Aluminum

Wayne Wagner

The author is with the Minerals and Metals Sector, Natural Resources Canada.
Telephone: (613) 996-5951
E-mail: wwagner @ nrcan.gc.ca (text-based only)
(Notes: General material on aluminum is available on the Internet at www.nrcan.gc.ca/mms/scho-ecol/ main_e.htm\#aluminum and in the 2000 chapter on Aluminum at www.nrcan.gc.ca/mms/cmy/com_e.html. Abbreviations of company names used in this paper are listed in Table 10 along with known Internet addresses of those companies.)

Canada's rank in world production of metal: Third Installed capacity: $\quad 2.79 \mathrm{Mt} / \mathrm{y}$

Amount	$\underline{\text { Value }}$	
2002 primary aluminum production: 2002 exports (unwrought):	2.71 Mt	$\$ 5.7$ billion \mathbf{p}
2002 exports		$\$ 4.9$ billion \mathbf{p}
(HS Chapter 76) $\mathbf{1}:$	n.a.	$\$ 8.4$ billion \mathbf{p}

n.a. Not applicable; \mathbf{p} Preliminary.

In

 Increases in production at existing and new facilities around the world have now surpassed the cutbacks in metal production that occurred in the Americas in 2001. As a result, world production of primary and recycled aluminum has increased in 2002 to an estimated total of 33.8 Mt , compared to the past record 32.7 Mt in 2000. Of this total, 25.9 Mt was primary metal, compared to 24.5 Mt in 2001.Although the average price was lower in 2002 compared to 2001, prices were less volatile and remained within a trading range of about 10% during 2002. Prices declined
in June and started to recover in October, ending the year at prices close to those at the start of year (refer to the table below).

PRIMARY ALUMINUM CASH PRICE, LONDON
METAL EXCHANGE

	2000	2001	2002
		US $\$ / \mathrm{l}(\mathrm{US} \not \subset / \mathrm{lb})$	
Year average	$1555(71)$	$1444(66)$	$1349(61)$
Start of year	$1615(73)$	$1567(71)$	$1324(60)$
End of year	$1554(71)$	$1335(61)$	$1345(61)$
Year high	$1745(79)$	$1737(79)$	$1438(65)$
Year low	$1400(63)$	$1243(56)$	$1276(58)$

Prices in the spot alumina market reached a bottom in late 2001; after revisiting the lows in October 2002, prices started to rise as smelter expansions, particularly in China, placed increased demand on spot markets. Metal Bulletin reported that spot prices for metallurgical-grade alumina started the year at US $\$ 130-\$ 140 / t$, rose to US\$150-\$160/t in mid-year, fell back to US\$138-\$143/t in October, and subsequently rose to US\$240-\$270/t in early 2003.

Canadian Developments

Production of primary aluminum in Canada increased 4.9\% to 2.71 Mt in 2002 , compared with 2.583 Mt in 2001 , ranking Canada third after China and Russia in terms of world primary production. The increase reflects a full year of operation at Alcan Inc.'s 400 000-t/y smelter in Alma, Quebec, which reached full operating capacity in September 2001. Monthly Canadian production statistics can be obtained on Natural Resources Canada's Internet site (http://mmsd1.mms.nrcan.gc.ca/mmsd/data/default_e.asp).

The value of Canadian primary aluminum production in 2002 is estimated at $\$ 5.7$ billion, down slightly from $\$ 5.8$ billion in 2001, reflecting the larger decrease in prices for aluminum when compared with the increase in production level.

Reported Canadian use of aluminum metal at the first processing stage, including the use of recycled aluminum,

Figure 1
Aluminum Smelters, 2002

Smelter

1. Kitimat
2. Beauharnois
3. Bécancour
4. Shawinigan
5. Lauralco Deschambault
6. Grande-Baie
7. Laterrière
8. Alma
9. Arvida, Jonquière
10. Baie-Comeau
11. Alouette, Sept Îles

Company

ComPANY	CAPACITY
Alcan	275000
Alcan	50000
A.B.I.	390000
Alcan	91000
Alcoa Lauralco	240000
Alcan	196000
Alcan	219000
Alcan	400000^{a}
Alcan	248000
Canadian Reynolds Metals (Alcoa)	437000
Alouette	244000
	2790000

[^0]was 945336 t in 2001, down from a revised figure of 1012816 t in 2000^{2} (Table 3a). The data revisions for 2000 and part of the decrease in 2001 are due to revisions in the survey to clarify and exclude run-around scrap from reported use.

Canada is the second largest aluminum-exporting country in the world after Russia. Canadian exports of primary smelter products in 2002 increased in quantity to 2.13 Mt valued at $\$ 4.937$ billion (US $\$ 3.14$ billion), compared to 2.05 Mt valued at $\$ 4.914$ billion (US $\$ 3.17$ billion) in 2001. Of this amount, unwrought exports to the United States totaled 1.61 Mt valued at $\$ 3.78$ billion (US $\$ 2.4$ billion) (see Table 1).

