Aluminum

Patrick Chevalier

The author is with the Minerals and Metals Sector, Natural Resources Canada.
Telephone: (613) 992-4401
E-mail: pchevali@nrcan.gc.ca

What started out to be a rather positive year for aluminum markets in the first three quarters of 1997 turned somewhat negative in the last quarter as the turmoil in Southeast Asian currency markets put a damper on business confidence worldwide. Despite the downturn in Southeast Asian economies, which only account for about 3% of total aluminum consumption, overall world demand was strong in aluminum's major markets. Increased prices and lower stock levels compared to 1996 reflected this underlying market strength. Average production rates were higher in 1997, reflecting the decisions by some producers to restart idled capacity and to add new capacity at several existing smelters.

Aluminum cash settlement prices increased 6.2\% to average US\$1599/t (US73 $\$ /$ l b) on the London Metal Exchange (LME) compared to an average of \$1505/t (684/lb) in 1996. Primary aluminum stocks on the LME started the year at about 955000 t and declined steadily until August when they reached about 620000 t . They then began to rise, peaking at 744000 t in mid-October before resuming a downward trend to end the year at about 622000 t . The International Primary Aluminium Institute (IPAI) reported that unwrought aluminum inventories held by IPAI members decreased slightly over the year to 1.636 Mt in December 1997 compared to 1.691 Mt in December 1996. Together the aggregated unwrought IPAI and LME stock figures ended the year at their lowest level since J uly of 1991.

Canadian Developments

The production of primary aluminum increased by 1.9\% to 2.327 Mt in 1997, compared to 2.282 Mt in 1996, ranking Canada third after the United States and Russia in terms of world production. Canadian exports of primary smelter products in 1997 also rose to 1.884 Mt valued at $\$ 4.5$ billion, compared with
1.817 Mt valued at $\$ 4.1$ billion in 1996. Of this amount, exports to the United States totalled 1.410 Mt valued at $\$ 3.4$ billion, compared to 1.326 Mt valued at $\$ 3.0$ billion in 1996. Canada is the second largest aluminum-exporting country in the world after Russia.

In August, Alcan and the Government of British Columbia announced a final settlement agreement that resolves all outstanding issues related to the cancellation of the Kemano Completion Project (KCP) in northern B.C. As a result of the settlement, Alcan confirmed its intention, subject to economic and market conditions, to build a new $\$ 1.2$ billion aluminum smelter in Kitimat with a production capacity of $225000 \mathrm{t} / \mathrm{y}$. The new smelter could begin operations as early as J anuary 1, 2003, and no later than J anuary 1, 2010. The agreement ended Alcan's court action against the Province in which the company was claiming damages for the losses it incurred as a result of the decision to cancel the KCP. Alcan also restored its existing 272 000-t/y smelter at Kitimat to full capacity with the start-up of 22000 t of capacity that had been idle sinceJ anuary 1994.

Alcan Aluminium Limited is expected to decide early in 1998 whether or not to proceed with a new 370 000-t/y smelter at Alma, Quebec. Public hearings on the project's potential environmental impact were completed and filed with the Ministry of Environment in October. Engineering studies are reportedly nearing completion.

Elsewhere in Quebec, Alcan announced that it would spend $\$ 4$ million to install a second casting furnace at its Beauharnois Works near Montréal. An additional $\$ 6$ million will be invested to maintain assets, increase productivity and enhance environmental performance.

Aluminerie Alouette Inc. completed a $\$ 100$ million project to install graphitized cathodes at its smelter in Sept-Îles, Quebec. The change to graphitized cathodes has increased the smelter's production capacity to $230000 \mathrm{t} / \mathrm{y}$, up from its original $215000 \mathrm{t} / \mathrm{y}$ when it opened in 1992. Plans to expand the smelter's production capacity to 509000 t/y are still on hold while feasibility studies continue. A decision by the five consortium partners on when to go ahead with the expansion project is not expected before the end of 1998.

Figure 1
Aluminum Smelters, 1997

Several of the Reynolds Metals Company's Canadian subsidiaries were put up for sale and sold either completely or partially as part of Reynolds' announced portfolio review to improve the company's focus and profitability, thereby increasing its shareholder value. In J uly, Reynolds and the Société générale de financement du Québec (SGF) entered into a jointventure partnership (Reycan) to operate Reynolds' Cap-de-la-M adeleine (Quebec) aluminum rolling mill and its Weston Road (Toronto, Ontario) aluminum coil-coating facility. E ach company will maintain a 50\% interest in the joint venture. The new joint venture will fund an expansion of the rolling mill to increase slab homogenizing capacity, coil size, and light-gauge rolling and finishing capacity.

In September, Reynolds announced that Tredegar I ndustries had agreed in principle to acquire two of Reynolds' Canadian aluminum extrusion and fabrication plants located in Sainte-Thérèse, Quebec, and Richmond Hill, Ontario. Both plants manufacture products used primarily in the building construction, transportation, electrical, machinery and equipment, and consumer durables markets. In October, Reynolds announced that it had completed the sale of the assets of its construction products distribution business in Canada to Royal Group Technologies Limited. Royal assumed the operation of seven distribution warehouses located across Canada.

Elsewhere within the Reynolds group of companies, Reynolds' rod mill at Bécancour, Quebec, obtained ISO 9002 registration early in 1997.

Aluminerie Laural co Inc., a 100\% subsidiary of Alumax Inc. of the United States, operates a 225 000-t/y smelter at Deschambault, west of Québec City. Laural co became the first aluminum smelter in Canada to obtain the ISO 14001 Environmental Management System (EMS) standards certification.

World Developments

World production of primary and secondary aluminum reached an estimated 29.0 Mt in 1997, of which 21.7 Mt were primary material. Total Western World smelter production reached an estimated 16.3 Mt in 1997, up from 15.6 Mt in 1996. Among IPAI members, the primary aluminum daily production rate increased from an average of 52600 t in J anuary to 54500 t in December. The average rate for all of 1997 was 53400 t/d compared with 50900 t/d in 1996.

United States

The United States, which is the world's largest producer of primary and secondary aluminum, produced a total of 3.603 Mt of primary aluminum in 1997, up from 3.577 Mt in 1996. In addition to primary production, secondary aluminum production totalled 3.559 Mt in 1997, representing roughly 48\% of the total secondary aluminum produced worldwide.

Noranda Aluminum, Inc. awarded a US\$3 million contract to ICF K aiser International Inc. to provide engineering and design services for a US\$54 million modernization program at the company's $220000-\mathrm{t} / \mathrm{y}$ New Madrid aluminum smelter. The project includes upgrades to the smelter's anode production technology and other upgrades that are expected to result in improved smelter efficiency and a capacity increase of about 33000 t/y. The project is expected to be completed by mid-summer 1998.

Reynolds Metals Company announced that it would begin preparations to restart its carbon plant and a limited number of reduction cells at its $121000-\mathrm{t} / \mathrm{y}$ smelter at Troutdale, Oregon. Aluminum production is expected to begin by March 1998 at a rate of about $25000 \mathrm{t} / \mathrm{y}$. The Troutdale smelter has been shut down since December 1991. Its remaining capacity will be restarted when market conditions warrant. In July, Reynolds announced a major restructuring program. The company will maintain its primary aluminum business, along with its distribution facility, specialty building products, and aluminum wheels. Reynolds sold its interests in residential construction products and the general extrusion business.

