Recycled Metals

Brian Smith
The author is with the Mining Sector, Natural Resources Canada.
Telephone: (613) 992-3784
Internet: bsmith@nrcan.gc.ca

Successful recycling depends, in large part, upon three conditions:

- a source of recyclable material;
- an infrastructure to collect the recydable material; and
- markets for the recyclable material.

Metals possess a unique characteristic; when recycled, they retain their original elemental properties. Metal recycling is, in fact, the use and re-use of valuable raw materials. The value of metals and metal recycling is not a recent discovery. Metal recycling is the most mature and highly devel oped of all recycling industries.

Because of their intrinsic high value, metals are not discarded as waste. Metal recycling is an economic activity in which products, whose designed use has been served, now become raw materials in the recycling chain. Metal recyding embodies the spirit of sustainable development for metallurgical industries.

Canadian Scrap Metal Recycling Industry

Canada has a well-established, effective metal recycling industry. The Canadian scrap metal recycling industry comprises over 1000 companies and provides direct employment to approximately 20000 persons. This employment figure does not include employees of ingot-makers, foundries, steel mills, smelters or refineries. While ingot-makers, foundries, smelters and refiners certainly form an essential part of the total recycling industry, many consider themselves to be wholly integrated. It may
be difficult to differentiate clearly between personnel who are strictly involved in scrap recycling operations and those considered to be in manufacturing. Employment estimates indicate that an additional 60000 jobs may be directly or indirectly involved in the Canadian metal recycling industry. Collectively, Canadian recyding companies handle in excess of 11 Mt of metals annually valued at more than C $\$ 3.0$ billion.

Canadian Developments

The Royal Bank of Canada allocated $\$ 125$ million to finance the growth of small- and medium-sized recycling businesses in Canada in an effort to provide risk capital for knowledge-based enterprises and export-oriented companies. The Royal Bank Capital Corporation is charged with investing the new funds in emerging growth companies with sales of $\$ 5$ million or more.

The Quebec provincial government initiated a program to assist the development of the recycling industry. The aid program includes a financial assistance package totalling $\$ 9.5$ million with $\$ 6.4$ million in the form of loan guarantees and $\$ 3.1$ million in grants. The program is administered under the Quebec Ministry of Industry, Science and Technology. The recycling industry development program will fund the start-up of new businesses and the expansion of existing operations.

Hydro-Québec, the Quebec government-owned electric utility company, developed an efficient technology through its subsidiary, Laboratoires des Technologies Électrochimiques et des Électrotechnologies d'H ydro-Québec (LTEE), to recover aluminum from aluminum dross. There can be up to 75% aluminum content in aluminum dross which, because of residual elements, is classified as a hazardous waste. A graphite electrode DC (direct current) electric arc rotary furnace separates the oxide from the aluminum. The molten aluminum and the residues can be tapped sequentially from the furnace. The recovery process has the advantage that it does not require salt additions and that the solid residues generated are not considered to be environmentally hazardous. Recyclage d'Aluminium de Québec, Canada's largest dross treatment company, reached
an agreement to be LTEE's first licensed process facility for the new dross technology.

Phillip Environmental Ltd., an Ontario-based waste management company, acquired I. Waxman \& Sons Ltd. of Hamilton, Ontario. The new enterprise, Waxman Resources Ltd., began a joint venture with B.F. Goodrich Co. to process plastic residue generated from wire chopping lines. The technology, developed by Goodrich, separates the residue into vinyl, polyethylene, nylon and rubber fractions. Phillip Environmental Ltd. also acquired the assets of both Recyclage Côte Nord Inc. and Recyclage d'Aluminium de Québec, companies specializing in recycling aluminum dross generated from primary aluminum smelters.

Environment Canada, the U.S. Environmental Protection Agency, the International Lead-Zinc Research Organization and the Greater Vancouver Regional District jointly funded a study to investigate the behaviour of metals contained in municipal wastes when burned in a municipal solid waste incinerator. The study was conducted at the Burnaby facility in British Columbia. The study concluded that the inadvertent disposal of lead-acid batteries into an incinerator has no effect on air emissions. The lead contained in spent consumer products such as batteries or electronic components accumulated in the grate siftings. The lead components of these siftings could subsequently be reclaimed. The study also investigated the circulation of cadmium in the incineration system and found increased cadmium levels in boiler hopper and air pollution control systems. The increased cadmi um levels were, however, present in relatively non-bioavailable forms that have minimal environmental consequences.

International Developments

Steel

The E uropean Commission contracted a study to investigate the sharp increase in European Union scrap steel prices in 1994. The European steel mills that consume scrap argued that if the price increases were the result of structural market shortages, export restrictions on steel scrap would have to be instituted. The results indicated, however, that the price increases were a natural consequence of higher demand for scrap following the economic recovery in the United States and the Far East.
U.S. automobile producers Chrysler, F ord and General Motors jointly operate a Vehicle Recycling Development Centre in efforts to find new ways of improving the recyclability of cars. The goals include creating new dismantling technologies and promoting the use of recyclable materials in new cars. The facility is located in Highland Park, Michigan.

BMW, Fiat and Renault car-makers signed a joint agreement to develop a E uropean automobile recycling network. The new "recycling accord" will allow each manufacturer to establish an automobile recycling network in its home market using vehicles from all three manufacturers. The recydling infrastructure is expected to boost recycling rates to 85\% by the year 2000 and to 95% by the year 2015. It is generally agreed that the current material recovery rate from automobiles is 75\%.

Mercedes-Benz of Germany signed an agreement with metal recycler Kloeckner and Co. to ensure the environmentally sound recycling of used automobiles. The agreement will cover the take-back, recycling and disposal of residuals of used cars within the Mercedes group. At the same time, auto manufacturer "Seat" of Spain announced a joint-venture partnership with recycling companies to recycle used automobiles under a program similar to MercedesBenz's.

J apan annually recycles more than 5 million scrap vehicles. Scrap vehicles are traditionally purchased from vehicle owners for the value of the recoverable metal. The J apanese Automobile Manufacturers Association now wishes to impose a fee upon vehide owners to offset the anticipated increased cost of recycling. Recycling costs are anticipated to rise when 1996 regulations will increase the disposal costs of automobile shredder residues.

Aluminum

Alcan Rolled Products Co. of Oswego, New York, is expanding its Oswego Works aluminum can recycling operation. The expanded facility, Recycle 11, is expected to triple the plant's aluminum recycling capacity to 6 billion used beverage cans per year by April 1995.

Reynolds Aluminum Recycling Co. began operation of a new recycling plant capable of processing 31000 t/y of used aluminum beverage cans. The new plant at Alsip, Illinois, replaces an older Reynolds plant in Maywood, Illinois. Reynolds Aluminum Recycling Co. is part of the recycling division of Reynolds Metals Company.

Reynolds Metals Company commenced operations at its new Gum Springs, Arkansas plant, which is designed to recycle spent potliners. These potliners are a by-product of primary aluminum production and are designated as hazardous waste. The potliners are thermally treated, producing a non-hazardous ash for use in refractory and road erosion control processes. The new operation, with a capacity of $180000 \mathrm{t} / \mathrm{y}$, would be capable of treating all potliners generated by U.S. aluminum smelters.

I mco Recycling Inc. patented a process to produce by-product fertilizer rather than the typical salt cake
residue which must be sent for disposal. The new process uses 100% potash as a fluxing agent generating a potash/aluminum oxide by-product. The aluminum contained in the by-product is recoverable with the resultant production of a potassium-bearing granular fertilizer.

Lead

Metaleurop S.A. will install new "Sirosmelt-designed" smelting technology in its Weser Blei smelter in Nordenham, Germany, to replace its traditional lead shaft furnace. The new technology will reduce the company's primary smelting capacity but is expected to increase its overall secondary lead production. The Sirosmelt technol ogy, while reducing capacity at N ordenham from 120000 t/y to 90000 t/y, will allow the smelter to process up to 100\% secondary materials as well as all types of concentrates. The new plant is expected to come on stream by late 1995.

Rheinische Zinkgesellschaft, a German lead producer, will increase production of secondary lead at its Berzelius-Stol berg plant located in northeast Germany. The Berzelius-Stol berg plant is switching from a production feed ratio of 60\% primary lead and 40% secondary lead to a production feed ratio of 70% secondary lead and 30\% primary lead. Lead paste recovered from spent auto batteries will be the raw material feedstock.

Mitsui Mining \& Smelting Co. Ltd., which operates the Kamioka Mining and Smelting Co. Ltd. lead smelter in J apan, will no longer use lead concentrate as feedstock. The plant will rely upon lead sourced from recycled batteries. K amioka formerly imported 90% of the smelter's feed requirements. With the switch to feed from recyclable batteries, Kamioka can rely upon domestic sources for much of its raw material.

Boliden Mineral AB's Kaldo primary lead smelter in Ronnskar will be adapted to refine copper arising from electronic and computer scrap once reserves at the Laisavall lead mine are exhausted in 1999. The Ronnskar plant can currently treat 10 000-15 000 t/y of various secondary materials using an electric furnace and refinery to produce copper, lead, gold and silver from concentrate and scrap.

GNB Battery Technologies received approval for the construction of a US $\$ 40$ million battery recycling plant in Columbus, Georgia. The facility will have the capacity to process 8-10 million spent lead-acid batteries annually and will have a production capacity of $80000 \mathrm{t} / \mathrm{y}$ of refined lead. The new facility is expected to start production in April 1995.

RSR Corporation, the largest U.S. secondary lead producer, suspended plans to start up a $110000-\mathrm{t} / \mathrm{y}$ battery recycling plant in Aiken, South Carolina. RSR was indicted for violations to the U.S. Clean

Water Act at its Indianapolis, Indiana facility. RSR proportedly discharged improperly treated wastewater into a nearby stream and sewer system. Local authorities in South Carolina suspended the permitting process pending resolution of the charges. RSR currently operates secondary plants in Middletown, New Y ork (capacity 76000 t/y), Indianapolis, Indiana (120 000 t/y), and Los Angeles, California ($120000 \mathrm{t} / \mathrm{y}$). Starting, Lighting and I gnition battery recycling represents 85% of the company's feedstock; industrial lead-acid batteries comprise the balance of 15\%.

