russia; US $\$ 100 /$ ct in Botswana; and US $\$ 100 /$ ct in the Republic of South Africa.

Taking into account losses during cutting and polishing, as well as commissions paid to intermediaries, the price of a diamond sold to a jeweller is an estimated 5-6 times the price of the rough stone at the mine. Intermediary costs include those for advertising, sighthol ders' brokers, and wholesalers. The average U.S. wholesale asking price of the top 25 grades (D through H colour, and IF through VS2 darity) of a 1 -carat cut and polished diamond was about US $\$ 7300$ at the end of 1993.

In 1993, the average value of U.S. imports of natural industrial diamond grit (40 microns to 1 mm) and powder (-40 microns), synthetic grit and powder, and industrial stones ($>1 \mathrm{~mm}$) were US\$1.14/ct,
US $\$ 0.64 / \mathrm{ct}$, and US $\$ 4.56 / \mathrm{ct}$, respectively. The prices of synthetic diamonds vary widely: $10 \$ /$ tt for friable material with irregular shapes; $\$ 1-\$ 2 / c t$ for polishing material; several dollars/ct for blocky, regular shapes with good crystal structure; and several thousand dollars/ct for large crystals with excellent structure for use in specific applications. The popular SDA diamonds noted earlier sell for $\$ 1-\$ 3 / \mathrm{ct}$.

Production and Consumption Forecast and Outlook

It is difficult to forecast world production and consumption of diamonds with certainty. Production by certain countries cannot be estimated with precision because: (a) the information released by their governments is often vague or inaccurate; (b) smuggling is common practice in some countries; (c) stockpiles of roughs held by the CSO are published only in dollar value (US $\$ 4.38$ billion as at December 31, 1994) at cost, and not in carats; and (d) Russia has a huge stockpile of rough gems estimated at US $\$ 3$ billion$\$ 5$ billion. (Changes in either the CSO or Russian stockpiles can significantly affect world prices and, as a consequence, production.)

Bearing the above cautions in mind, some general comments can be made concerning future world diamond production. On the one hand, factors leading to a possible decline in production include: (a) the current rapid depletion of the reserves of certain mines in Russia and the Republic of South Africa; (b) the exhaustion of on-shore alluvial deposits of the Republic of South Africa and Namibia; (c) unstable conditions in certain countries of Africa, which are inhibiting production; and (d) uncertainties regarding the production potential of the Argyle mine in Australia in the early years of the next century. On the other hand, the above factors may be partially or totally offset by the following major supply developments: (a) increased offshore production in the Republic of South Africa and Namibia; and (b) the development of new mines in Canada and Russia.

On the consumption side, it is not known in precise terms how countries of East Asia and China will respond to increased advertising for diamond jewellery by De Beers, nor how forecast increases in Gross National Product/capita in these countries will translate into increased sales of diamonds.

In the short term, the oversupply of natural rough diamonds, especially in the lower-quality range categories, is likely to continue. However, industry sources predict that, by the late 1990s, consumption of diamonds should increase as Western economies recover and sales in Southeast Asian countries increase due to their rapidly growing economies. After the year 2000, sales to E astern Europe are expected to pick up.

J ohnson, Marriott \& von Saldern estimate that, by the year 2000, world production of natural diamonds will vary from $84-136 \mathrm{Mct} / \mathrm{y}$, with a best estimate of 113 Mct/y. An analysis by Yorkton Securities Inc. concluded that, without any production from Canada, world gem-diamond production should be around 17-18 Mct/y by the year 2000, and that an additional 3-4 Mct from Canada should be absorbable in world markets.

Note: Information in this review was current as of February 1, 1995.

TARIFFS

Item No.	Description	Canada			United States Canada
		MFN	GPT	USA	
7102.10	Diamonds, unsorted, whether or not worked, but not mounted or set	Free	Free	Free	Free
7102.21	Diamonds, industrial, unworked or simply sawn, cleaved or bruted, but not mounted or set				
7102.21 .10	Bort and black diamonds, for borers	Free	Free	Free	Free
7102.21 .90	Other	9.5\%	6.5\%	Free	Free
7102.29	Diamonds, industrial, other, worked, not mounted or set				
7102.29.10	Bort and black diamonds, for borers	Free	Free	Free	Free
7102.29 .90	Other	9.5\%	6.5\%	Free	Free
7102.31	Diamonds, non-industrial, unworked or simply sawn, cleaved or bruted	Free	Free	Free	Free
7102.39	Diamonds, non-industrial, other	Free	Free	Free	Free
7105.10.10	Diamond dust for borers; dust mixed with a carrier in cartridges or in tubes	Free	Free	Free	Free
7105.10.91	Natural diamond dust or powder	9.5\%	6.5\%	Free	Free
7105.10.92	Synthetic diamond dust or powder	Free	Free	Free	Free

Sources: Customs Tariff, effective January 1995, Revenue Canada; Harmonized Tariff Schedule of the United States, 1995.