In October, Alcoa World Alumina and Chemicals (AWAC) began preparations to restart its St. Croix (U.S. Virgin Islands) alumina refinery to fill customer orders for 1998. The refinery has an operating capacity of $600000 \mathrm{t} / \mathrm{y}$. AWAC purchased the St. Croix refinery from the Virgin Islands Alumina Corp. (Vialco), a unit of Glencore International AG, in J uly 1995. The refinery has been idle since 1994. AWAC is a joint-venture partnership between Aluminum Company of America (Alcoa) and WMC Limited of Australia.

Jamaica

Two of J amaica's major bauxite-refining operations announced plans to consolidate their mining operations. J amal co (a joint venture between the J amaican government and Alcoa) and Alumina Partners of J amaica (Alpart) (a joint venture between the government and Kaiser Aluminum \& Chemical Corporation) will be equity partners in the new mining venture. The new venture will mine bauxite in south-central J amaica in an area with estimated reserves of 100 Mt . J amal co and Alpart have been granted mining leases within an 11-km radius of one another, which contributed to the decisi on to mine the areas jointly rather than separately. J amal co and Alpart will continue to individually process and ship from their respective plants and port facilities.

South America

Alcan announced plans to invest US $\$ 350$ million over the next three years to expand and modernize its aluminum rolling operations in Brazil to serve the rapidly growing South American market for aluminum beverage cans. In a two-phase expansion
program, Alcan's Brazilian subsidiary, Alcan Aluminio do Brasil S. A. (Alcanbrasil), will more than double production capacity at its Pindamonhangaba aluminum sheet-rolling facility to 250000 t/y from the current 100000 t/y. It is expected that the expanding beverage can market will also lead to increased opportunities for the recycling of used beverage cans. As part of the expansion project, Alcanbrasil will construct a $30000-\mathrm{t} / \mathrm{y}$ recycling facility, making Alcan the largest used beverage can recycler in South America.

In Chile, Empresa Nacional de Electricidad SA (Endesa) announced that talks with Noranda Inc. on building a new US $\$ 1.6$ billion Alumysa project have been suspended because of aluminum market conditions. The project involves the construction of two hydro-electric power plants and a $270000-\mathrm{t} / \mathrm{y}$ aluminum smelter. Last year, Comalco Limited withdrew from its option to buy into the project with Noranda. Despite Comal co's withdrawal, N oranda Aluminum Inc. announced in March that it intended to continue to work on the project and to seek a jointventure partner.

Work began on an expansion project at Aluar's aluminum smelter in Argentina that will increase capacity from its current 186000 t/y to 258000 t/y by May of 1999. The project involves the addition of two 72cell potlines as well as improvements to the anode ovens and an extra coke silo.

Europe

Alcoa acquired the main sectors of the aluminum businesses of Inespal, S.A., Spain's state-owned integrated aluminum producer, under an agreement signed with I nespal's owner, the State Entity for Industrial Participations (SEPI). Alcoa paid US $\$ 410$ million for substantially all of Inespal's businesses. Under the agreement, Alcoa acquired an alumina refinery at San Ciprian with a capacity of 1.1 Mt/y; three primary aluminum smelters at San Ciprian, La Coruna and Aviles with a combined capacity of $365000 \mathrm{t} / \mathrm{y}$; three rolling mills at Amorebieta, Alicante and Sabinanigo with a combined capacity of 220000 t/y; two extrusion plants at Noblejas and La Coruna with a combined capacity of $29000 \mathrm{t} / \mathrm{y}$; an administrative centre in Madrid; and related sales offices in Europe.

The French aluminum producer Pechiney announced plans to restart all of its 125000 t of idled production capacity by the end of 1998, including 40000 t by the end of 1997, to meet increased world demand. Its production had been reduced in 1994 in response to the world oversupply of aluminum and persistently weak prices. Pechiney announced that it would begin increasing capacity at its most competitive facilities, including at the Bécancour smelter in Canada in which it holds a 25% share.

In Norway, Hydro Aluminium, a division of Norsk Hydro ASA, announced in February that it would gradually restart idled production capacity of primary aluminum to meet increased demand and increased metal requirements from the company's fabrication activities in Norway. In 1994, Norsk Hydro reduced its production capacity by about $70000 \mathrm{t} / \mathrm{y}$. During the first quarter of 1997, some 20000 t of idled capacity was restarted. In midSeptember, Hydro Aluminium started operating the first of its 66 new electrolytic reduction pots at its Karmøy smelter. The new system adds 35000 t of annual production capacity, making it the largest in Western Europe with a capacity of $267000 \mathrm{t} / \mathrm{y}$. Hydro Aluminium is also planning to increase capacity at its $145000-\mathrm{t} / \mathrm{y}$ Sunndal smelter to $165000 \mathrm{t} / \mathrm{y}$. Work is expected to begin in 1998 with full capacity to be reached by 2000.

In October, a new third potline was inaugurated at the I celandic Aluminium Co. Ltd. (ISAL) smelter at Straumsvik, I celand. ISAL is a wholly owned part of the Aluminium Division of the Alusuisse - Lonza Group. Construction of the new third potline raised the smelter's capacity to 162000 t/y from 100000 t/y.

Elsewhere in I cel and, the I celandic government announced in August that it had signed the final agreements with Nordic Aluminum Corporation of I cel and (N ordurál), a subsidiary of U.S. Columbia Ventures Corporation, for a new $60000-\mathrm{t} / \mathrm{y}$ aluminum smelter. The smelter, which is already under construction at Grundartangi in western I celand, is scheduled to start production in mid-1998 with plans to expand to $90000 \mathrm{t} / \mathrm{y}$ by the year 2000.

Russian Federation

AluminProduct ImpEx Ltd., a joint-venture company formed by Reynolds Metals Company and Sayansk Aluminium Zavod (SaAZ), signed an agreement to supply primary aluminum to Samara Metallurgical Co. (SAMECO) for conversion into beverage can stock. The agreement calls for AluminProduct to supply primary aluminum to SAMECO's rolling plant in Russia where it will be manufactured initially into aluminum can end, tab and body stock for customers in Asia and the Middle East. Reynol ds' relationship with SaAZ dates back to 1989 when Reynol ds entered into a joint venture to build an aluminum foil production and converting operation in Siberia.

Middle East

Aluminium Bahrain B.S.C. (Alba) completed a US $\$ 130$ million expansion project and upgrading of the company's smelter in March. The expansion added an additional 36500 t/y to the smelter's production capacity of $460000 \mathrm{t} / \mathrm{y}$.

Dubai Aluminium Company Limited (Dubal) completed a major expansion project in March that
increased the smelter's capacity by over 50% to $375000 \mathrm{t} / \mathrm{y}$. The US $\$ 503 \mathrm{million}$ Falcon project involved the addition of a 240-cell potline, two new gas turbines and changes to the carbon plant, including a second green anode production line and a third anode baking kiln. It al so invol ved the construction of a new casthouse and modifications to the existing one, including another ingot-casting machine, a third direct chill caster, and a second continuous homogenizing plant.

In Iran, the first phase of the new US\$700 million Al-M ahdi aluminum smelter was officially inaugurated near the port of Bandar Abbas in J une. The smelter will have an initial production capacity of $110000 \mathrm{t} / \mathrm{y}$. Its design and infrastructure could allow for a future expansion to $330000 \mathrm{t} / \mathrm{y}$. Elsewhere in Iran, Prime International's Qeshmalum aluminum smelter is expected to start up sometime next year with an initial output of about 2000 t , increasing to 28000 t/y by 2000. Both operations are targeting the export market for most of their production.