The Doe Run Company, the United States' largest primary lead producer and third largest secondary lead producer, was sold by parent company Fluor Corporation to a large New York-based privately owned company, Renco Group Inc. The Doe Run sale includes the 200 000-t/y primary smelter in Herculanium, Missouri, and the $70000-\mathrm{t} / \mathrm{y}$ recycling plant in Boss, Missouri.

Copper/Brass

Southwire Co. of Gaston, South Carolina, will close its $80000-\mathrm{t} / \mathrm{y}$ secondary copper smelter and refinery. Concern over the expenditures necessary to meet stricter environmental regulations was cited as the rationale for the closure. The plant will be mothballed but could be re-opened subject to favourable economic conditions. The Gaston facility consumed roughly 30000 t/y of No. 2 copper scrap.

Shalimar Wire Industries Ltd. (Swil) of India procured Iand outside of Bombay to construct a new $50000-\mathrm{t} / \mathrm{y}$ electrolytic copper smelter and refinery. Material feed for the facility will be sourced from copper residues and scrap. Swil is expected to consume 15\% of the copper produced at the new facility in its downstream wire producing operations.
Production is expected in 1998.
A consortium of Thai and Australian companies will build a copper extrusion busbar plant in Thailand to supply the Southeast Asian marketplace. The new company, Oriental Copper Co., will be 70\% owned by World Biz Trade Company of Thailand and 30\% by Consolidated Extrusions Company of Australia. The production capacity of the plant will be 120000 t/y and the plant will use primary metal and high-grade scrap as material feed.

Miscellaneous

J ohnson Matthey UK (J M) and Metallo-Chimique International (MCl) entered into an agreement to jointly recycle the precious metals contained in autocatalysts. MCI will be responsible for the de-canning processes and J M will refine the precious metals. Vehide manufacturers and recyding facilities now
have a single point of contact in E urope for catalytic converter precious metal recycling.

Eveready, the largest U.S. alkaline battery producer, developed a recycling technology to recover the zinc and manganese dioxide contained in household batteries. The recyding process involves placing the batteries in a reagent solution to sol ubilize their metal compounds. The steel battery casings will also be recycled. A pilot plant will be built within two years with full commercialization of the technol ogy by the end of the century.

Two of the largest metal recycling companies in the U nited Kingdom have merged to form Europe's largest privately owned independent recyding company. Coopers Holdings Ltd. and the Sheppard Group Ltd. will merge under a holding company, European Metal Recycling Ltd. (EMR). Both Coopers and Sheppard will continue operations under their respective names. EMR will process approximately $3 \mathrm{Mt} / \mathrm{y}$ of recydable ferrous and nonferrous metals.

Regulatory

The European Union (EU) Regulation on the Supervision and Control of Shipments of Waste within, into and out of the European Community was enacted on May 6, 1994. This regulation enables the EU to fully ratify the Basel Convention. The EU has adopted the OECD Wastes Lists into its Regulations and, accordingly, exports of Amber or Red List wastes into or out of the EU can only occur with Basel Convention ratified member countries or countries with whom the EU has established bilateral/multilateral agree-
ments. The regulation further requires non-OECD countries to recognize Green List wastes as being non-hazardous when destined for recycling operations. The response by non-OECD countries to the EU request for recognition of Green List wastes indicated that not all countries were prepared to accept Green List wastes as non-hazardous. EU member countries have extensive trade relations with many non-OECD countries and there are fears by industry that adoption of this regulation could jeopardize international trade.

The J apanese Health and Welfare Ministry plans to introduce a producer responsibility directive intended to stimulate a take-back requirement for consumer items such as televisions and refrigerators. Local governments are currently responsible for the disposal of these items. There is an increasing lack of available dump sites in close proximity to major cities and authorities cannot afford to truck these materials further afield. M otorcycles and auto batteries are also targeted for inclusion in this producer responsibility directive.

Trade

Canadian trade in recyclable metals during 1994 exceeded 4 Mt valued in excess of $\$ 2$ billion. As illustrated in Figure 1, 86\% of Canadian recyclable exports and 94\% of Canadian recyclable imports are with the United States. Trade within the Organization for E conomic Cooperation and Devel opment (OECD) countries (Table 1) accounts for 97% of Canadian recyclable exports and 96\% of Canadian recyclable imports.

Figure 1
Canadian Trade in Recyclable Metals by Region, 1994

[^0]Figure 2
Canadian Trade in Recyclable Metals by Product, 1994

Source: Statistics Canada.

Steel scrap metal recycling represents the largest tonnage of recycled material in Canada. Figure 2 illustrates the proportions of ferrous and nonferrous recyclables in Canada's international trade. Canada exported 1673369 t of ferrous scrap in 1994. This steel scrap export accounted for 69\% of Canada's total recyclable export volume. Canada imported 1791222 t of ferrous scrap in 1994. This import trade accounted for 76% of the total Canadian recyclable import volume.

Nonferrous scrap metal recyding represents the majority of the value in Canada's international trade. Canada exported 763260 t of nonferrous metal scrap valued at C\$825 292 in 1994. These nonferrous scrap metal exports accounted for 74% of the value of total Canadian recyclable exports. Canada imported 892168 t of nonferrous scrap metal valued at C\$1 051472 for the year 1994. These imports accounted for 85% of the value of Canada's total metal-recyclable imports. Table 2 provides a statistical summary of Canada's exports and imports by metal commodity group.

The province of Ontario is the major Canadian gateway for international trade in metal recyclables. More than 40% of both exports and imports cross Ontario borders. Table 3 provides a summary of Canada's recyclable exports and imports by province of Iading.

Aluminum Recycling

Sources

Aluminum scrap arises in many different forms. Aluminum stampings, door and window frames, aluminum venetian blinds, aluminum car and home radiators, aluminum siding, automobile transmissions, and aluminum electrical wires are all sources of scrap aluminum. Aluminum packaging and aluminum use in containers represent roughly 30\% of aluminum consumption.

Used Aluminum Beverage Cans

Used aluminum beverage can (UABC) recyding represents a growing sector for the aluminum recyding industry. Prompted both by environmental concerns for waste reduction and the cost savings realized through the use of recycled scrap products, there is a strong incentive to increase and improve the collection network for UABCs.

Unlike the majority of recyclable products arising from the municipal households, UABCs can be economically recycled. Post-consumer materials, such as newspapers, constitute 70% of the volume in the consumer waste stream, yet their value is relatively low. Aluminum, on the other hand, comprises less than 1% of the recyclable post-consumer waste volume, yet contributes exceptionally high economic value. The
average price paid by recyclers for UABCs in 1994
was C\$2150/t. This compares to a value for newsprint of $C \$ 100 / t$.

ALUMINUM CAN RECYCLING RATES IN REPORTING OECD COUNTRIES

	Recycling Rate		
Country	1991	1992	1993
		$(\%)$	
Sweden	83	86	90
Iceland	75	75	80
United States	64	68	63
Australia	62	61	61
Canada	60	68	80
Japan	42	54	n.r.
Switzerland	40	68	80
Greece	25	29	30
Austria	24	40	60
Italy	10	18	25
Ireland	8	13	16
United Kingdom	6	16	21
France	5	8	12

n.r. Not reported.

Environmental Benefits of Recycling Aluminum

Aluminum recycling is both economically and environmentally desirable. The table below quantitatively illustrates the environmental benefits gained through the production of aluminum using recycled materials versus the production of primary aluminum.

ENVIRONMENTAL BENEFITS OF ALUMINUM RECYCLING

Activity	Savings
	$(\%)$
Energy conservation	95
Material conservation	79
Reduction of emissions	95
Reduction of effluents	97

Source: U.S. Environmental Protection Agency.

Secondary Aluminum

Uses

The largest end use for secondary aluminum is the automotive industry, which accounts for approximately 80% of demand. Other uses for secondary aluminum include its use as a deoxidizing agent in steel production and in the production of aluminum beverage cans. An average of 77 lb of aluminum was used in each new car produced in 1971. This figure rose to 151 lb of aluminum per car by 1994. Auto industry experts anticipate that aluminum usage will more than double by the year 2000. In North America, the 1994 average weight of aluminum used in cars was 219 lb by Ford Motor Co., 197 lb by General Motors and 156 lb by Chrysler Corp.

World Production

World production of secondary aluminum in 1994 is estimated at 6133000 t . This represents 29.7% of the world's refined aluminum production. Table 4 illustrates the world production of secondary aluminum by geographic region.

LME Secondary Aluminum Contract

The establishment of a formal trading contract on the London Metal Exchange (LME) for secondary aluminum underlines the importance of secondary aluminum to world metal industries. The LME contract began three-month trading on October 6, 1992, and cash trading on J anuary 4, 1993. While there still remains significant reluctance on behalf of many aluminum producers and consumers to use the aluminum alloy contract, its presence provides an independent price reference point. Resistance to the secondary alloy use is most firmly felt in North America where industry maintains that the contract fails to provide a relevant price reference for North America as most LME alloy stocks are located in Europe. The LME confirmed that trading will begin in aluminum alloy option contracts on J anuary 3, 1995, to complement the futures contract.

Canadian Secondary/Scrap Aluminum Production and Consumption

Canada produced approximately 121000 t of secondary aluminum in 1993. Canadian manufacturing companies purchased 170000 t of aluminum scrap and 97200 t of secondary aluminum for consumption in 1993. These scrap and secondary aluminum purchases represent roughly 36% of total Canadian consumer aluminum purchases. Table 5 presents Canada's purchases of scrap and secondary aluminum, together with the percentage of the total Canadian consumer aluminum purchases. Canada recycled an estimated 483000 t of scrap aluminum in 1994 (Table 6).

Canada is a net exporter of recycled aluminum scrap. Canada exported 239653 t and imported 66426 t of scrap aluminum in 1994 (Tables 7 and 8). The United States received 90% of Canada's total scrap aluminum exports in 1994. J apan was the second largest recipient at 5\% of the total aluminum export volume.