TABLE 1. CANADA, DIAMOND TRADE, 1992-94

Item No.		1992		1993		1994p	
		(carats)	(\$000)	(carats)	(\$000)	(carats)	(\$000)
$\begin{aligned} & \text { EXPORTS } \\ & 7102.10 \end{aligned}$	Diamonds, unsorted, whether or not worked United States	.	210 r	.	226	.	159
	Total	\cdots	210 r	.	226		159
7102.21	Diamonds, industrial, unworked or simply sawn, cleaved or bruted United States	14098	120	-	-	6298	39
	Total	14098	120	-	-	6298	39
7102.29	Diamonds, industrial, n.e.s., excluding mounted or set diamonds Mexico United States Ireland	5620	$8 \overline{-}$	r	12 12	$\begin{array}{r}13000 \\ 85 \\ \hline\end{array}$	$\begin{array}{r}533 \\ 55 \\ \hline\end{array}$
	Total	5620	87	112	24	13085	588
7102.31	Diamonds, non-industrial, unworked or simply sawn, cleaved or bruted United States New Zealand	$\begin{array}{r} 2748 \\ 40 \end{array}$	$\begin{array}{r} 158 \\ 40 \end{array}$	111	10	-	-
	Total	2788	198	111	10	-	-
7102.39	Diamonds, non-industrial, n.e.s., excluding mounted or set diamonds United States Japan Hong Kong Other countries	$\begin{array}{r} 11977 \\ 108 \\ 258 \end{array}$	$\begin{array}{r} 13024 \\ 99 \\ 353 \end{array}$	7252 11 20	5307 21 35	$\begin{array}{r} 15383 \\ 2647 \\ 81 \\ 9 \end{array}$	$\begin{array}{r} 11658 \\ 5297 \\ 57 \\ 3 \end{array}$
	Total	12343	13478	7283	5364	18120	17017
7105.10	Diamond dust or powder United States Bulgaria Other countries	$\begin{array}{r} 425921 \\ 2270 \end{array}$	$\begin{array}{r}199 \\ \hline 5\end{array}$	$\begin{array}{r} 128168 \\ 50 \end{array}$	196	$\begin{array}{r} 164975 \\ 29600 \end{array}$	258 29
	Total	428191	205	128218	197	194575	287
$\begin{aligned} & \text { IMPORTS } \\ & 7102.10 \end{aligned}$	Diamonds, unsorted, whether or not worked, but not mounted or set United States Belgium Israel India Iceland Other countries	\cdots \cdots \cdots \cdots	$\begin{array}{r} 10664 \\ 22703 \\ 12454 \\ 3770 \\ 689 \\ 1841 \end{array}$	\cdots \cdots \cdots \cdots	$\begin{array}{r} 18825 \\ 16712 \\ 11705 \\ 5106 \\ 2121 \\ 1429 \end{array}$	\cdots \cdots \cdots \cdots	$\begin{array}{r} 17243 \\ 9898 \\ 9762 \\ 5882 \\ 634 \\ 1671 \end{array}$
	Total	.	52128	.	55905	. \cdot	45099
7102.21 .10	Diamonds, industrial, bort and black, for borers, unworked or simply sawn, cleaved or bruted, but not mounted or set United States Ireland Zaire Belgium Other countries	$\begin{array}{r} 209899 \\ 25476 \\ 27009 \\ 3346 \\ 15879 \end{array}$	$\begin{array}{r} 1022 \\ 90 \\ 99 \\ 33 \\ 101 \end{array}$	$\begin{array}{r} 246403 \\ 44789 \\ 6979 \\ 8643 \end{array}$	$\begin{array}{r} 974 \\ -\overline{8} \\ 198 \\ 69 \end{array}$	$\begin{array}{r} 338908 \\ 135673 \\ 88524 \\ 42627 \\ 77196 \end{array}$	$\begin{array}{r} 1168 \\ 508 \\ 404 \\ 347 \\ 509 \end{array}$
	Total	281609	1348	306814	1301	682928	2945
7102.21 .90	Diamonds, industrial, other than bort and black, for borers, unworked or simply sawn, cleaved or bruted, but not mounted or set Ireland United States Other countries	1938-	$\overline{6}$	$\begin{array}{r} 2347 \\ 643 \end{array}$	- 21 5	$\begin{array}{r} 19000 \\ 3879 \\ - \end{array}$	89 38
	Total	1938	6	2990	28	22879	127