Asia

Alcan Aluminium Limited and China National Nonferrous Metals I ndustry Corporation (CNNC) signed a Memorandum of Understanding in November to complete a detailed feasibility study for a proposed aluminum smelter and power complex at Hejin City in China's Shanxi Province. The study on the 240 000-t/y smelter and power complex is expected to take 12 to 18 months to complete.

A new aluminum smelting project in China's northern Shanxi Province began operating in 1997. The first phase of the project, which is owned by Y uncheng Shanhe Aluminium Co., was expected to produce 12500 t/y.

Daewoo Corporation signed a letter of intent with Vietnam Minerals Corp. (VIMICO) to develop a bauxite mine in Daklak Province and build an alumina refinery. The mine and refinery would be devel oped by 2000 if the feasibility study is positive. Daewoo said it also plans to build an aluminum smelter if the company recei ves infrastructure support for the project from the Vietnamese government.

Africa

South Africa's Gencor Ltd. and Industrial Development Corp. (IDC) announced their intention to invest US $\$ 125$ million each for the construction of a 245 000-t/y primary aluminum smelter in southern Mozambique. Gencor and IDC will each take a 50\% equity share in the Mozal project. The remaining US $\$ 250$ million of equity capital will be sourced from international partners, with the Mozambican government providing support. The project will have access to long-term competitively priced power offered by South African utility Eskom together with Electrici-
dade de Mocambique (EDM) and the M ozambique Electricity Supply Authority; it will also be granted free zone status by the Mozambican government.

Aluminium Smelter Company of Nigeria's (ALSCON) new Ikot Abasi aluminum smelter, with an eventual capacity of $180000 \mathrm{t} / \mathrm{y}$, began operations at the end of October. The project, which started in 1990, is a joint venture between Nigeria, which has a 70\% equity share, and Ferrostaal AG of Germany and U.S.-based Reynolds I nternational who share the rest of the equity.

Insufficient rainfall in Ghana resulted in a notification by the Volta River Authority (VRA) that it will reduce the electric power allocation to Kaiser Aluminum's 90\%-owned Volta Aluminium Company Limited (Valco) smelter effectiveJ anuary 1, 1998. As a result of the reduced power, K aiser will operate three potlines at Valco in 1998, compared to the four potlines it operated in 1997.

Egypt's only aluminum producer, The Aluminium Company of Egypt (Egyptalum), completed the instalIation of a new 50 000-t/y potline in the fourth quarter of 1997. The project to expand the Nag Hammadi smelter's capacity from 180000 t/y to 230000 t/y began in 1995. F ollowing completion of the project, the company will begin to focus its efforts on upgrading the smelter's existing Soderburg line to its own prebake technology. In addition to the work being undertaken in the potrooms, Egyptalum is also installing a new anode paste baking and storage facility under contract with Pechiney of F rance.

Australia

Alcan announced plans to invest $\$ 130$ million in a new bauxite mine at Ely in North Queensland, Australia. The mine will have an initial output of $2.5 \mathrm{Mt} / \mathrm{y}$ and will be owned and operated by Alcan's Australian subsidiary Alcan South Pacific Pty Ltd. By bringing this new mine into production, Alcan expects to reduce the company's bauxite cost for its alumina refinery at Gladstone in Queensland and at other refineries around the world.

Alcoa World Alumina and Chemicals began a 444 000-t/y expansion project at its Wagerup alumina refinery in Western Australia. The A $\$ 257.5$ million expansion will increase the refinery's production capacity to $2.19 \mathrm{Mt} / \mathrm{y}$ by mid-1999. This is the first phase of a planned expansion project that will eventually see the refinery produce $3.3 \mathrm{Mt} / \mathrm{y}$.

Worsley Alumina Pty Ltd. approved plans for an A $\$ 800$ million expansion of its bauxite and alumina refining facilities in Western Australia. Bauxite production at the Boddington mine will increase to about $10 \mathrm{Mt} / \mathrm{y}$ from the current $6 \mathrm{Mt} / \mathrm{y}$, and the alumina refinery's capacity will increase to $3.1 \mathrm{Mt} / \mathrm{y}$ from the current $1.88 \mathrm{Mt} / \mathrm{y}$. Work is expected to be completed
by the second quarter of 2000. Worsley Alumina is a joint venture between Reynolds Australia Alumina Ltd. (56\%), Billiton Australia Pty Limited (30\%), K obe Alumina Associates (Australia) Pty Ltd. (10\%), and Nissho I wai Alumina Pty Limited (4\%).

Comalco Limited completed an A $\$ 1$ billion expansion project to nearly double aluminum production capacity at its Boyne Island smelter to $490000 \mathrm{t} / \mathrm{y}$. The installation of a third potline of 264 cells at the smelter was the last in a series of upgrades of the company's aluminum smelter capacities at Bell Bay in Tasmania, Tiwai Point in New Zealand, and the Boyne Island smelter in Queensland. The Boyne Island smelter expansion invol ved the construction of a new reduction line of 264 cells, a carbon baking furnace, additional metal-casting facilities, and auxiliary equipment.

Tomago Aluminium Company Pty Limited announced that a program to increase its production capacity by 10% to $440000 \mathrm{t} / \mathrm{y}$ was on schedule to be completed by early 1999. Production at the smelter will be increased by expanding a third potline. Tomago Aluminium is a joint venture between Gove Aluminium Finance Limited (36.05%), Pechiney Pacific Pty Limited (36.05\%), VAW Australia Pty Limited and VAW of America Inc. (12.4\%), and TOA Pty Limited (15.5\%).

In May, the Australian Senate voted to end export controls on bauxite, alumina and mineral sands. The decision by the Australian federal government brings to an end all export controls on resource commodities except uranium. Export controls had been put in place to give the government the authority to approve prices, but the program was found to be ineffective.

Recycling

Secondary aluminum production continues to increase worldwide. Western World production of secondary aluminum reached 6.83 Mt in 1996, compared to 6.75 Mt in 1995. Production in the first nine months of 1997 was about 5.50 Mt , and was expected to reach over 7.0 Mt by year-end. The increase in secondary production can be attributed to continuing improvements in scrap collection systems and increased recycling rates.

The recycling of aluminum requires less than 5% of the energy used to make the original metal. As a result, energy represents only 2% of a secondary aluminum smelter's operating cost, compared to about 26% for a primary smelter. The automotive industry is the largest consumer of secondary aluminum, consuming some 80% of secondary production either through direct sales or to casters who supply the automotive industry. As requirements for lighter vehicles increase, it is likely that demand for secondary aluminum will also increase significantly.

In 1996, the largest secondary aluminum producers were the United States at $3.21 \mathrm{Mt}, \mathrm{J}$ apan at 1.19 Mt , and Germany at 0.42 Mt . Consumption of aluminum metal (excluding the direct use of scrap) for the production of secondary aluminum in Canada decreased to 136762 t in 1996 from 146987 t in 1995.

In Canada, about 1.5 billion scrap aluminum cans are recovered and exported annually to the United States to be recycled. There are no facilities in Canada to recycle aluminum beverage cans. Cans are collected and then shipped to the United States for recyding into can sheet.

The most important sources of aluminum scrap in the United States are from the packaging (principally used beverage containers) and transportation sectors. The U.S. recycling rate of aluminum cans rose 1.3% in 1996 to 63.5% of can shipments. Some 99 billion cans were produced in 1996, of which 62.6 billion were recycled. In J uly, the U.S. Aluminum Association announced that it had endorsed a 75% recycling rate goal. No date was given for when member companies hoped to reach the new target.