Prices

Prices for both secondary aluminum alloy and scrap aluminum (Figure 3) increased significantly throughout 1994 and are expected to remain strong throughout 1995. The aluminum alloy enjoyed significant price increases on the LME over the past year, rising from US\$966/t in J anuary to US\$1870/t in December. The price improvements were largely due to increased primary aluminum prices and an increase in demand by the automotive industries whose alloy consumption represents the largest market for aluminum alloy. The yearly average alloy price in 1994 was US\$1460/t. Aluminum alloy stocks on the LME in December 1994 were 30480 t , a steady reduction from 48880 t in December 1993.

Lead Recycling

Uses of Lead

The majority of lead is used to produce lead-acid batteries. The average automotive lead-acid battery con-
tains approximately 10 kg of lead. Lead is also used as a construction material in roofing and, because of its density and sound-absorbing properties, is being used more and more frequently as a partition sound barrier in multiple-dwelling complexes.

Lead is the metal of choice in the nuclear industry because of its resistance to gamma radiation and X rays. Accordingly, it is used as a protective shielding around X-ray equipment, cathode ray tubes and nuclear installations.

Lead is also used in a variety of other applications, including the production of crystal, light bulbs, television and computer screens, keels for pleasure boats, and protective wrappings for underwater electrical transmission cables.

Sources

Lead is one of the most recyded and recyclable metals. More than 90% of all the lead consumed in Canada can be economically recycled. Lead scrap arises principally from batteries, battery plates, drosses, skimmings, and industrial scrap such as cables, printing lead, solders and babbitts. Scrap lead is also recovered from lead weights used in automotive wheel balancing and in the demolition of buildings and chemical plants. Lead-acid batteries, however, represent the domi nant source of recoverable lead. While some lead is present in metallic

Figure 3
Aluminum Prices and Stocks, ${ }^{1} 1993$ and 1994

[^1]form and needs only to be remelted and refined, the majority of lead scrap is present as a combination of metallic lead, oxides and sulphates. The recyding of these lead compounds requires complex metallurgical reduction processes.

Lead recycling has a significant advantage because of the very large proportion of lead used in one specific market: lead-acid batteries. A recycling chain has been established dedicated to the return of spent lead-acid batteries. Studies show that spent leadacid batteries are rarely disposed of in landfills. There is a far greater likelihood that the spent leadacid battery will be stored in a consumer's garage. This storage results in spent batteries not entering the recycling chain in a timely fashion. Programs aimed at improving the recycling rates of spent leadacid batteries include mandatory take-back requirements for retailers, deposit/refund systems, and a tax on the sale of new batteries used to subsidize transport of the spent product from isolated regions.

Lead-Acid Battery Recycling Rates

Lead-acid battery recycling rates are calculated in the United States on behalf of the Battery Council International. The most recent report, 1992, estimated the battery recycling rate in the United States to be 94.4\%. The 1990 and 1991 U.S. recycling rates were cal culated to be 97.8% and 96.8% respectively. Natural Resources Canada estimated the Canadian lead-acid battery recycling rate in 1991 to be 94%. It appears reasonable to conclude that Canadian recycling rates closely mirror those calculated in the United States.

BATTERY RECYCLING RATES IN REPORTING OECD COUNTRIES

Country	
	1991
Australia	>90
Canada	94
France	90
Germany	>95
Japan	93
Norway	50
Sweden	>100
United Kingdom	93
United States	97

Lead Recycling in Canada

There are seven lead smelters located in Canada. Table 9 shows their location and processing capacities.

Canadian Production of Secondary Lead

Canada produced 97800 t of recycled lead in 1994. This figure represents roughly 40% of total Canadian lead production. Canadian primary lead smelters use increasingly larger quantities of scrap lead-bearing materials to supplement their concentrate-based material feed. This development is being mirrored by many international facilities (see previous International Developments section). Lead scrap from spent lead-acid batteries is relatively homogeneous in metallic consistency compared to many of the complex lead concentrates typically processed by primary lead smelters.

There are nine battery-breaking facilities in Canada; Table 10 shows their locations.

World Secondary Lead Production

Secondary lead production, including remelted lead and lead alloys, accounts for close to 50\% (Table 11) of the total world refined lead production. Secondary lead smelters produced 2296000 t of secondary lead in 1994. The United States, the dominant producer of secondary lead, produced an estimated 919000 t in 1994.

Economics, Prices and Outlook

As with other metals, lead enjoyed a significant price appreciation throughout 1994. Lead prices on the LME averaged US24.9ф/lb in 1994, up substantially from US18.4 $4 /$ /b in 1993. The lead price increases did not maintain the traditional price/inventory relationship. LME lead inventories increased steadily in 1994, reaching a peak of 372000 t in September. November and December stock inventories both declined from this level to end the year at 343425 t. The availability of scrap batteries was strong and, accordingly, the prices offered for spent lead-acid batteries did not keep pace with LME price increases. North American demand for lead remained strong with most North American producers in sold-out positions for the coming few months.

Figure 4 illustrates the historical prices for lead superimposed upon the published LME lead stock levels.

Figure 4
Lead Prices and Stocks, 1989-94
LME Average Monthly Spot Prices and Stocks

Source: Natural Resources Canada.

Copper and Brass Recycling

Sources of Scrap Copper and Brass

The production of copper wire accounts for 40% of the total consumption of refined copper. Accordingly, copper wire is the single most important source of scrap. For recovery purposes, scrap copper is segre gated into four principal categories: No. 1 copper wire, No. 2 copper wire, No. 3 copper, and copperbearing scrap. The differentiation between No. 1 and No. 2 copper wire relates to the minimum copper content of the wire. Other major sources of scrap copper include copper tubing, electrical motors and copper sheeting. Copper scrap also arises in the form of residues and can be recovered from metallurgical compounds, metallic dusts, electronic scrap, coppercontaining ashes, and copper-containing sludges.

Bronze alloys contain varying percentages of copper and tin as their principal elements. They may also contain smaller proportions of both lead and zinc. Brass alloys contain copper and zinc as their principal elements and may also contain smaller proportions of both tin and lead. Brass and bronze scrap arises in forms such as water valves, plumbing fixtures, auto radiators, cast machinery, train brake linings, ship propellers, brass pipes, water condenser tubes, and lighting fixtures.

The recovery of copper from recycled sources can have significant energy savings when compared to the production of primary copper.

RELATIVE ENERGY REQUIREMENTS TO PRODUCE COPPER FROM VARIOUS SOURCES (PRIMARY = 100)

	Energy Requirements

(\%)

No. 1 scrap copper 3
No. 2 scrap copper 14
Copper-bearing scrap 35
Brass and bronze scrap 6

Source: Kusik \& Kenahan, Energy Use Patterns for Metal Recycling.

World Copper Scrap Recovery

There were 4426000 t of scrap copper recovered in 1994 (Table 12). The United States is the largest source of scrap copper; it is estimated that the United States recovered 1359000 t of scrap copper in 1994. Copper scrap recovery includes both the production of secondary refined copper and the direct scrap copper used by manufacturers. The useful service life of copper-containing products is estimated to be 35 years for residential housing, 30 years for electrical plants, 15 years for non-electrical machinery, 10 years in transportation applications, and generally

10 years in other end uses. Due to the long life of many consumer and industrial products containing copper, the calculation of pure recycling rates presents a challenge. The Statistical Committee of the International Copper Study Group is proposing to focus on obtaining more reliable and comprehensive statistics on the production and consumption of scrap copper.

Scrap in Production and Consumption

Scrap copper competes directly with primary forms. Smelters and refineries can, to some extent, substitute scrap for concentrate or blister copper. Foundries and other consumers may use either primary refined copper or scrap. Scrap copper accounts for close to 40% (Table 13) of the raw material input of refined copper production and consumption (Table 14).

Exports of Copper Scrap

Canada exported a total of 111965 t of scrap copper and scrap copper-tin alloys in 1994. The United States (Table 15) was the destination for the majority of this exported product. Tables 15 and 16 illustrate the major scrap copper exports from, and imports to, Canada by selected countries.

Scrap Copper Prices and Outlook

Increased worldwide demand for copper metal spurred a steady rise in LME copper prices throughout 1994. Stock levels of copper correspondingly
decreased from $610350 t$ in the first week of J anuary to 342125 t in the last week of December. The No. 1 scrap price in J anuary was US\$1.00/lb; the December year-end No. 1 scrap price was US $\$ 1.17 / \mathrm{lb}$. The increased prices stimulated an increased supply of copper scrap into the marketplace. Accordingly, the discount in the price offered for scrap copper from the primary copper quotation widened considerably through the second half of 1994. While some analysts maintain it is unlikely that this copper bull market can be sustained over the longer term, demand expectations from the brass and rod mills indicate a continued strong market for the short term. Market fundamentals, including strong demand, reduced stock levels and a projected copper supply deficit, all point to firm price level maintenance throughout 1995.

Steel Recycling

Sources of Scrap Steel

Iron and steel scrap represent by far the largest tonnage of recyclable material in Canada. Scrap steel arises via three principal channels: internally generated and consumed steel scrap, new production steel scrap, and obsolete steel scrap.

Scrap is generated in the steel production process. This form of scrap never leaves the steelmaking production area. It is re-fed into the "heat" and, in essence, becomes a circulating load. It is called "home" scrap and accounts for approximately 25\% of total scrap steel consumed by steel mills.

Figure 5
Copper Prices and Stocks, 1991-94

[^2]${ }^{1}$ New York Commodity Exchange.

New production scrap steel arises from the manufacturing sector. As new products are produced from steel, the excess steel material generated by these processes forms new production scrap steel. This material is typically sold to the scrap metal industry which processes it for sale to steel mills and foundries.

Obsolete scrap steel arises when industrial and consumer steel products have served their useful life. It is impossible to directly estimate the generation of obsolete scrap steel. This material can be generated at any time from the moment of production to well beyond the end of a product's useful life. Scrap cars represent a significant proportion of obsol ete scrap steel within this category and are processed by a subindustry group, the Canadian Automobile Shredding Industry. Steel recovered from the shredding of scrap cars represents a high-quality feedstock to consuming steel mills. There are 19 car shredders in Canada representing a total estimated annual production capacity of 1800000 t (Table 19). Figure 6 illustrates the component fractions recycled from used automobiles.