TABLE 1 (cont'd)

Item No.		1992		1993		1994p	
		(carats)	(\$000)	(carats)	(\$000)	(carats)	(\$000)
${ }_{7102.29 .10}^{\text {IMPORTS (cont'd) }}$ Diamonds, industrial, bort and							
	black, for borers, worked, but not mounted or set						
	Ireland	603272	2711	601466	2348	659211	2312
	United States	81824	292	56369	202	49936	230
	Zaire	-	-	37027	152	46726	155
	South Africa	-	-	-		3555	56
	Other countries	105182	448	4083	13	7514	65
	Total	790278	3453	698945	2717	766942	2822
7102.29.90	Diamonds, industrial, other than bort and black, for borers, worked, but not mounted or set						
	Ireland	-	-	20432	143	41493	199
	United States	14325	100	2041	12	1587	14
	Other countries	569	8		-	1000	5
	Total	14894	109	22473	156	44080	219
7102.31	Diamonds, non-industrial, unworked or simply sawn, cleaved or bruted, not mounted or set						
	Belgium	90	47	21	21	912	224
	United States	52	50	44	16	296	180
	Total	142	98	65	38	1208	404
7102.39.00.10	Diamonds, non-industrial, worked, of a weight not exceeding 0.5 carat each						
	Belgium	38580	18199	57507	23140	51943	24758
	United States	22330	11030	17656	11055	29803	21606
	Israel	10618	7605	13022	7150	11462	7878
	Russia 1	53821	19229	36905	11949	22487	6894
	India	6549	2365	6163	1988	7581	3159
	United Kingdom	53	37	530	561	1066	961
	Other countries	2825	1181	2201	1877	2101	1445
	Total	134776	59646	133984	57726	126443	66710
7102.39.00.20	Diamonds, non-industrial, worked, of a weight exceeding 0.5 carat each						
	Belgium	18999	14412	20445	18111	35506	28841
	Russia 1	19560	36574	10684	15731	20088	27181
	Israel	8065	6152	9227	9962	17066	16944
	United States	10322	10873	7919	8962	16047	15837
	India	1536	742	1822	566	13610	4518
	Iceland	260	138	241	301	523	682
	Other countries	1401	1489	1024	1151	2320	2301
	Total	60143	70380	51362	54794	105160	96312
7105.10.10	Diamond dust for borers; dust mixed with a carrier in cartridges or in tubes						
	United States	190632	455	278709	796	306241	599
	Ireland	14851	12	12130	10	16994	73
	Other countries	15083	53	12347	54	32782	115
	Total	220566	521	303186	862	356017	792
7105.10.91	Natural diamond dust or powder United States	1059	2	501	4	929	6
	Total	1059	2	501	4	929	6
7105.10.92	Synthetic diamond dust or powder						
	United States	1018207	1824	1719902	4248	2060492	5532
	Ireland	205509	958	251152	1027	607071	2527
	Romania	113500	189	133000	94	522900	369
	Russia1	3933263	1096	-	-	7431	24
	Other countries	49660	175	7256	8	73574	251
	Total	5320139	4245	2111310	5378	3271468	8706

Source: Statistics Canada.

- Nil; .. Not available; Amount too small to be expressed; n.e.s. Not elsewhere specified; preliminary; \mathbf{r} Revised.