European aluminum producers hope to raise the beverage can recycling rate in Europe to at least 50% by the year 2000 from the current overall rate of 35%. While recycling rates are high in countries like Sweden (90\%), much work remains to be done in other countries where recyding rates are considerably lower, such as in Italy (28\%) and the United Kingdom (24\%). J apan's rate of aluminum can recycling reached a record high of 70.2% in the business year ended March 1997, up from 65.7% in the previous year, and reflected efforts by local governments to promote recycling.

Consumption and Uses

Total world consumption of primary aluminum is expected to be an estimated 21.7 Mt in 1997, about 4\% higher than the 20.8 Mt recorded in 1996. Western World demand is expected to have increased by about 4% to 18.6 Mt in 1997. Total reported Canadian consumption of aluminum metal at the first processing stage, including secondary aluminum, was 686969 t in 1996, up from 635402 t in 1995.

Aluminum is the most abundant metal in the earth's crust. Unlike most of the other major metals, aluminum does not occur in its native state, but mainly as an oxide. When combined with water and other impurities, it produces the main ore of aluminum known as bauxite. Pure aluminum is a silver-white, malleable, ductile metal with one third the density of steel. Aluminum's dull lustre results from a thin coating of oxygen that forms when it is exposed to air. It is this characteristic that accounts for aluminum's resistance to corrosion. Aluminum is an excellent conductor of electricity. Gram for gram, aluminum
has twice the electrical conductance of copper. It is also an efficient conductor of heat and a good reflector of light and radiant heat.

Combining aluminum with other metals to produce alloys enhances its characteristics and increases its versatility. The most common metals used in combination with aluminum are copper, magnesium, manganese, silicon and zinc. Aluminum's tensile strength, hardness, corrosion resistance, and heattreatment properties improve when alloyed with one or more of these metals. Some copper-aluminum alloys, for example, can exceed the tensile strength of mild steel by as much as 50%.

In both its pure and alloyed forms, aluminum is used to make a variety of products for the consumer and capital goods markets. The largest markets for aluminum are transportation (26\%), building and construction (20\%), packaging (20\%), el ectrical (9\%), machinery and equipment (8\%), and consumer goods (6\%). Geographically, N orth America is the largest consuming region accounting for 33\% of total Western World consumption, followed by Europe at 25% and Asia at 26\%.

Figure 2
Aluminum Markets, 1997

Source: Natural Resources Canada.

Health, Safety and the Environment

Aluminum is a naturally occurring element that is found ubiquitously in the environment as silicates, oxides and hydroxides in combination with other elements such as sodium and fluorine, and as complexes with organic matter. It is redistributed throughout the environment by both natural processes and
anthropogenic (human) activities. I gneous rocks can contain between 0.1% and 21% aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. Aluminum silicates (clay minerals) are a major component of soils.

Natural processes far outweigh the direct anthropogenic redistribution of aluminum in the environment. The mobility and subsequent transportation of aluminum is dependent on a number of factors, including chemical speciation, hydrological pathways, soil-water interaction, and the composition of the underlying bedrock. Mobilization of aluminum in the environment by humans is usually the result of indirect activities and can occur as the result of emissions of acidifying agents. In general, a lowering of pH results in the increased mobility of some forms of aluminum.

In May, three Canadian aluminum smelting companies announced plans to conduct a feasibility study for the construction and operation of a $\$ 90$ million recyding facility for spent potlining in J onquière, Quebec. Alcan Smelters and Chemicals Limited, Aluminerie Laural co Inc. and Pechiney Bécancour Inc. are participating in the study.

Prices and Stocks

Cash settlement LME prices started the year low at US\$1508/t (US684/lb), rising to a peak of \$1776/t in August, only to fall back in the third quarter to end the year at around $\$ 1500 / t$, for an average of $\$ 1599.74 / \mathrm{t}$ ($73 \$ / \mathrm{lb}$). The mid-year rise in prices was largely attributed to speculative buying by fund managers; however, the underlying strength in the fundamentals also contributed to the rise. The turmoil in Southeast Asian currency markets put a damper on business confidence worldwide in the last quarter of the year. Despite the downturn in Southeast Asian economies, which only account for about 3\% of world consumption, world demand for aluminum remained strong in its major markets.

The International Primary Aluminium Institute reported that Western World primary aluminum inventories decreased to 1.636 Mt at the end of December 1997, compared to 1.691 Mt in December 1996. Total stocks, including all forms of aluminum scrap, primary and secondary ingot, and metal in process, totalled 3.163 Mt at the end of 1997, compared with 3.138 Mt at the end of 1996. Primary stocks on the LME followed a steady decline from about 955000 t at the start of the year to a minimum of 620000 t in August before rising again to peak at 744000 t in mid-October. The stocks then resumed their steady decline in November and December to end the year at just over 622000 t .

Prices on the LME for aluminum alloy traded relatively flat in 1997. Aluminum alloy settlement prices started trading at US\$1385/t (US62.8\$/lb), rising to a high of $\$ 1545 / \mathrm{t}$ in J anuary, and then traded in the

Figure 3
London Metal Exchange Aluminum Prices, 1994-97
Daily Official Settlement Prices

Source: Natural Resources Canada.

Figure 4
Aluminum Prices and Stocks, 1992-97
LME ${ }^{1}$ Settlement Prices and Primary Stocks

[^0]${ }^{1}$ London Metal Exchange. ${ }^{2}$ International Primary Aluminium Institute.

Figure 5
London Metal Exchange Aluminum Alloy Prices, 1994-97
Daily Settlement Prices

Source: Natural Resources Canada.
\$1450-\$1500/t range for most of the year until following the same downward trend as other metals on the LME to end the year weaker at \$1380/t (62.6 $\$ / / \mathrm{b})$. For 1997, alloy prices averaged $\$ 1463.35 / \mathrm{t}$ ($66.4 \mathrm{~d} / \mathrm{lb}$), compared to an average of $\$ 1302.84 / \mathrm{t}$ (59.1 $\$ / \mathrm{lb}$) in 1996. LME aluminum alloy stocks started the year at 74480 t and declined steadily throughout to end the year at 42640 t .

Trading in metallurgical-grade alumina markets was described as thin for most of the year, with prices quoted at about US\$230/t (f.o.b.) for Australian alumina and between US $\$ 200$ and $\$ 210 / t$ for Caribbean material. Spot prices for alumina are expected to be somewhat lower in 1998 as the current tightness in the market eases with the re-introduction of idled capacity.

Outlook

Canada is forecast to produce about 2.315 Mt of primary aluminum in 1998. Canada produced 2.327 Mt in 1997 valued at an estimated $\$ 5.1$ billion, ranking it third after the United States and Russia. Canadian aluminum production capacity increased substantially during the latter half of the 1980s; however, Canadian production capacity is forecast to increase at a slower rate to the year 2005. Apart from the proposed projects by Alcan at Alma and Kitimat, a number of other smelter expansion projects in Quebec (at Alouette, A.B.I . and Lauralco) are dependent on new power supply contracts to be negotiated with Hydro-Québec. World aluminum production is expected to increase to 21.7 Mt in 1997 from

Figure 6
Canadian Primary Aluminum Production, 1985-2005

Source: Natural Resources Canada.
20.8 Mt in 1996. Western World production will increase to 16.3 Mt from 15.6 Mt in 1996. Aluminum production in 1997 is expected to reach 3.8 Mt in the United States, 3.4 Mt in Western Europe, and 2.7 Mt in Russia. The increases in Western World capacity that are expected in 1998 will come primarily from smelter expansions in Australia, Norway and I celand,
and from new smelter projects in Nigeria, I celand and Iran.