Figure 6
Automobile Shredder Components
Component Fractions by Weight

Consumers of Scrap Steel

Steel mills and ferrous foundries consume the majority of scrap steel products. The Canadian iron and steel industry consumed more than 8 Mt of scrap iron and steel in 1994 (Table 17). This consumption tonnage of scrap steel represents more than 50% of the raw material requirements of Canadian steelmaking producers. There are 16 el ectric arc iron and steel mills and 255 iron and steel foundries in Canada.

The apparent Canadian recycling figures for iron and steel scrap are presented in Table 18.

Scrap Steel Pricing

World demand for scrap steel increased sharply in 1994, principally due to a strengthening in demand from both the automotive and appliance sectors. Additional demand has also been generated by increased steel making capacities. North America and Europe are both scrap exporting markets. Annual surplus estimates from these regions for scrap steel total 10-12 Mt. Asian markets, particularly China, showed increased levels of scrap steel consumption which were largely being satisfied via imports from North America and Europe. The 1993 scrap steel deficit for Asian countries was estimated at 12.5 Mt . There is increasing evidence, however, that scrap resources are growing rapidly in these Asian countries with J apan soon to become an important scrap exporter. Figure 7 illustrates the historical scrap steel composite price as published in Iron Age

Environmental Benefits of Steel Recycling

Scrap steel recycling conserves energy, defers the development of less economic mineral resources, and eases the burden on municipal landfills. The table below quantitatively illustrates the environmental benefits gained through the production of steel using recycled materials versus the production of primary steel.

ENVIRONMENTAL BENEFITS OF STEEL RECYCLING

Benefit	Savings
	$(\%)$
Energy savings	74
Virgin materials savings	90
Emission reduction	86
Effluent reduction	40
Water pollution reduction	76
Mining waste reduction	97

Source: U.S. Institute of Scrap Recycling Industries.

Canadian Federal Regulations Impacting on Metal Recycling

Export and Import of Hazardous Wastes Regulations

The Canadian Export and Import of Hazardous Wastes Regulations are key el ements of federal legisIation affecting the Canadian metal recycling

Figure 7
Ferrous Scrap, ${ }^{1}$ 1990-94

Source: Iron Age.
HMS: Heavy melting steel.
1 Hamilton, Ontario, broker's buying prices.
industry. The regulations establish the legal requirements for the international trade of hazardous metal recyclables. All metal recyclables are presently defined as "wastes" in Canada. A metal recyclable is considered "hazardous waste" if it exhibits any one of nine hazard characteristics as defined under the Transport of Dangerous Goods Regulations. These hazard characteristics are listed below.

HAZARD CHARACTERISTICS

Class 1 - Explosives
Class 2 - Gases: compressed, deeply refrigerated, liquefied, or dissolved under pressure
Class 3 - Flammable and combustible liquids
Class 4 - Flammable solids
Class 5 - Oxidizing substances
Class 6 - Poisonous (toxic) and infectious substances
Class 7 - Radioactive materials
Class 8 - Corrosives
Class 9 - Miscellaneous substances considered to be dangerous to life, health, property, or the environment, including leachability

The key regulatory elements of the Export and Import of Hazardous Wastes Regulations include:

- the requirement of prior notification to, and acceptance from, the competent environmental authority of the importing country;
- the prohibition of exports to those countries that have banned imports;
- the requirement to return wastes to the country of origin or find acceptable disposal alternatives should the original disposal activities prove not to be possible in accordance with the contractual agreement;
- the requirement to obtain insurance sufficient to cover either the return of the exported hazardous wastes or the clean-up activity of these wastes in the event of an accident; and
- the requirement to use an authorized tracking document in the shipment of these hazardous wastes.

The regulations were amended in 1993 to allow an importer to assume the responsibilities of an exporter in cases where the exporting country did not regulate the substance as a hazardous waste. In such cases, the Canadian importer could apply for an Equivalent Level of Safety Permit under the Transport of Dangerous Goods Regulations and assume the signing authority for the Hazardous Waste Manifest in lieu of the exporter.

The regulations were further amended in 1994 to allow the use of Electronic Data Interchange for sending import notification information to Environment Canada. This permits information to be directly incorporated into computer systems without
retyping. It is expected to improve the response time and increase the accuracy of data input by the authorities.

Issues Under Consideration

The provincial authorities have agreed to review both their "waste" and "hazard" definitions. Environment Canada has been mandated to lead this definitional review process and is proceeding with a study to evaluate the various "waste" definitions and regulatory controls for recyclable materials used in Canada. Included in this study is a review of the U.S. regulatory control of recyclables as the United States represents Canada's largest trading partner. This review is expected to be completed for presentation to the Canadian Council of Ministers of the Environment by early summer 1995.

International Regulations Impacting on Metal Recyclables

Canada-U.S. Agreement on the Transboundary Movement of Hazardous Wastes

This agreement seeks to ensure that the treatment, storage and disposal of hazardous wastes are conducted in a manner that properly manages the risks to public health, property and environmental quality. The Canada-U.S. Agreement controls and monitors the flow of hazardous wastes between the two countries. This bilateral agreement was negotiated in 1986 and automatically renewed itself in 1992.

Under the provisions of the agreement, all hazardous wastes destined for transboundary movement between Canada and the United States are subject to the requirements of:

- notification and consent prior to shipment;
- readmission of any shipment of hazardous waste that may be returned by the country of import or transit;
- maintenance of insurance or other financial guarantee in respect of damage during the entire movement; and
- utilization of an authorized manifest or tracking document.

There are differences in the hazardous waste controls between the two countries as they apply to metal recydables. Many of the materials controlled as hazardous wastes in Canada are not so controlled in the United States.

Basel Convention

The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal was designed to restrict the transboundary movement of hazardous wastes to protect countries (particularly developing) that may not have the capability and technol ogy to properly handle the wastes. The Basel Convention defines recyding as a "disposal" activity, and recyclable materials as "wastes." Recyclables that exhibit a hazardous characteristic are classified as hazardous wastes and are subject to strict Basel Convention control procedures. The Basel Convention does not adequately distinguish between wastes destined for disposal and recyclables destined for recovery operations. The Basel Convention prohibits trade in hazardous wastes between ratified and non-ratified countries unless there exists a bilateral agreement between them provided such agreements do not derogate from the environmentally sound management of the materials. There is no harmonization in the definition of "hazardous waste" among member countries as this proved impossible to attain during negotiations of the Basel Convention. Currently, national procedures are used, reflecting the diversity of regulatory abilities, recycling practices and "hazard" definitions. Accordingly, it becomes unclear which materials are considered to be both "wastes" and "hazardous" among importing and exporting member countries. Definitional discrepancies can lead to serious allegations of illegal dumping of hazardous wastes.

The Basel Convention came into force on May 5, 1992, and Canada ratified it on August 28, 1992. Canada has been an active participant in all working group meetings and the two Conference of Parties (COP) meetings to the Basel Convention.

Ban on the Export of Hazardous Waste

During the second COP in Geneva March 21-25, 1994, developing countries, together with the Scandinavian countries and GreenPeace International, called for an immediate and complete ban on exports of hazardous wastes destined for disposal and recovery/recycling operations from OECD countries to developing countries. This was despite the legal ability of any devel oping or devel oped country to instigate a ban for their country by a single letter to the Basel Secretariat. Opposition to the ban proposal was initially expressed by most European Union countries, Canada, Australia and J apan. Member countries unanimously agreed to an immediate ban on the export of hazardous wastes destined for final disposal from OECD to non-OECD countries. In the end, no countries opposed the decision calling for a ban from OECD to non-OECD countries on exports of hazardous wastes destined for recovery operations, effective December 31, 1997. No opposition to the ban decision was voiced by developing countries.

The "ban" decision was raised for discussion at an Ad-H oc Committee meeting in December 1994. Concerns were raised regarding the implementation of the "ban" decision by China, Korea, India, I srael, the Czech Republic and Hungary. It was felt that premature implementation of the ban on recyclable materials could result in damage to growing recycling industries in many devel oping countries. Senegal offered to host a workshop to be held in M arch 1995 which could allow an opportunity to objectively evaluate the implications, principally for developing countries, of the "ban" decision.

Protocol on Liability and Compensation

The Basel Convention recommends the establishment of protocols on liability and compensation which will offer protection to the environment and legal recourse to third parties in the event of damage caused by the transboundary movement of hazardous wastes. The scope of this protocol could include any damages occurring to either individuals or the environment up to and including 30 years after the completion of disposal operations. Recycling is defined as a disposal operation. There has been no consideration, to date, on funding mechanisms for this protocol.

A working group of legal and technical experts was established to advise on both issues of liability and compensation. Recommendations for the formal adoption of a protocol are expected to be presented at the third COP to be held in September/October 1995. Countries would then have the option of whether or not to agree to be bound by the protocol.

OECD Decision

The OECD Decision C(92)39/FINAL concerning the control of the transfrontier movement of wastes destined for recovery operations is a multilateral agreement, as envisaged under the Basel Convention, to allow the continuation of trade in recyclable materials among OECD member countries. The Decision was adopted on March 30, 1992, by OECD member countries, prior to the entry into force of the Basel Convention.

The Decision fully recognizes a difference between wastes destined for final disposal and wastes destined for recovery/recycling operations. Furthermore, the Decision recognizes that differing levels of perceived risk in the transfrontier movement of recyclable materials exists for different materials.

The OECD Decision divides recyclable materials into three lists: Green, Amber and Red. If a material is not identified on one of these lists, the transfrontier movement of the material must conform to the movement control procedures governing hazardous wastes destined for final disposal as prescribed under the Basel Convention.

The Green OECD List contains recyclable materials considered to be of a non-hazardous nature. Table 20 provides a list of the major metal recyclables contained on the Green OECD List. These Green List metal recyclables can freely move under normal commercial control mechanisms. Countries are free to impose movement restrictions upon Green List materials if the materials are considered to be hazardous by their national regulations.

The Amber OECD List of wastes includes metals that exhibit one or more hazardous characteristics. These metals have been reviewed by an experts committee which has determined that the risk posed by the movement of these hazardous recyclable metals is limited. Accordingly, they are permitted to move internationally under less onerous transportation control mechanisms than those prescribed under the Basel Convention.