1 Former U.S.S.R. for 1992.
Note: Numbers may not add to totals due to rounding.

TABLE 2. DIAMONDS, WORLD PRODUCTION, BY TYPE AND COUNTRY1

Country	1992				1993 e			
	Natural			Synthetic4	Natural			Synthetic ${ }^{4}$
	Gem2	Industrial	Total ${ }^{3}$		Gem2	Industrial	Total ${ }^{3}$	
	(000 carats)							
Angola 5	1100 r	80 r	1180 r	-	470	30	500	-
Australia	17750 r	22 250r	40000 res	-	19000	23200	42200	-
Belarus	-	-	-	30000 r	-	-	-	30000
Botswana	11160 r	4 790r	15946 r	-	12000	5000	17000	-
Brazile	653 r	665 r	1318 r	-	600	900	1500	-
Central African Republic	307 r	107r	414r	- ${ }^{-}$	307	106	413	- ${ }^{-}$
Chinae	200	800	1000	15000	230	850	1080	15500
Czech Republic7	-	-	-	-	-	-	-	5000
Czechoslovakia8,e	-	-	-	10 000r	-	-	-	-
Francee	-	-	-	3500 r	-	-	-	3500
Gabone	400	100	500	-	400	100	500	-
Ghana ${ }^{\text {a }}$	570r	140r	710r	-	600	150	750	-
Greece ${ }^{\text {e }}$	-	-	-	750	-	-	-	1000
Guinea6	90	5	95	-	90	5	95	-
Guyana	13 r	32r	45r,e	-	14	36	50	-
India	15 r	3 r	18	-	16	3	19	-
Indonesiae	6	21	27	-	7	20	27	-
Irelande	-	-	-	60000	-	-	-	66000
Ivory Coast $6, \mathrm{e}$	11	4	15	-	11	4	15	-
Japane	-	-	-	30000	-	-	-	32000
Liberia 10,e	62r,a	93r,a	155r,a	-	60	90	150	-
Namibia	1500 r	50	1548 r	-	1100	40	1 139a	-
Romania	-	-	-	-	-	-	-	-
Russiae	9000	9000	18000	80000	8000	8000	16000	80000
Servia and Montenegro11	-	-	-	5000	-	-	-	5000
Sierra Leone6	200 r	96r	296r	-	90	68	158a	-
Slovakia	-	-	-	-	-	-	-	5000
South Africa, Republic of								
Finsch mine	1200	2250	3466	-	700	1300	$2012{ }^{\text {a }}$	-
Premier mine	740	1700	2444	-	500	1100	$1596{ }^{\text {a }}$	-
Venetia mine	660	1200	1868	-	1750	3200	4 969a	-
Other De Beers' properties 12	1350	500	1849	-	900	350	1249 a	-
Subtotal	4 400r	5750 r	10166 r	60000 e	4300	6050	10324	75000
Swaziland	36	24	51r	-	27	18	45	-
Swedene	-	-	-	25000	-	-	-	25000
Tanzania	48r	20 r	68 r	-	48	20	68	-
U.S.S.R. 13,e	-	-	-	-	-	-	-	-
Ukraine	-	-	-	10000 e	-	-	-	10000
United States	-	-	-	90000	-	-	-	103000
Venezuela	302 r	176 r	478r	-	335	200	535	-
Yugoslavia 14,e	-	-	-	-	-	-	-	-
Zaire	8 934r,a	4 567r,a	13501 r	-	9500	5500	15000	-
Total	56757 r	48773 r	105521 r	419 250r	57205	50390	107620	456000

Sources: Natural Resources Canada; U.S. Bureau of Mines.

- Nil; e Estimated; r Revised.
a Reported figure.
1 Table includes data available through June 8, 1994. Total natural diamond output (gem plus industrial) for each country actually is reported, except where indicated by a footnote to be estimated. In contrast, the detailed separate production data for gem diamonds and industrial diamonds are U.S. Bureau of Mines estimates except Brazil (1989-90), and the Central African Republic (1989-90), for which source publications give details on grade as well as totals. The estimated distribution of total output between gem and industrial diamonds is conjectural, and for most countries, is based on the best available data at time of publication. 2 Includes near-gem and cheap-gem qualities. 3 Natural gem and industrial data may not add to totals shown because of independent rounding. 4 Includes all synthetic diamond production. 5 Figures do not include smuggled artisan production. 6 Figures are estimates based on reported exports and do not include smuggled diamonds. 7 Formerly part of Czechoslovakia. 8 Dissolved on December 31, 1992. 9 "Gem" vs. "Industrial" diamond breakdown has been revised to reflect the value of near-gem material, classified as industrial prior to 1991, but which was ultimately being sold for well above industrial prices. 10 Data for 1989 do not include smuggled production. Data for 1990-92 are estimates of artisan production, likely smuggled out of Liberia, but which are comparable to that hitherto reported to the government. 11 Formerly part of Yugoslavia. ${ }^{12}$ Other De Beers' Group output from the Republic of South Africa includes the Kimberley mines, the Koffiefontein mine, and the Namaqualand mines. ${ }^{13}$ Dissolved in December 1991. 14 Dissolved in April 1992.
Notes: This table does not include data for South Korea, the Federal Republic of Germany, or the United Kingdom. At the time of publication, synthetic diamond production capacity and/or the operational status of these plants had not been confirmed. Production capacity of the synthetic diamond facility in Romania is estimated at 3-5 Mct/y.