Total world consumption of primary aluminum is expected to reach an estimated 21.7 Mt in 1997, about 4\% higher than the 20.8 Mt recorded in 1996. Western World demand is also expected to have increased by about 4\% to 18.6 Mt in 1997. In 1998, demand for primary aluminum is expected to be 2.4\% higher in the United States, 2.5\% higher in Europe, and 2.0% higher in J apan. Total world demand for aluminum is expected to increase between 2 and 3% to 22.2 Mt in 1998. Strong annual growth of about 3% is forecast for the remainder of the decade. The

Figure 7
World Aluminum Consumption, 1985-2005

Source: Natural Resources Canada.
transportation and packaging markets are expected to lead the increase in demand for aluminum to the year 2005. Canadian consumption of aluminum in 1997 is expected to remain strong at about 600000 t .

For 1998, prices are forecast to average between US $\$ 1650$ and $\$ 1750 / \mathrm{t}$. In the longer term, prices are expected to average between $\$ 1650$ and $\$ 1850 / \mathrm{t}$ ($75 \$$ and $85 \$ / \mathrm{lb}$) in constant 1996 dollars.

Note: Information in this review was current as of February 13, 1998.

Figure 8
Aluminum Prices, 1985-2005
Annual London Metal Exchange Settlement Prices

Source: Natural Resources Canada.

Item No.	Description	Canada			$\frac{\text { United States }}{\text { Canada }}$	$\frac{\text { EU }}{\text { MFN }}$	$\frac{\text { Japan } 1}{\text { WTO }}$
		MFN	GPT	USA			
2606.00.00	Aluminum ores and concentrates	Free	Free	Free	Free	Free	Free
2818.20 .00	Aluminum oxide, other than artificial corundum	Free	Free	Free	Free	4.7\%	Free
$\begin{aligned} & 7601.10 \\ & 7601.20 \end{aligned}$	Unwrought aluminum, not alloyed Unwrought aluminum alloys	Free Free	Free Free	Free Free	Free Free	$\begin{aligned} & 6 \% \\ & 6 \% \end{aligned}$	$\begin{aligned} & 0.4 \% \\ & 0.4 \% \end{aligned}$
7602.00	Aluminum waste and scrap	Free	Free	Free	Free	Free-1.3\%	Free
76.03	Aluminum powders and flakes	3.5-5\%	Free	Free	Free	5.1-5.5\%	4.1\%
76.04	Aluminum bars, rods and profiles	Free-5\%	Free	Free	Free	8.5\%	9.1-9.6\%
76.05	Aluminum wire	Free-4\%	Free	Free	Free	8.5\%	9.1-9.6\%
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	Free-6.5\%	Free-5\%	Free	Free	8.5\%	Free-2.4\%
76.07	Aluminum foil not exceeding 0.2 mm	Free-6.5\%	Free-5\%	Free	Free	8.5-10\%	9.6\%
76.08	Aluminum tubes and pipes	Free-5\%	Free	Free	Free	Free-8.5\%	9.6\%
7609.00	Aluminum tube or pipe fittings	5.5\%	3\%	Free	Free	7\%	4.1\%
76.10	Aluminum structures (excluding prefabricated buildings of heading no. 94.06) and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	6.5\%	5\%	Free	Free	6.4-7\%	2-3.8\%
7611.00	Aluminum reservoirs, tanks, vats and similar containers, for any material	Free-6.5\%	Free-5\%	Free	Free	6.4\%	4.1\%
76.12	Aluminum casks, drums, cans, boxes and similar containers, for any material	6.5\%	2.5-5\%	Free	Free	6.4\%	4.1\%
7613.00	Aluminum containers for compressed or liquefied gas	6.5\%	5\%	Free	Free	6.4\%	4.1\%
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	4.5\%	3\%	Free	Free	6.4\%	5\%
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	6.5\%	Free-5\%	Free	Free	6.4\%	2\%
76.16	Other articles of aluminum	Free-6.5\%	Free-5\%	Free	Free	6.4\%	3.8\%

Sources: Customs Tariff, effective January 1998, Revenue Canada; Harmonized Tariff Schedule of the United States, 1998; Worldtariff Guidebook on Customs Tariff Schedules of Import Duties of the European Union (37th Annual Edition: 1997); Custom Tariff Schedules of Japan, 1997.
1 WTO rate is shown; lower tariff rates may apply circumstantially.

TABLE 1. CANADA, ALUMINUM PRODUCTION AND TRADE, 1996 AND 1997

Item No.		1996		1997p	
		(tonnes)	(\$000)	(tonnes)	(\$000)
PRODUCT		2283212	\ldots	2327188	.
IMPORTS2606.00	Aluminum ores and concentrates				
	Brazil	1385148	51062	1374412	48091
	Guinea	609700	24391	734472	25261
	Australia	181160	9355	641062	19024
	Guyana	265506	9790	217638	7092
	United States	82338	8648	62325	5249
	China	34491	2696	49690	4135
	Other countries	15863	991	55349	1610
	Total	2574206	106933	3134948	110462
2620.40	Ash and residues containing mainly aluminum	3305	1951	1727	1339
2818.20	Aluminum oxide (excluding artificial corundum)				
	Australia	1716573	464223	1507469	368969
	United States	878 144r	238 210r	864837	281654
	Jamaica	829389	201454	768695	220168
	Japan	30952	8736	35346	10148
	Switzerland	1	3	13120	3901
	Ireland	10431	2840	12379	3494
	Other countries	107084	36465	10072	8052
	Total	3572 574r	951 931r	3211918	896386
2818.30	Aluminum hydroxide	14321	7165	14855	8173
$\begin{aligned} & 7601.10 \\ & 7601.10 .10 \end{aligned}$	Unwrought aluminum, not alloyed Billets, blocks, ingots, notched bars, pigs, slabs and wire bars				
	United States	21869			
	Russia	75	160	387	761
	Other countries			569	977
	Total	21963	55924	18312	48337
7601.10 .91	Aluminum granules, unwrought, not alloyed, cut from ingots, for use in the manufacture of cleaning compounds United States	-	-		
	Total	-	-		
7601.10.99	Other	1602	4133	2770	6668
$\begin{aligned} & 7601.20 \\ & 7601.20 .10 \end{aligned}$	Unwrought aluminum, alloyed				
	Billets, blocks, ingots, notched bars, pigs, slabs and wire bars				
	United States	95 622r	163 769r	130591	252128
	Russia	4 957r	7624 r	4601	8995
	Netherlands	138	540	2134	4853
	United Kingdom	428	1773	789	1982
	Other countries	60	249	691	1773
	Total	$101205 r$	173 955r	138806	269731
7601.20 .91	Granules, cut from ingots, for use in the manufacture of cleaning compounds	1	3	7	22
7601.20 .99	Other	15484	31280	15723	36018
7602.00	Aluminum waste and scrap	67 624r	90584 r	90599	136692
76.03	Aluminum powders and flakes	1773	7002	2063	8100
$\begin{aligned} & 76.04 \\ & 7604.10 \end{aligned}$	Aluminum bars, rods and profiles Of aluminum, not alloyed				
	United States	5099	20980	7726	
	Belgium	546	2849	566	3054
	Australia	10	40	487	1127
	Other countries	120	781	231	1602
	Total	5775	24650	9010	35647