Two control system procedures are provided under the Amber control mechanism. These procedures relate to cases where transactions require consent for specific shipments to a recovery facility, and where transactions involve shipments to specific preconsented recovery facilities. The control procedures for specific shipments to a recovery facility include:

- prior notification of the intended shipment with a 30-day tacit consent provision;
- required use of an authorized tracking document;
- recovery facility to provide signed copy of receipt of waste;
- insurance requirements; and
- movement may occur only under the terms of a valid written contract.

The control procedures for shipments to specific preauthorized recovery facilities include a seven-day tacit consent for the notification of the intended shipment. This effectively reduces the time delay between material purchases and actual shipment.

Table 21 provides a summary of the major metal recyclables on the Amber OECD List.

The Red OECD List does not specifically include any metals or metal compounds. It includes materials contaminated with polychlorinated bi phenyls (PCBs), polychlorinated terphenyls (PCTs), or polybrominated biphenyls (PBBs) at a concentration level of $50 \mathrm{mg} / \mathrm{kg}$ or more.

It is important to note that while OECD countries have agreed to these three lists of recyclable materials, individual countries have the authority to determine whether a material is, or is not, considered hazardous under their own national regulations.

Accordingly, movement control procedures may vary among OECD member countries for individual materials.

Environmental Issues Impacting on Metal Recyclables

Waste vs. Product Definitions

The OECD Review Committee responsible for assigning the placement of recyclables onto the Green, Amber or Red OECD Lists is reviewing criteria that could be used to differentiate between a "waste" and a "product." Recent applications submitted to the review committee meetings have focussed on declaring substances as products and requesting their formal removal from the OECD "waste" lists. This concentration on definitional issues has prompted the group to propose devel oping criteria that could be used on a consistent basis to differentiate between a "waste" and a "product." A draft report on this study is to be presented at the April 1995 meeting of the Waste Management Policy Group.

International Maritime Organization HNS Convention

The International Maritime Organization (IMO) has, since 1984, been developing a convention for compensation and liability for damage caused during the carriage by sea of hazardous and noxious substances. The formal name for this draft convention is the IMO Convention on Liability and Compensation for Damage in Connection With the Carriage of Hazardous and Noxious Substances by Sea (HNS). Hazardous and noxious substances are defined by reference to existing lists of hazardous and/or noxious substances when moved at sea. Most recyclable metals considered hazardous under the Basel Convention will also be considered hazardous under the IMO HNS Convention. The convention proposes two tiers of liability: the ship-owner and the importer. The ship-owner will be required to maintain a yet-to-be-determined level of liability insurance coverage. In the event of a damage claim that exceeds the shipowner's insurance coverage, the liability scheme would collect additional funds from the second tier of the compensation scheme. It is proposed that a shipping charge, or levy per tonne, be assigned to hazardous and/or noxious cargoes to fund the liability and compensation scheme. A conference is being planned for early 1996 to conclude the convention. Limits on both liability and compensation are proposed to be established at this meeting. The amount of these financial limits will determine the size of the "levy" to be assigned against hazardous recyclables and other materials.

Note: Information in this review was current as of February 1, 1995.

TABLE 1. CANADA, EXPORTS AND IMPORTS OF METAL RECYCLABLES, 1990-94

	1990		1991		1992		1993		1994e	
	Quantity	Value								
	(tonnes)	(\$000)								
RECYCLABLE EXPORTS										
Exports to United States \% of total exports	$\begin{array}{r} 1947911 \\ 76.04 \end{array}$	$\begin{array}{r} 855086 \\ 80.77 \end{array}$	$\begin{array}{r} 1549000 \\ 85.04 \end{array}$	$\begin{array}{r} 628566 \\ 81.68 \end{array}$	$\begin{array}{r} 1610665 \\ 86.02 \end{array}$	$\begin{array}{r} 702579 \\ 84.25 \end{array}$	$\begin{array}{r} 1998492 \\ 89.40 \end{array}$	$\begin{array}{r} 752876 \\ 86.66 \end{array}$	$\begin{array}{r} 2094712 \\ 85.97 \end{array}$	$\begin{array}{r} 982252 \\ 88.17 \end{array}$
Ferrous exports to United States \% of total ferrous exports	$\begin{array}{r} 1517056 \\ 83.20 \end{array}$	$\begin{array}{r} 221161 \\ 78.43 \end{array}$	$\begin{array}{r} 1153095 \\ 84.89 \end{array}$	$\begin{array}{r} 150230 \\ 82.84 \end{array}$	$\begin{array}{r} 1145849 \\ 89.33 \end{array}$	$\begin{array}{r} 119891 \\ 77.42 \end{array}$	$\begin{array}{r} 1439066 \\ 86.19 \end{array}$	$\begin{array}{r} 201099 \\ 88.25 \end{array}$	$\begin{array}{r} 1517182 \\ 90.66 \end{array}$	$\begin{array}{r} 277873 \\ 96.23 \end{array}$
Nonferrous exports to United States \% of total nonferrous exports	$\begin{array}{r} 430855 \\ 58.36 \end{array}$	$\begin{array}{r} 633925 \\ 81.62 \end{array}$	$\begin{array}{r} 395905 \\ 85.46 \end{array}$	$\begin{array}{r} 478336 \\ 81.32 \end{array}$	$\begin{array}{r} 464816 \\ 78.82 \end{array}$	$\begin{array}{r} 582688 \\ 85.81 \end{array}$	$\begin{array}{r} 559426 \\ 92.66 \end{array}$	$\begin{array}{r} 551777 \\ 86.10 \end{array}$	$\begin{array}{r} 577530 \\ 93.08 \end{array}$	$\begin{array}{r} 704379 \\ 89.57 \end{array}$
Exports to OECD countries \% of total exports	$\begin{array}{r} 2341904 \\ 91.42 \end{array}$	$\begin{array}{r} 991236 \\ 93.63 \end{array}$	$\begin{array}{r} 1644055 \\ 90.25 \end{array}$	$\begin{array}{r} 715429 \\ 92.97 \end{array}$	$\begin{array}{r} 1688291 \\ 90.17 \end{array}$	$\begin{array}{r} 782623 \\ 93.85 \end{array}$	$\begin{array}{r} 2101427 \\ 94.00 \end{array}$	$\begin{array}{r} 826949 \\ 95.19 \end{array}$	$\begin{array}{r} 2354464 \\ 96.63 \end{array}$	$\begin{array}{r} 1068486 \\ 95.91 \end{array}$
Exports to non-OECD countries \% of total exports	$\begin{array}{r} 219851 \\ 8.58 \end{array}$	$\begin{array}{r} 67445 \\ 6.37 \end{array}$	$\begin{array}{r} 177531 \\ 9.75 \end{array}$	$\begin{array}{r} 54116 \\ 7.03 \end{array}$	$\begin{array}{r} 184098 \\ 9.83 \end{array}$	$\begin{array}{r} 51281 \\ 6.15 \end{array}$	$\begin{array}{r} 134099 \\ 6.00 \end{array}$	$\begin{array}{r} 41809 \\ 4.81 \end{array}$	$\begin{array}{r} 82164 \\ 3.37 \end{array}$	$\begin{array}{r} 45579 \\ 4.09 \end{array}$
Exports to EU countries \% of total exports	$\begin{array}{r} 35197 \\ 1.37 \end{array}$	$\begin{array}{r} 76142 \\ 7.19 \end{array}$	$\begin{array}{r} 31837 \\ 1.75 \end{array}$	$\begin{array}{r} 48622 \\ 6.32 \end{array}$	$\begin{array}{r} 13750 \\ 0.73 \end{array}$	$\begin{array}{r} 37395 \\ 4.48 \end{array}$	$\begin{array}{r} 55071 \\ 2.46 \end{array}$	$\begin{array}{r} 32154 \\ 3.70 \end{array}$	$\begin{array}{r} 16114 \\ 0.66 \end{array}$	$\begin{array}{r} 31859 \\ 2.86 \end{array}$
Total exports	2561755	1058681	1821586	769545	1872389	833904	2235526	868758	2436628	1114065
RECYCLABLE IMPORTS										
Imports from United States \% of total imports	$\begin{array}{r} 1434667 \\ 96.72 \end{array}$	$\begin{array}{r} 630029 \\ 88.93 \end{array}$	$\begin{array}{r} 1089447 \\ 96.83 \end{array}$	$\begin{array}{r} 585193 \\ 87.27 \end{array}$	$\begin{array}{r} 1649903 \\ 94.68 \end{array}$	$\begin{array}{r} 638818 \\ 82.86 \end{array}$	$\begin{array}{r} 1865919 \\ 95.53 \end{array}$	$\begin{array}{r} 1029476 \\ 90.60 \end{array}$	$\begin{array}{r} 2220028 \\ 94.46 \end{array}$	$\begin{array}{r} 1100011 \\ 88.78 \end{array}$
Ferrous imports from United States \% of total ferrous imports	$\begin{array}{r} 1235222 \\ 98.93 \end{array}$	$\begin{array}{r} 127820 \\ 97.97 \end{array}$	$\begin{array}{r} 884956 \\ 99.07 \end{array}$	$\begin{array}{r} 104699 \\ 99.14 \end{array}$	$\begin{array}{r} 1332195 \\ 98.78 \end{array}$	$\begin{array}{r} 145922 \\ 98.88 \end{array}$	$\begin{array}{r} 1519744 \\ 99.74 \end{array}$	$\begin{array}{r} 212560 \\ 99.15 \end{array}$	$\begin{array}{r} 1772857 \\ 98.97 \end{array}$	$\begin{array}{r} 275852 \\ 98.74 \end{array}$
Nonferrous imports from United States \% of total nonferrous imports	$\begin{array}{r} 199445 \\ 84.96 \end{array}$	$\begin{array}{r} 502209 \\ 86.88 \end{array}$	$\begin{array}{r} 204927 \\ 88.38 \end{array}$	$\begin{array}{r} 480494 \\ 85.05 \end{array}$	$\begin{array}{r} 317726 \\ 80.63 \end{array}$	$\begin{array}{r} 493406 \\ 79.15 \end{array}$	$\begin{array}{r} 346175 \\ 80.58 \end{array}$	$\begin{array}{r} 816916 \\ 88.61 \end{array}$	$\begin{array}{r} 447171 \\ 80.00 \end{array}$	$\begin{array}{r} 824159 \\ 85.88 \end{array}$
Imports from OECD countries \% of total imports	$\begin{array}{r} 1459695 \\ 98.40 \end{array}$	675504 95.34	$\begin{array}{r} 1113715 \\ 98.98 \end{array}$	646896 96.47	$\begin{array}{r} 1680507 \\ 96.43 \end{array}$	704368 91.37	$\begin{array}{r} 1887697 \\ 96.65 \end{array}$	$\begin{array}{r} 1088302 \\ 95.77 \end{array}$	$\begin{array}{r} 2266246 \\ 96.43 \end{array}$	$\begin{array}{r} 1171394 \\ 94.54 \end{array}$
Imports from non-OECD countries \% of total imports	$\begin{array}{r} 23688 \\ 1.60 \end{array}$	32987	11424 1.02	$\begin{array}{r} 23639 \\ 3.53 \end{array}$	62149 3.57	66562 8.63	65527 3.35	48034 4.23	83919 3.57	$\begin{array}{r} 67682 \\ 5.46 \end{array}$
Imports from EU countries $\%$ of total imports	$\begin{array}{r} 16021 \\ 1.08 \end{array}$	$\begin{array}{r} 33372 \\ 4.71 \end{array}$	$\begin{array}{r} 21187 \\ 1.88 \end{array}$	$\begin{array}{r} 50341 \\ 7.51 \end{array}$	$\begin{array}{r} 15466 \\ 0.89 \end{array}$	$\begin{array}{r} 52508 \\ 6.81 \end{array}$	$\begin{array}{r} 14537 \\ 0.74 \end{array}$	$\begin{array}{r} 47313 \\ 4.16 \end{array}$	$\begin{array}{r} 11860 \\ 0.50 \end{array}$	$\begin{array}{r} 48478 \\ 3.91 \end{array}$
Total imports	1483383	708491	1125139	670535	1742656	770930	1953224	1136336	2350165	1239076