TABLE 3. DE BEERS' CSO ROUGH DIAMOND SALES AND STOCKS, 1985-94

Year	Sales	Stocks
(US\$ billions)		
1985	1.80	1.90
1986	2.56	1.85
1987	3.07	2.30
1988	4.17	2.00
1989	4.09	2.47
1990	4.17	2.68
1991	3.93	3.03
1992	3.42	3.76
1993	4.37	4.12
$1994 p$	4.25	4.38

Sources: U.S. Bureau of Mines; American
Diamond Industry Association
CSO = Central Selling Organization.
p Preliminary.

TABLE 4. DIAMONDS, PRINCIPAL CUTTING CENTRES

Country	Type of Diamonds Cut	
	Near Gems ${ }^{1}$	Gems ${ }^{2}$
MAJOR CENTRES		
Belgium (Antwerp, Kempen)		\checkmark
United States (New York)		\checkmark
Israel (Ramat Gan, Tel Aviv)		\checkmark
India (Bombay, Surat)	\checkmark	\checkmark
Russia (Smolensk, Moscow)		\checkmark
Ukraine		\checkmark
INTERMEDIATE CENTRES		
Republic of South Africa		\checkmark
Thailand	\checkmark	$\sqrt{ }$
China, People's Republic of	\checkmark	\checkmark
Sri Lanka	v	
MINOR CENTRES		
Armenia	\checkmark	\checkmark
Australia		\checkmark
Botswana		\checkmark
Brazil		\checkmark
Central African Republic	\checkmark	\checkmark
Puerto Rico	\checkmark	\checkmark
Hong Kong	\checkmark	\checkmark
Taiwan	\checkmark	\checkmark
South Korea	\checkmark	\checkmark
Japan		\checkmark
Singapore	\checkmark	\checkmark
Indonesia	\checkmark	\checkmark

[^0]TABLE 5. RETAIL SALES OF DIAMOND JEWELLERY, 1984-93

	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993p
	(US\$ millions)									
United States	8400	9577	10407	11773	11877	12194	11397	11101	11274	12019
Japan	4850	4765	7506	9682	12647	12467	12358	13308	12713	13459
Europe	2852	2911	4270	5599	6834	7408	8447	7932	8289	7116
East Asia	558	556	985	1281	1685	1878	1892	2160	2481	2719
Other	3842	4299	5070	5824	6097	6960	7160	7353	7248	7201
World	20500	22109	28247	34260	39541	40905	41361	41852	42605	42514

Source: De Beers Consumers Advertising Division Research, unadjusted for inflation. p Preliminary.

TABLE 6. PRICES OF COLOURLESS DIAMONDS VS. FANCY COLOUR DIAMONDS

Colourless Diamonds				Price Per Carat	Fancy Colour Diamonds				Price Per Carat
Carats	Shape	Colour	Clarity		Carats	Shape	Colour	Clarity	
				(US\$)					(US\$)
(C) 5.05	Rectangular	G	IF	13600	(C) 4.72	Rectangular	pink	VS1	140400
(C) 23.25	Pear-shaped	F	IF	33700	(S) 20.17	Emerald	blue	VS2	490952
(S) 11.00	Pear-shaped	D	IF	35227	(C) 10.64	Circular (round)	yellow	VS	7250
(C) 4.13	Pear-shaped	E	IF	18500	(S) 3.09	Emerald	blue	VS1	132524
(C) 30.75	Rectangular	D	IF	79000	(S) 28.59	Oval	yellow	VVS1	12399
(C) 14.13	Rectangular	D	VVS1	32900	(C) 12.02	Modified rectangular	light yellow	IF	10275
(C) 5.46	Rectangular	F	VVS2	15600	(C) 5.94	Square	intense yellow	VS1	41200

Source: The Diamond Registry Bulletin, October 31, 1994, p. 5.
Notes: Sales results from both Sotheby's and Christie's major fall jewellery auctions show that fancy-coloured diamonds commanded substantially higher prices per carat - sometimes more than ten times the price fetched by stones of superior clarity including internally flawless stones or potentially internally flawless stones (if a small impurity can be removed through cutting). A notable exception: light yellow diamonds clearly command a lower price than pinks or blues. Auction houses are represented by (S) for Sotheby's or (C) for Christie's.

[^0]: Sources: Natural Resources Canada; De Beers Centenary AG.
 \checkmark Minor production; $\sqrt{ }$ Major production.
 1 Near gems are rough diamonds valued at approximately
 US $\$ 5-\$ 50 / \mathrm{ct} .2$ Gems are rough diamonds with a value greater than US\$50/ct.
 Note: The categories "major, intermediate and minor" are defined by a combination of quantity (ct) and value of rough diamonds cut.