TABLE 1 (cont'd)

Item No.		1996		1997p	
		(tonnes)	(\$000)	(tonnes)	(\$000)
IMPORTS (cont'd)					
7604.21 to	Of aluminum alloys				
7604.29	United States	21 112r	115 621r	23852	126115
	Sweden	25	309	448	4118
	Germany	112	830	160	1144
	France	145	974	212	1120
	Other countries	748	4951	703	4066
	Total	22 142r	122685 r	25375	136563
76.05	Aluminum wire	3463	16 473r	4560	22003
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	342 657r	$1152252 r$	374175	1307603
76.07	Aluminum foil not exceeding 0.2 mm	31 424r	141 095r	41057	176497
76.08	Aluminum tubes and pipes	6875 r	35760 r	8599	42064
76.09	Aluminum tube or pipe fittings		22 057r		27296
		$\begin{array}{r} \text { (number } \\ 000 \text {) } \end{array}$		$\begin{gathered} \text { (number } \\ 000) \end{gathered}$	
76.10	Aluminum structures (excluding prefabricated buildings of heading no. 94.06) and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	.	56 445r	\cdots	66401
76.11	Aluminum reservoirs, tanks, vats and similar containers	. .	521	. .	1065
76.12	Aluminum casks, drums, cans, boxes and similar containers	710 553r	90453 r	875834	134353
76.13	Aluminum containers for compressed or liquefied gas	393 r	$12114 r$	122	14377
		(tonnes)		(tonnes)	
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	280	839	1909	4239
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	-	71 937r	.	83271
76.16	Other articles of aluminum	\ldots	158 090r	\ldots	201856
EXPORTS 2606.00	Aluminum ores and concentrates				
	Switzerland	214	112	184	71
	United States	6172	1226	372	53
	Total	6386	1338	556	124
2620.40	Ash and residues containing mainly aluminum	10762	6972	13020	8369
2818.20	Aluminum oxide (excluding artificial corundum)				
	United States	72588	55645	59547	48025
	Norway	35	38	354	388
	Other countries	386 r	511 r	1101	1365
	Total	73009 r	56194 r	61002	49778
7601.10	Unwrought aluminum, not alloyed				
	United States	632 166r	1383 463r	626950	1460685
	Netherlands	170221	332817	165893	342711
	Japan	33938	66087	34187	69414
	Korea, Republic of	30167	66964	25367	61445
	United Kingdom	14560	28599	19742	36209
	Other countries	39 639r	76 459r	18247	42354
	Total	920 691r	1954 389r	890386	2012818

TABLE 1 (cont'd)

Item No.		1996		1997p	
		(tonnes)	(\$000)	(tonnes)	(\$000)
EXPORTS (cont'd)					
7601.20	Unwrought aluminum alloys				
	United States	694 184r	1638 868r	783366	1974526
	Japan	123915	280163	127384	285085
	Korea, Republic of	32579	76084	35540	87447
	Israel	15077	37967	11394	30645
	Netherlands	7527	17322	9487	23047
	Italy	5900	13258	6493	19338
	United Kingdom	3959	10091	4366	11942
	Lebanon	5027	13070	3921	10714
	Ireland	1035	2762	3598	10595
	Other countries	7648	19149	7850	20818
	Total	896 7851r	2108734 r	993399	2474157
7602.00	Aluminum waste and scrap				
	United States	220146	363387	242574	436426
	Japan	5690	13451	9973	24029
	Netherlands	775	1576	5066	12064
	Korea, Republic of	2017	2539	4172	8851
	Other countries	12 848r	20 916r	9320	12090
	Total	241 476r	401869 r	271105	493460
76.03	Aluminum powders and flakes	1103	2294	1475	3368
76.04	Aluminum bars, rods and profiles	42 723r	175 912r	63941	281559
76.05	Aluminum wire	77 671r	201 939r	82026	226974
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	253 268r	735 033r	261190	812111
76.07	Aluminum foil not exceeding 0.2 mm	27 532r	127 472r	30209	149853
76.08	Aluminum tubes and pipes	4604	21896	5666	28725
76.09	Aluminum tube or pipe fittings	-	12 509r	. \cdot	12591
76.10	Aluminum structures (excluding prefabricated buildings of heading No. 94.06) and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	-	110 263r	.	135192
		(number 000)		(number 000)	
7611.00	Aluminum reservoirs, tanks, vats and similar containers	6	1190 r	2	1006
76.12	Aluminum casks, drums, cans, boxes and similar containers	1255302 r	131380 r	681255	89440
7613.00	Aluminum containers for compressed or liquefied gas	1056 r	2 622r	1523	3689
		(tonnes)		(tonnes)	
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	2713	8380	8491	20709
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	.	$35595 r$.	56731
76.16	Other articles of aluminum	.	102824 r	.	128423

Sources: Natural Resources Canada; Statistics Canada.

- Nil; . . Not available or not applicable; . . . Amount too small to be expressed; p Preliminary; r Revised.

Note: Numbers may not add to totals due to rounding.

TABLE 2. CANADA, ALUMINUM SMELTER CAPACITY

Company	As of December 31, 1997
Alcan Aluminium Limited Quebec Grande-Baie Arvida, Jonquière Isle-Maligne, Alma Shawinigan Beauharnois Laterrière	(tonnes/year)
British Columbia Kitimat	180000
Total Alcan capacity	232000
Canadian Reynolds Metals Company, Limited Quebec Baie-Comeau	83000
Aluminerie de Bécancour Inc. Quebec Bécancour	48000
Aluminerie Alouette Inc.	
Quebec	
Sept-Îles	
Aluminerie Lauralco Inc.	
Quebec	
Deschambault	204000
Total Canadian capacity	272000

Source: Natural Resources Canada.

TABLE 3. CANADA, CONSUMPTION1 OF ALUMINUM METAL4 AT FIRST PROCESSING STAGE, 1994-96

	$1994 a$	$1995 a$

CASTINGS

Permanent mould	83589 r	80943^{r}	$86777 \mathbf{r}$
Sand	2533	2663	2732^{r}
Die and other	$95217 \mathbf{r}$	100671^{r}	120793^{r}
Total			
		$180339 r$	$184277 r$

WROUGHT PRODUCTS

Sheet, plate, coil and foil
Extrusions, including tubing
Other wrought products (including rods, forgings and slugs)

Total

169847	164221	191754
117396	110084	111363^{r}
125489	138836	139245
412732	413141	442362^{r}

OTHER USES

Destructive uses (deoxidizer), non-aluminum base alloys, powder and paste and other uses

Total consumed
Aluminum metal used for the production of secondary aluminum ingot ${ }^{2}$

145661
146987
138762^{r}

	Metal Entering Plant			On Hand December 31		
	1994	1995	1996	1994	1995	1996
Primary aluminum ingot and alloys	525733	526205	560 233 ${ }^{\text {r }}$	18255	16986	16 452 ${ }^{\text {r }}$
Secondary aluminum	117685	113607	120 470r	5930	4351	$5176{ }^{\text {r }}$
Scrap originating outside plant	164 667r	162 275	$146198{ }^{\text {r }}$	$9022{ }^{\text {r }}$	5763 r	3 958 ${ }^{\text {r }}$
Total	808 085 ${ }^{\text {r }}$	802 087r	826 901 ${ }^{\text {r }}$	33 207r	27 101r	25 586 ${ }^{\text {r }}$
Aluminum shipments ${ }^{3}$				23324	25804	2829

Source: Natural Resources Canada.
r Revised.
a Increase in number of companies being surveyed; therefore, closing inventory of previous year does not equal opening inventory of current year.
1 Available data as reported by consumers. 2 Aluminum metal used in the production of secondary aluminum is not included in consumption totals. 3 Aluminum metal shipped without change. Does not refer to shipments of goods of own manufacture. 4 Aluminum metal refers to primary aluminum ingot and alloys, purchased secondary aluminum ingot, and outside aluminum scrap.
Note: Numbers may not add to totals due to rounding.