Source: Statistics Canada.
EU European Union.
e Estimated; r Revised.

TABLE 2. CANADA, EXPORTS AND IMPORTS BY COMMODITY GROUP, 1990-94

METAL RECYCLABLE EXPORTS
Aluminum ash and residues
Aluminum scrap
Total aluminum
\% total recyclable
Copper ash and residues
Copper scrap
Total copper recyclable
\% total recyclable
Lead ash and residues
Lead scrap
Total lead recyclable
\% total recyclable

Zinc ash and residues
 Zinc scrap
 Total zinc recyclable
 \% total recyclable

Nickel ash and residues Nickel scrap
Total nickel recyclable
\% total recyclable

Vanadium ash and residues Vanadium scrap
 Total vanadium recyclable
 \% total recyclable

Magnesium ash and residues
 Magnesium scrap
 Total magnesium recyclable
 \% total recyclable

Tin ash and residues
Tin scrap
Total tin recyclable
\% total recyclable
Precious metal ash and residues Precious metal scrap
Total precious metal recyclable
\% total recyclable
N.e.s. ash and residues
N.e.s. scrap

Total n.e.s. recyclable
\% total recyclable

49546	6181	25820	4640	7103	1515	3709	991	3018	921
185971	278527	173675	227539	197582	263996	199207	246638	236635	379396
235517	284708	199494	232179	204685	265511	202916	247629	239653	380317
10.48	34.04	10.95	30.17	10.93	31.84	9.09	28.50	9.84	34.14
5847	5605	1792	2151	1742	2443	1218	1142	1291	1215
18298	37167	86368	178682	102044	211065	115593	233685	110674	253209
24145	42772	88160	180833	103786	213498	116811	234827	111965	254424
1.07	5.11	4.84	23.50	5.4	25.60	5.23	27.03	4.60	22.84
741	352	216	151	1246	318	681	249	803	326
17382	6398	5237	2675	6608	2576	3354	1096	6361	2840
18123	8750	5453	2825	7854	2894	4035	1345	7164	3166
0.81	0.81	0.30	0.37	0.42	0.35	0.18	0.15	0.29	0.28
9007	8624	9723	6322	12762	10612	9645	7837	10795	8667
38118	22925	33327	18497	32223	19911	40964	21389	54925	31065
47125	31549	43050	24819	44985	30523	50609	29226	65720	39732
2.10	3.77	2.36	3.23	2.40	3.66	2.27	3.36	2.70	3.57
-	-	-	-	-	-	-	-	-	-
7748	39385	4232	19866	4178	16557	2443	9719	2258	10790
7748	39385	4232	19866	4178	16557	2443	9719	2258	10790
0.34	4.71	0.23	2.58	0.22	1.99	0.11	1.12	0.09	0.97
1085	1426	680	622	1481	1169	952	697	679	265
-	-	-	-	-	-	-	-	-	-
1085	1426	680	622	1481	1169	952	697	679	265
0.05	0.17	0.04	0.08	0.08	0.14	0.04	0.08	0.03	0.02
-	-	-	-	-	-	-	-	-	-
3358	8569	3035	4051	1067	946	517	984	462	1156
3358	8569	3035	4051	1067	946	517	984	462	1156
0.15	1.02	0.17	0.53	0.06	0.11	0.02	0.11	0.02	0.10
-	-	-	-	-	-	-	-	-	-
529	449	460	490	486	627	847	519	638	596
529	449	460	490	486	627	847	519	638	596
0.02	0.05	0.03	0.06	0.03	0.08	0.04	0.06	0.03	0.05
-	-	-	-	-	-	-	-	-	-
204	97997	300	87960	201	77301	154	64575	184	63336
204	97997	300	87960	201	77301	154	64575	184	63336
0.01	11.72	0.02	11.43	0.01	9.27	0.01	7.43	0.01	5.69
85785	40913	118377	34543	221012	70015	222454	51362	191751	32594
-	-	- -	-	221012	-	-	-	- -	-
3.82	4.89	6.50	34.49	2211.80	7.40	22296 9.96	5.91	7.87	- 2.93

TABLE 2 (cont'd)

1990		1991		1992r		1993		1994	
Quantity	Value								

METAL RECYCLABLE EXPORTS (cont'd)

Stainless steel ash and residues
Stainless steel scrap
Total stainless steel recyclable
\% total recyclable

Ferrous slags
 Ferrous scrap
 Total ferrous recyclable
 \% total recyclable

Total recyclable exports

-	-	-	-	-	-	-	-	-	-
36878	41282	24041	20719	144101	33763	159138	36843	142786	38916
36878	41282	24041	20719	144101	33763	159138	36843	142786	38916
1.64	4.94	1.32	2.69	7.70	4.05	7.12	4.24	5.86	3.49
522176	61428	281795	28355	164109	4927	337661	30245	181931	47043
1264404	179227	1052508	132282	974443	116173	1134989	160787	1491438	241721
1786580	240855	1334303	160638	1138552	121100	1472650	191032	1673369	288764
79.51	28.77	73.25	20.87	60.81	14.52	65.93	21.99	68.68	25.92
2247077	836455	1821586	769545	1872388	833904	2233526	868758	2436629	114056

METAL RECYCLABLE IMPORTS
Aluminum ash and residues
Aluminum scrap
Total aluminum
\% total recyclable
Copper ash and residues Copper scrap
Total copper recyclable
\% total recyclable
Lead ash and residues Lead scrap
Total lead recyclable
\% total recyclable
Zinc ash and residues
Zinc scrap
Total zinc recyclable
\% total recyclable
Nickel ash and residues Nickel scrap
Total nickel recyclable
\% total recyclable
Magnesium ash and residues Magnesium scrap
Total magnesium recyclable
\% total recyclable
Tin ash and residues
Tin scrap
Total tin recyclable
\% total recyclable

1750	709	1923	1293	3379	1536	2331	964	3065	1540
52603	73271	46433	52717	52674	62396	53466	64385	63361	86687
54353	73980	48357	54010	56053	63932	55797	65349	66426	88227
3.66	10.23	4.30	8.05	3.22	8.29	2.86	5.75	2.83	7.12
37248	30136	19269	13191	14955	14124	29681	32207	31417	38261
65540	109673	47687	65512	41939	52145	53648	63689	98452	173972
102788	139809	66957	78703	56894	66269	83329	95896	129869	212233
6.92	19.34	5.95	11.74	3.26	8.60	4.27	8.44	5.53	17.13
1764	4	95	110	23	100	262	1151	7111	7617
34831	12496	58044	10640	50538	9671	38716	8358	67931	15201
36595	12500	58139	10750	50561	9771	38978	9509	75042	22818
2.46	1.73	5.17	1.60	2.90	1.27	2.00	0.84	3.19	1.84
567	439	472	255	1028	767	1054	745	1350	674
1615	1890	655	670	1526	1541	1974	1892	1049	899
2182	2329	1127	925	2554	2308	3028	2637	2399	1573
0.15	0.32	0.10	0.14	0.15	0.30	0.16	0.23	0.10	0.13
-	-	-	-	-	-	-	-	-	-
9314	22978	14811	35145	18238	35803	17967	27265	20950	40889
9314	22978	14811	35145	18238	35803	17967	27265	20950	40889
0.63	3.18	1.32	5.24	1.05	4.64	0.92	2.40	0.89	3.30
-	-	-	-	-	-	-	-	-	-
41	116	260	688	2159	5672	2746	7123	2161	6477
41	116	260	688	2159	5672	2746	7123	2161	6477
0.003	0.02	0.02	0.10	0.12	0.74	0.14	0.63	0.09	0.52
-	-	-	-	-	-	-	-	-	-
94	545	167	846	466	1575	187	685	305	1235
94	545	167	846	466	1575	187	685	305	1235
0.01	0.08	0.01	0.13	0.03	0.20	0.01	0.06	0.01	0.10