TABLE 4. AVERAGE ALUMINUM PRICES

Year	Month	$\begin{gathered} \text { LME } \\ \text { Cash1 } \end{gathered}$	Metals Week U.S. Markets ${ }^{1}$
		(US\$/t)	(US¢/lb)
ANNUAL AVERAGES2			
1987		1560.9	72.3
1988		2597.8	110.1
1989		1951.5	87.8
1990		1751.8	75.0
1991		1302.7	59.5
1992		1254.6	57.5
1993		1139.4	53.3
1994		1477.2	71.2
1995		1806.1	85.9
1996		1506.0	71.3
1997		1599.7	77.1
MONTHLY AVERAGES			
1996	January	1589.80	75.1
	February	1592.00	74.6
	March	1612.90	75.8
	April	1587.60	75.0
	May	1589.69	74.8
	June	1482.88	69.9
	July	1459.11	69.1
	August	1463.74	69.4
	September	1407.70	66.9
	October	1336.70	64.4
	November	1449.90	69.0
	December	1500.63	72.3
1997	January	1576.05	76.1
	February	1580.43	76.4
	March	1623.71	79.6
	April	1561.77	75.6
	May	1625.65	78.7
	June	1567.90	75.5
	July	1592.37	76.3
	August	1711.18	80.1
	September	1611.00	77.0
	October	1608.30	76.7
	November	1599.38	78.1
	December	1530.93	74.8

Sources: Natural Resources Canada; Metals Week.
1 Highest grade sold. 2 Primary ingots, minimum 99.7\% purity; prior to October 1988, minimum 99.5\% purity.

TABLE 5. AVERAGE ALUMINUM ALLOY (SECONDARY) PRICES

Year	Month	LME Alloy ${ }^{1}$ Cash
		(US\$/t)
ANNUAL AVERAGES		
1993		1005.2
1994		1452.9
1995		1656.0
1996		1302.8
1997		1461.0
MONTHLY AVERAGES		
1996	January	1394.57
	February	1356.79
	March	1363.98
	April	1345.50
	May	1326.90
	June	1253.63
	July	1244.40
	August	1258.33
	September	1222.50
	October	1210.63
	November	1294.43
	December	1346.59
1997	January	1491.25
	February	1497.20
	March	1523.09
	April	1454.20
	May	1481.68
	June	1447.43
	July	1425.34
	August	1475.94
	September	1426.64
	October	1442.59
	November	1470.28
	December	1396.40

Source: Metals Week.
1 Alloy ingots meeting LME specifications.

TABLE 6. WORLD MINE PRODUCTION OF BAUXITE, 1993-96

	1993	1994	1995	1996p
	(000 tonnes)			
Australia	41320.0	41646.0	42655.0	43063.0
Brazil	9668.6	8673.3	10214.1	10997.5
China	6468.2	6621.3	8255.5	10000.0
France	151.0	128.0	131.0	165.0
Ghana	423.7	426.1	513.0	473.2
Greece	2205.5	2196.4	2200.2	2230.0
Guinea	17040.0	14833.4	17733.3	18392.6
Guyana	2124.6	1911.1	2028.1	2260.0
Hungary	1561.3	835.7	1014.6	1043.6
India	5276.8	4809.1	5240.0	5757.5
Indonesia	1320.4	1342.2	899.0	842.0
Irane	100.0	100.0	100.0	100.0
Italy	90.1	23.4	11.2	-
Jamaica	11306.6	11563.5	10857.5	11828.6
Kazakstan	2911.0	2584.0	3318.5	3346.0
Malaysia	68.8	161.9	184.4	218.7
Mozambique	6.0	9.6	11.2	10.0
Pakistan	4.8	4.6	3.1	4.1
Romania	186.6	184.1	175.0	175.2
Russia	4364.0	3633.0	3706.0	3928.0
Serbia and Montenegro	251.7	1.3	60.0	323.0
Sierra Leone	1122.0	699.3	-	-
Surinam	3156.1	3803.1	3578.7	3695.5
Turkey	538.4	445.0	232.3	200.0
United States	55.0	100.0	100.0	100.0
Venezuela	2530.3	4419.2	5022.0	5600.0
Total world	114251.5	111154.8	118243.7	124753.5

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.

- Nil; e Estimated; p Preliminary.

TABLE 7. WORLD PRODUCTION OF ALUMINA (HYDRATE), 1993-96

	1993	1994	1995	1996p
	(000 tonnes)			
Australia	12598.0	12792.0	13147.0	13349.0
Azerbaijan	106.0	70.0	27.0	-
Bosnia	-	-	25.0	25.0
Brazil	1853.2	1867.5	2142.9	2759.0
Canada1	1182.0	1170.0	1064.0	1060.0
China	1894.5	1846.9	2222.7	2490.0
France	476.0	438.2	525.0	542.0
Germany1	1110.0	950.7	994.0	700.0
Greece	648.5	607.5	629.7	619.8
Guinea	642.3	648.4	630.4	622.0
Hungary	447.3	243.4	353.5	358.7
India	1489.5	1455.8	1672.0	1706.0
Ireland	1103.3	1140.0	1186.0	1234.0
Italy	840.1	852.1	857.0	881.0
Jamaica	2989.4	3221.2	3030.2	3199.5
Japan	704.1	674.6	743.2	718.9
Kazakstan	1091.0	822.0	1022.0	1080.0
Romania1	293.2	301.6	322.8	258.5
Russia	2568.0	2168.4	2254.0	2142.0
Serbia and Montenegro	70.0	60.9	35.3	104.0
Slovak Republic	90.2	90.0	65.0	65.0
Spain	1060.0	1070.6	1094.8	1101.0
Surinam	1506.6	1498.1	1588.8	1600.0
Turkey	169.2	155.3	172.0	159.3
Ukraine	1236.0	1081.0	1198.0	1161.0
United Kingdom	120.0	110.0	108.0	100.0
United States1	5290.0	4860.0	4533.0	4700.0
Venezuela	1562.9	1551.5	1742.0	1775.0
Total world	43141.3	41747.2	43385.3	44510.7

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.

- Nil; p Preliminary.

1 Calcined.

TABLE 8. WORLD PRODUCTION OF ALUMINUM, 1994-97

	1994	1995	1996p	1997e
	(000 tonnes)			
Argentina	175.0	185.5	185.9	185.0
Australia	1310.8	1292.6	1370.3	1490.0
Azerbaijan	10.0	11.0	-	-
Bahrain	451.9	453.9	464.5	490.0
Brazil	1184.6	1188.1	1197.4	1189.0
Canada	2254.7	2172.0	2283.2	2327.0
Cameroon	81.1	79.3	82.3	91.0
China	1462.2	1676.1	1776.1	2045.0
Dubai	246.9	248.1	260.0	380.0
Egypt	181.5	180.3	176.7	178.0
France	384.1	364.5	380.1	399.0
Germany	505.0	575.2	576.4	572.0
Ghana	140.7	135.4	137.0	151.0
Greece	138.0	130.9	130.9	132.0
Hungary	30.7	34.9	33.5	23.0
Iceland	98.6	100.2	103.4	123.0
India	472.0	536.5	530.6	540.0
Indonesia	221.9	228.1	221.2	216.0
Iran	116.0	117.0	80.1	92.0
Italy	175.6	177.8	184.4	187.0
Japan	17.0	18.0	17.0	17.0
Mexico	-	10.4	61.5	76.0
Netherlands	219.4	215.6	227.0	231.0
New Zealand	268.0	273.3	284.5	310.0
Norway	858.2	846.7	862.3	918.0
Poland	49.5	55.7	52.1	52.0
Romania	119.6	140.5	140.9	165.0
Russia	2670.5	2790.0	2874.2	2900.0
Serbia and Montenegro	10.6	26.0	51.0	80.0
Slovak Republic	33.0	59.0	110.0	110.0
Slovenia	74.3	70.2	65.8	74.0
South Africa	172.7	233.3	617.0	676.0
Spain	338.1	361.9	361.8	360.0
Surinam	26.7	28.1	28.0	24.0
Sweden	83.9	94.5	98.3	98.0
Switzerland	24.2	20.7	26.6	27.0
Tadjikistan	236.5	237.0	198.3	190.0
Turkey	59.7	61.5	62.1	62.0
Ukraine	102.0	95.1	90.7	100.0
United Kingdom	231.2	237.9	240.0	247.0
United States	3298.5	3375.1	3577.2	3603.0
Venezuela	585.4	627.9	634.9	640.0
Total world	19120.3	19765.8	20855.2	21770.0

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.

- Nil; e Estimated; p Preliminary.

TABLE 9. WORLD CONSUMPTION OF ALUMINUM, 1994-97

	1994	1995	1996p	1997e
	(000 tonnes)			
Albaniae	1.0	1.0	1.0	1.0
Algeria	5.0	5.0	5.0	5.0
Argentina	108.2	84.0	86.4	87.0
Australia	352.8	351.8	324.4	330.0
Austria	145.0	150.0	155.0	145.0
Bahrain	132.9	135.0	137.0	137.0
Bangladeshe	10.0	10.0	10.0	10.0
Belgium/Luxembourg	328.7	340.0	320.0	328.0
Brazil	414.1	499.8	497.0	500.0
Bulgaria	6.5	6.0	5.0	5.0
Canada	565.1	611.9	620.1	630.0
Cameroon	16.9	21.0	18.0	18.0
Chilee	14.3	15.0	13.9	14.0
Chinae	1484.1	1874.9	2033.1	2100.0
Colombia	35.3	33.3	35.0	35.0
Cuba	1.0	1.0	1.0	1.0
Czech Republic	43.0	58.9	53.0	53.0
Denmark	26.0	27.6	28.5	29.0
Egypt	80.4	77.4	79.2	80.0
Finland	19.0	31.0	31.3	32.0
France	747.5	750.0	693.0	700.0
Germany	1420.0	1510.0	1400.0	1500.0
Ghana	15.8	16.1	16.1	16.0
Greece	143.0	162.8	165.0	165.0
Hong Kong	41.6	116.6	149.4	200.0
Hungary	143.1	120.6	155.8	157.0
India	474.0	581.0	550.0	575.0
Indonesiae	179.1	147.7	155.0	150.0
Irane	116.0	120.0	120.0	120.0
Iraqe	1.0	1.0	1.0	1.0
Ireland	8.0	3.3	3.8	4.0
Israel	41.3	43.1	45.0	45.0
Italy	660.0	631.0	585.1	600.0
Japan	2344.8	2336.4	2392.6	2500.0
Korea, D.P.R.e	20.0	20.0	20.0	20.0
Korea, Republic of	603.9	675.3	674.3	625.0
Lebanon	7.0	7.0	10.0	10.0
Malaysia	66.3	114.0	150.0	120.0
Mexico	78.8	43.8	94.7	95.0
Netherlands	145.0	150.0	145.0	145.0
New Zealand	40.0	38.6	39.0	40.0
Nigeria	7.0	7.0	7.0	7.0
Norway	212.0	157.0	159.4	160.0
Pakistan	10.0	13.0	15.0	15.0
Perue	3.0	4.5	5.0	5.0
Philippines	25.0	30.0	30.0	30.0
Poland	67.0	88.3	90.4	90.0
Portugal	64.2	66.7	58.1	60.0
Romania	20.1	34.3	35.6	35.0
Russia	550.0	476.0	443.6	445.0
Saudi Arabia	25.0	30.0	30.0	30.0
Serbia and Montenegro	9.0	9.0	17.3	17.0
Singapore	30.3	39.2	30.0	35.0
Slovak Republic	25.0	25.0	25.0	25.0
Slovenia	54.2	56.9	47.5	50.0
South Africa	123.0	119.7	101.6	120.0
Spain	352.0	350.0	360.0	370.0
Sweden	131.0	116.0	117.8	135.0
Switzerland	155.1	143.3	140.2	155.0
Taiwan	355.2	362.5	310.3	350.0
Thailand	183.4	253.5	220.2	225.0

TABLE 9 (cont'd)

	1994	1995	1996p	1997 e
	(000 tonnes)			
Turkey	115.2	144.0	136.0	140.0
United Arab Emirates	19.3	24.6	30.0	30.0
United Kingdom	570.0	620.0	600.0	650.0
United States	5657.1	5300.0	5400.0	5460.0
Venezuela	152.1	183.0	206.9	195.0
Vietname	5.5	13.9	15.0	15.0
Other	66.8	59.7	66.9	65.0
Total world	20142.5	20734.2	20797.8	21242.0

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.
e Estimated; p Preliminary.

TABLE 10. WESTERN WORLD PRODUCTION OF SECONDARY ALUMINUM,1 1993-96

	1993	1994	1995p	1996 e
	(000 tonnes)			
Argentina	14.4	14.4	14.4	14.0
Australia	34.8	55.0	55.0	55.0
Austria	43.3	52.5	46.8	47.0
Brazil	76.8	91.0	116.7	117.0
Canada	90.0	95.0	97.0	100.0
Croatia	26.0	26.0	30.9	33.0
Denmark	14.0	14.0	14.0	14.0
Finland	29.9	31.0	31.0	31.0
France	222.4	253.4	222.0	225.0
Germany	408.1	438.1	418.8	415.0
Iran	15.1	26.0	26.0	26.0
Italy	346.1	375.5	412.3	428.0
Japan	1005.6	1173.5	1180.5	1192.0
Mexico	69.9	125.3	128.6	129.0
Netherlands	139.1	150.0	150.2	150.0
New Zealand	7.3	8.2	8.2	9.0
Norway	55.8	49.2	71.9	60.0
Portugal	2.0	3.0	3.0	3.0
Spain	99.7	103.5	107.0	107.0
Sweden	19.0	20.0	19.0	20.0
Switzerland	4.2	6.2	10.7	11.0
Taiwan	64.0	64.0	67.0	67.0
United Kingdom	279.0	248.9	282.0	285.0
United States	2994.9	2958.8	3188.0	3200.0
Venezuela	34.8	31.9	27.5	28.0
Other	28.0	28.0	28.0	28.0
Total world	6124.2	6442.4	6756.5	6794.0

Sources: Natural Resources Canada; World Bureau of Metal Statistics.
e Estimated; p Preliminary.
1 Excluding the direct use of aluminum in the form of scrap.

[^0]: Source: Natural Resources Canada.