14144	287888	9702	288044	4132	310096	17317	626175	16466	481020
14144	287888	9702	288044	4132	310096	17317	626175	16466	481020
0.95	39.82	0.86	42.96	0.24	40.22	0.89	55.10	0.70	38.82
17372	37873	31589	80177	202039	99343	209538	81872	244665	97700
964	14447	757	15640	938	28584	716	5424	661	7519
18336	52320	32346	95817	202977	127927	210254	87296	245326	105219
1.23	7.24	2.87	14.29	11.65	16.59	10.76	7.68	10.44	8.49
-	-	-	-	-	-	-	-	-	-
20337	20962	20508	20972	147146	47388	218236	68341	333224	91781
20337	20962	20508	20972	147146	47388	218236	68341	333224	91781
1.37	2.90	1.82	3.13	8.44	6.15	11.17	6.01	14.18	7.41
245750	6754	83546	2561	116743	2580	65134	2812	65632	2071
981979	102717	789220	82073	1084733	97609	1240251	143248	1392366	185526
1227729	109471	872766	84634	1201476	100189	1305385	146060	1457998	187597
82.62	15.14	77.57	12.62	68.95	13.00	66.83	12.85	62.04	15.14
1485913	722898	1125139	670535	1742656	770930	1953224	1136336	2350166	1239069

[^3]TABLE 3. CANADA, RECYCLABLE METAL EXPORTS AND IMPORTS, BY PROVINCE OF LADING, 1991-94

	1991		1992r		1993		1994	
	(tonnes)	(\%)	(tonnes)	(\%)	(tonnes)	(\%)	(tonnes)	(\%)
EXPORTS								
British Columbia	348834	19.85	442622	23.64	458557	20.51	446643	18.33
Alberta	18864	1.07	18185	0.97	21824	0.98	27323	1.12
Saskatchewan	562	0.03	19989	1.07	35748	1.60	22613	0.93
Manitoba	16474	0.94	14773	0.79	20645	0.92	19235	0.79
Ontario	886164	50.42	858645	45.87	1336331	59.78	1297926	53.27
Quebec	452002	25.72	506344	27.05	335044	14.99	586114	24.05
New Brunswick	8533	0.49	5960	0.32	13903	0.62	15653	0.64
Nova Scotia	25402	1.45	4531	0.24	13294	0.59	8547	0.35
Newfoundland	229	0.01	982	0.05	156	0.01	10250	0.42
Prince Edward Island	1	-	-	-	-	-	20	-
Northwest Territories	523	0.03	45	-	24	-	2305	0.09
Total	1757587		1872076		2235526		2436629	
IMPORTS								
British Columbia	17201	1.53	83313	4.76	94734	4.85	116565	4.96
Alberta	16973	1.51	33948	1.94	33558	1.72	41961	1.79
Saskatchewan	309660	27.52	392594	22.42	501652	25.68	601771	25.61
Manitoba	21004	1.87	65680	3.75	180134	9.22	184736	7.86
Ontario	633038	56.27	997902	57.00	860020	44.03	1053555	44.83
Quebec	123493	10.98	170288	9.73	210804	10.79	292799	12.46
New Brunswick	1098	0.10	1757	0.10	1369	0.07	9074	0.39
Nova Scotia	2583	0.23	5245	0.30	70953	3.63	49542	2.11
Newfoundland	-	-	4	-	-	-	129	0.01
Prince Edward Island	-	-	-	-	-	-	-	-
Northwest Territories	-	-	-	-	-	-	33	-
Total	1125050		1750731		1953224		2350165	

Source: Statistics Canada.

- Nil; r Revised.

TABLE 4. ALUMINUM, WORLD SECONDARY PRODUCTION, PERCENTAGE OF TOTAL PRODUCTION, 1990-94

	1990		1991		1992		1993		1994e	
	(000 tonnes)	(\%)								
Europe	1727	30.6	1700	31.1	1804	34.4	1678	33.7	1694	34.7
Africa	27	4.3	35	5.4	45	6.8	28	4.3	28	4.3
Asia	1168	49.8	1200	48.1	1177	46.1	1085	41.5	1213	43.6
Americas	2040	21.6	2354	22.9	2521	24.0	2776	16.6	3151	29.5
Oceania	38	2.5	34	2.2	47	3.1	47	2.8	47	2.9
Total	5008	25.6	5334	26.1	5576	27.2	5613	27.2	6133	29.7

Source: World Bureau of Metal Statistics.
e Estimated.

TABLE 5. CANADA, CONSUMER PURCHASES OF SCRAP AND SECONDARY ALUMINUM, 1990-93

ALUMINUM, 1990-93	1990			
		1991	1992	1993

Source: Natural Resources Canada.

TABLE 6. CANADA, QUANTITY OF ALUMINUM RECYCLED, 1990-94

	1990	1991	1992	1993	1994 e
Secondary consumption	115.1	101.5	127.8	131.2	135.0
Scrap consumption	131.1	117.8	161.4	170.5	175.0
Scrap exports	186.0	173.7	197.6	199.2	236.6
Scrap imports	52.6	46.4	52.7	53.5	63.4
Scrap recyclede	379.6	346.6	434.1	447.4	483.2

Sources: Natural Resources Canada; World Bureau of Metal Statistics.
e Estimated.

TABLE 7. ALUMINUM, EXPORTS TO SELECTED COUNTRIES, 1993 AND 1994

	1993		1994	
	(tonnes)	$(\$ 000)$	$($ tonnes $)$	$(\$ 000)$
United States	178693	219072	215260	346442
Japan	16981	24064	11807	20547
Taiwan	911	763	5526	7021
Hong Kong	1487	1278	2590	3396
South Korea	412	435	653	977
People's Republic of China	277	253	502	635
United Kingdom	47	66	163	219
Other	4108	1698	3152	1080
Total	202916	247629	239653	380317

Source: Statistics Canada.

TABLE 8. ALUMINUM, IMPORTS FROM SELECTED COUNTRIES, 1993 AND 1994

	1993		1994	
	(tonnes)	(\$000)	(tonnes)	(\$000)
United States	50001	60443	59908	82286
United Kingdom	1653	1766	2184	2905
Russia	706	769	845	913
France	-	-	233	196
Netherlands	321	437	71	95
Other	3116	1934	3185	1832
Total	55797	65349	66426	88227

Source: Statistics Canada.

- Nil.

TABLE 9. CANADA, LEAD SMELTERS

	Location	Capacity
		(ty)
Cominco Ltd.	Trail, British Columbia	135000
Metalex Products Ltd. $\mathbf{1}$	Burnaby, British Columbia	6000
Canada Metal Company	Winnipeg, Manitoba	10000
Canada Metal Company	Toronto, Ontario	12000
Tonolli Canada Ltd. 1	Mississauga, Ontario	50000
Nova Pb Inc.	Ville Sainte-Catherine, Quebec	60000
Brunswick Mining and Smelting	Belledune, New Brunswick	72000
\quad Corporation Limited		345000
Total		

1 Fully integrated (breaking, smelting, refining) smelters.

TABLE 10. CANADIAN BATTERY-BREAKING FACILITIES

Lead Smelter	
K.C. Recycling Inc.	Trail, British Columbia
Metallex Products Ltd.	Burnaby, British Columbia
Wild Rose Recycling Inc.	Wetaskewan, Alberta
Chisick Metals Ltd.	Winnipeg, Manitoba
Holt Metals Inc.	Winnipeg, Manitoba
Raw Materials Corporation	Port Colborne, Ontario
Tonolli Canada Ltd.	Mississauga, Ontario
Nova Pb Inc.	Ville Sainte-Catherine, Quebec
Bathurst Steel Inc.	Bathurst, New Brunswick

1 Not currently in operation.

TABLE 11. WORLD, PRODUCTION OF SECONDARY REFINED LEAD AND PERCENTAGE OF TOTAL REGIONAL LEAD PRODUCTION, 1990-94

	1990		1991		1992		1993		1994	
	(000 tonnes)	(\%)								
Europe	853.20	53.75	820.30	50.21	763.30	49.23	758.30	48.95	810.00	56.60
Africa	44.10	29.70	45.30	29.70	45.20	30.50	53.30	34.30	53.30	36.90
Asia	277.30	50.20	264.10	46.90	259.60	42.40	250.70	39.20	267.10	48.80
Americas	1128.40	59.50	1091.70	59.80	1139.70	60.10	1112.70	58.90	1144.10	59.60
Oceania	22.00	9.40	24.40	10.00	22.10	9.30	25.00	10.40	21.20	9.00
Total	2325.00	52.60	2245.80	50.80	2229.90	50.20	2200.00	49.20	2295.60	53.60

Source: World Bureau of Metal Statistics.

TABLE 12. WORLD, COPPER SCRAP RECOVERY, 1990-94

	1990		1991		1992		1993		1994e	
	(000 tonnes)	(\%)								
EUROPE										
Secondary production	706	16.4	737	17.0	734	16.8	782	17.6	734	16.6
Direct scrap use	944	21.9	1015	23.5	952	21.8	1036	23.3	1019	23.0
Total Europe	1650	38.2	1752	40.5	1686	38.7	1818	40.9	1753	39.6
ASIA										
Secondary production	122	2.8	116	2.7	122	2.8	105	2.4	94	2.1
Direct scrap use	805	18.6	834	19.3	815	18.7	798	17.9	817	18.5
Total Asia	927	21.5	950	22.0	937	21.5	903	20.3	911	20.6
AFRICA										
Secondary production	-	-	-	-	-	-	-	-	-	-
Direct scrap use	30	0.7	28	0.7	31	0.7	28	0.6	30	0.7
Total Africa	30	0.7	28	0.7	31	0.7	28	0.6	30	0.7
AMERICAS										
Secondary production Direct scrap use	$\begin{array}{r} 531 \\ 1116 \end{array}$	$\begin{aligned} & 12.3 \\ & 25.6 \end{aligned}$	$\begin{array}{r} 510 \\ 1015 \end{array}$	$\begin{aligned} & 11.8 \\ & 23.5 \end{aligned}$	$\begin{array}{r} 565 \\ 1077 \end{array}$	$\begin{aligned} & 13.0 \\ & 24.7 \end{aligned}$	$\begin{array}{r} 592 \\ 1047 \end{array}$	$\begin{aligned} & 13.3 \\ & 235 \end{aligned}$	$\begin{array}{r} 547 \\ 1127 \end{array}$	$\begin{aligned} & 12.4 \\ & 25.5 \end{aligned}$
Direct scrap use	1116	25.6	1015	23.5	1077	24.7	1047	23.5	1127	25.5
Total America	1647	38.1	1525	35.3	1642	37.7	1639	36.8	1674	37.8
OCEANIA										
Secondary production	24	0.6	35	0.8	32	0.7	24	0.5	24	0.6
Direct scrap use	40	0.9	34	0.8	34	0.8	38	0.9	36	0.8
Total Oceania	64	1.5	69	1.6	66	1.5	62	1.4	60	1.4
Total world	4318		4324		4362		4450		4426	

Source: World Bureau of Metal Statistics.

- Nil; e Estimated.

TABLE 13. WORLD, COPPER SCRAP RECOVERY AS A PERCENTAGE OF TOTAL REFINED PRODUCTION, 1990-94
1994 e

	1990		1991		1992		1993		1994 e	
	(000 tonnes)	(\%)								
Europe	1650	100.9	1752	107.3	1686	114.4	1818	109.7	1753	108.6
Asia	927	61.0	950	59.1	937	52.6	903	49.9	911	51.4
Africa	30	3.7	28	3.9	31	4.6	28	4.6	30	5.2
Americas	1647	39.0	1525	35.4	1642	36.2	1639	34.9	1674	36.4
Oceania	64	23.4	69	24.7	66	21.8	62	20.1	60	17.8
Total	4318	39.9 a	4324	$40.5{ }^{\text {a }}$	4362	38.9a	4450	38.5a	4426	39.4a

Source: World Bureau of Metal Statistics.
e Estimated.
a Final percentage calculation includes refined copper from other countries.

TABLE 14. WORLD, COPPER SCRAP RECOVERY AS A PERCENTAGE OF REFINED COPPER CONSUMPTION, 1990-94

	1990		1991		1992		1993		1994 e	
	(000 tonnes)	(\%)								
Europe	1650	52.6	1752	55.6	1686	52.1	1818	59.9	1753	55.0
Asia	927	34.3	950	32.2	937	33.6	903	30.5	911	29.9
Africa	30	31.3	28	30.2	31	30.7	28	26.9	30	22.1
Americas	1647	61.0	1525	57.7	1642	58.9	1639	54.1	1674	51.0
Oceania	64	51.2	69	66.4	66	52.6	62	41.3	60	41.7
Total	4318	40.19	4324	40.49	4362	39.4 a	4450	39.8a	4426	37.5a

Source: World Bureau of Metal Statistics.
e Estimated.
a Final percentage calculation includes refined copper from other countries.

TABLE 15. CANADA, EXPORTS OF COPPER SCRAP BY SELECTED COUNTRIES, 1993 AND 1994

Country	1993		1994	
	(tonnes)	$(\$ 000)$	(tonnes)	$(\$ 000)$
	102181	214324	97806	232495
United States	3829	3898	3840	5052
People's Republic of China	2920	5343	2077	3876
South Korea	341	520	1847	4103
Italy	2422	3217	1586	1849
India	1782	2233	1346	1705
Hong Kong	1424	2577	1318	2831
Japan	1912	2715	2145	2513
Other				
Total				

Source: Statistics Canada.

TABLE 16. CANADA, IMPORTS OF COPPER SCRAP BY SELECTED COUNTRIES, 1993 AND 1994

Country	1993		1994	
	(tonnes)	$(\$ 000)$	(tonnes)	$(\$ 000)$
	52949	62494	96905	170806
United States	33	68	531	1291
Netherlands	-	-	459	1270
Sweden	-	-	91	148
Cuba	30347	33334	31883	38718
Other			93896	129869
Total			212233	

Source: Statistics Canada.

- Nil.

TABLE 17. CANADA, SCRAP STEEL CONSUMPTION AS A PERCENT OF RAW STEEL PRODUCTION, 1990-94

	1990		1991		1992		1993		1994	
	(000 tonnes)	(\%)								
Home scrap Purchased scrap	$\begin{aligned} & 2152 \\ & 5029 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 37.9 \end{aligned}$	2381 4918	16.8 34.6	2404 5353	$\begin{aligned} & 15.8 \\ & 35.1 \end{aligned}$	2428 5724	15.4 36.3	2157 5893	$\begin{aligned} & 14.2 \\ & 38.7 \end{aligned}$
Total	7244	53.9	7299	51.4	7757	50.9	8152	51.7	8050	52.9

[^4]TABLE 18. CANADA, APPARENT IRON AND STEEL RECYCLING TONNAGE, 1990-94

	1990	1991	1992	1993	1994
			$(000$ tonnes $)$		
Steel consumed (1)	7244	7299	7757	8152	8050
lron consumed (2)	568	508	575	590	586
Ferrous imports (3)	1228	873	1202	1305	1458
Tonnes recycled (4) $(1)+(2)-(3)+(4)$	1787	1334	1139	1473	1673

Sources: Statistics Canada; Canadian Steel Producers Association; Canadian Foundry Association.

TABLE 19. CANADIAN AUTOMOBILE SHREDDERS

Company	Location	Total Annual Capacity1
		(000 ty)
Cyclomet Inc. 2	Scoudouc, New Brunswick	140
Québec Métal Recyclé Inc.	Laval, Quebec	140
Capitale Métal Recyclé Inc.	St-Augustine, Quebec	140
Associées de L'Acier Ltée	Ville Sainte-Catherine, Quebec	140
Fers et Métaux Recyclés Ltée ${ }^{2}$	La Prairie, Quebec	140
Sidbec-Ferruni inc.	Contrecoeur, Quebec	140
Bakermet Inc.	Ottawa, Ontario	140
Lake Ontario Steel Company	Whitby, Ontario	140
Triple M Metals Inc.	Brampton, Ontario	140
Intermetco Limited	Hamilton, Ontario	140
Zalev Brothers Limited	Windsor, Ontario	80
Lakehead Scrap Metals Inc.	Thunder Bay, Ontario	40
Wheat City Metals Inc.	Regina, Saskatchewan	40
General Scrap \& Car Shredder Ltd.	Winnipeg, Manitoba	40
Mandak Metal Processors Ltd.	Selkirk, Manitoba	40
Navajo Metals Inc.	Calgary, Alberta	40
Altasteel Ltd.	Edmonton, Alberta	40
Richmond Steel Recycling Limited	Burnaby, British Columbia	40
Budget Steel Inc.	Victoria, British Columbia	40
Total		1800

1 Eight-hour shift, five-day week. 2 Operated by Intermetco Ltd.

TABLE 20. OECD GREEN LIST OF WASTE METAL RECYCLABLES, metal and metal-alloy wastes in metallic, non-dispersible FORM

WASTE AND SCRAP OF PRECIOUS METALS AND THEIR ALLOYS

Gold waste and scrap1
Platinum group metals waste and scrap1
Other precious metals, e.g., silver 1
Waste and scrap of cast iron
Waste and scrap of stainless steels
Waste and scrap of other alloy steels
Waste and scrap of tinned iron or steel
Turnings, shavings, chips, milling waste, fillings, trimmings and stampings, whether or not in bundles
Other ferrous waste and scrap
Remelting scrap ingots
Used iron and steel rails

WASTE AND SCRAP OF NONFERROUS METALS AND THEIR ALLOYS

Aluminum	Manganese
Antimony	Molybdenum
Beryllium	Nickel
Bismuth	Tantalum
Cadmium	Tin
Chromium	Titanium
Cobalt	Tungsten
Copper	Vanadium
Germanium	Zinc
Lead	Zirconium
Magnesium	

WASTE AND SCRAP OF

Gallium	Rhenium
Hafnium	Selenium
Indium	Tellurium
Niobium	Thallium
Rare earths	Thorium

OTHER METAL-BEARING WASTES ARISING FROM MELTING, SMELTING AND REFINING OF METALS

Hard zinc spelter

Galvanizing slab zinc top dross ($90 \% \mathrm{Zn}$)
Galvanizing slab zinc bottom dross ($92 \% \mathrm{Zn}$)
Zinc die cast dross ($85 \% \mathrm{Zn}$)
Hot dip galvanizers slab zinc dross (batch) (92\% Zn)
Zinc skimmings
Aluminum skimmings
Slags from precious metals and copper processing for further refining
Tantalum bearing tin slags with less than 0.5% tin

OTHER WASTES

Electrical assemblies
Spent catalysts
Fluid catalytic cracking catalysts
Precious metal-bearing catalyst
Transition metal catalysts
Slag from iron or steel
Granulated slag from iron/steel
Electronic scrap
Vessels and floating structures
Motor vehicle wrecks, drained of liquids
Slag from copper production
Neutralized red mud
Cermet waste and scrap
Basic slag from iron/steel

[^5]
TABLE 21. OECD AMBER LIST OF WASTE METAL RECYCLABLES

Dross, scalings and other wastes from the manufacture of iron and steel
Zinc ash and residues
Lead ash and residues
Copper ash and residues
Aluminum ash and residues
Vanadium ash and residues
Ash and residues containing metals or metal compound not otherwise specified
Residues from alumina production not otherwise specified
Lead-acid batteries, whole or crushed
Zinc slags containing up to 18% zinc
Liquors from the pickling of metals
Precious metal-bearing residues in solid form which contain traces of inorganic cyanides
Thallium waste and residues
Galvanic sludges
Arsenic waste and residues
Mercury waste and residues
Precious metal ash, sludge, dust and other residues
Ash from incineration of printed circuit boards
Film ash
Waste catalysts not on green list
Leaching residues from zinc processing
Waste hydrates of aluminum
Waste alumina
Wastes that contain, consist or are contaminated with any of the following: Inorganic cyanides, excepting precious metal-bearing residues in solid form containing traces of inorganic cyanides
Used batteries, other than lead-acid batteries

[^0]: Source: Statistics Canada.

[^1]: Source: Natural Resources Canada.
 1 Average monthly LME aluminum alloy prices and stocks.

[^2]: Sources: Metals Week; Metals Bulletin.

[^3]: Source: Statistics Canada
 -Nil; n.e.s. Not elsewhere specified; r Revised.

[^4]: Sources: Statistics Canada; Canadian Steel Producers Association.

[^5]: 1 Mercury is specifically excluded as a contaminant of these metals or alloys.