The Canadian aluminum industry has made major strides in reductions in greenhouse gas emissions per tonne of aluminum produced over the last 10 years. Industry reports the intensity of emissions per tonne of aluminum has fallen from 5.59 t of CO_{2} equivalent ${ }^{3}\left(\mathrm{CO}_{2} \mathrm{e}\right)$ in 1990 to 3.94 t in 2000 . However, total emissions have not fallen in the same proportion due to increased production of metal over the period. In January 2002, the Aluminium Association of Canada and the Quebec government signed a framework agreement on the voluntary reduction of 200000 t of $\mathrm{CO}_{2} \mathrm{e}$ emissions from Quebec smelters by the end of 2007. However, subsequently, company-specific agreements were signed with Alcan, Alcoa and Alouette, which further detail company-specific reduction targets actually totaling 500000 t of $\mathrm{CO}_{2} \mathrm{e}$. The agreements acknowledge the importance of aluminum's life cycle and contribution to the collective effort to reduce greenhouse gas emissions. Refer to the Association's web site at www.aia.aluminium.qc.ca for further details and links for additional information.

In early 2002, after discussions with Quebec aluminum companies, the Quebec government chose an expansion proposal by Aluminerie Alouette Inc. and Alcan Inc. and allocated 500 MW of power (at standard regulated commercial rates) to the company. Aluminerie Alouette plans to invest $\$ 1.4$ billion to expand capacity of its smelter from $244000 \mathrm{t} / \mathrm{y}$ to $550000 \mathrm{t} / \mathrm{y}$. Preliminary work began in late 2002 and the first metal is expected in 2005. In addition to the 2500 construction jobs, the expansion will create 340 permanent new jobs at the smelter and 1500 indirect jobs in other areas of the province. Further details are on the company's web site at http://www.alouette.qc.ca.

Alcoa signed an agreement with the Quebec government in December 2002 to upgrade the 437 000-t/y Baie Comeau smelter. The agreement provides the additional power required for the operation of pre-baked cells, which will replace existing Söderberg technology. Construction of the $\$ 1$ billion upgrade to the smelter will begin in 2003 with completion expected in 2010 . The capacity of the smelter is expected to increase by $110000 \mathrm{t} / \mathrm{y}$ to $547000 \mathrm{t} / \mathrm{y}$. Modernization and construction work will
create over 5000 direct and indirect jobs over the eight years of work.

Alcoa also signed a Memorandum of Understanding with the Quebec government on March 5, 2003, on the expansion of the Deschambault smelter (Lauralco) located near Québec City. Alcoa wishes to expand the smelter from $240000 \mathrm{t} / \mathrm{y}$ to a capacity of $570000 \mathrm{t} / \mathrm{y}$. If power is available, the expansion will entail an investment of more than $\$ 1$ billion and the creation of 9000 direct and indirect jobs for the length of the construction period. Alcoa agreed to create a minimum of 1250 jobs, most of which will be in the Quebec aluminum fabricating industry, and more than 250 jobs with the expansion of the Deschambault plant.

Alcan signed a Memorandum of Understanding with Hydro-Québec in February 2002 to explore opportunities. These range from optimizing hydro-electric resources in the Saguenay-Lac-St-Jean region to providing the power to support the eventual expansion of Alcan's Alma smelter.

Alcan's 275 000-t/y smelter at Kitimat, British Columbia, suffered from low water levels in the Nechako Reservoir. The company had announced a slowdown, of up to 50% of the facility's capacity, in 2001 and, in June 2002, Alcan announced a partial restart from $180000 \mathrm{t} / \mathrm{y}$ to $240000 \mathrm{t} / \mathrm{y}$. During the slowdown, Alcan worked on studies for an expansion and pilot work on converting the smelter to pre-bake technology (www.alcan.com).

In 2001, Alcoa Inc. signed a letter of intent with the Province of Newfoundland and Labrador and with Newfoundland and Labrador Hydro on a joint review of a possible hydro-electric power expansion in Labrador and a new aluminum smelter. The review was completed in late 2001 and discussions continued in 2002, but the parties have now terminated negotiations without reaching an agreement (www.alcoa.com, www.gov.nf.ca, and www.gov.nf.ca/releases/2002/mines\&en/0729n04.htm).

In British Columbia, the Alberni Aluminium Company has been formed to continue work on a proposal for a $360000-\mathrm{t} / \mathrm{y}$ aluminum smelter. KTD L.L.C., an independent U.S.-based consulting firm, is providing engineering and design services and management/operations expertise. In 2002, the companies completed a pre-feasibility study for a new smelter to be located near Port Alberni, Vancouver Island. Work continued on environmental and engineering studies, a long-term power supply, and finding investors for the project. The proposed smelter would require 650 MW of power and new infrastructure. Engineering and permitting studies were estimated to take up to three years. Construction is expected to take 34 months and, as a result, initial metal production would not occur before 2008. A total of 650 direct jobs and a substantial number of indirect jobs would be created with this proposed US $\$ 1.5$ billion smelter. (Additional information is
available on the Internet at www.bchydro.bc.ca, www.alberni-region.com and www.ktdal.com).

Alcan purchased a 20% share of the Alouette smelter from the Société générale de financement du québec (SGF) and a 20% interest from Corus Aluminium Québec Inc. SGF purchased a 13.33% interest from Kobe Aluminium Canada Inc. As a result of Norsk Hydro ASA's purchase of VAW AG from E.ON, the new Hydro Aluminum group, Hydro Aluminum, now owns 20% of the smelter. The remaining partners in Alouette are Aluminium Austria Metall Québec (20%) and Marubeni Québec Inc. (6.66\%).

Canadian Outlook

Although Canadian aluminum production capacity increased substantially during the latter half of the 1980s and early 1990s, it remained relatively stable until Alcan's new Alma smelter opened in 2001. Canada's production capacity increased slightly to $2.79 \mathrm{Mt} / \mathrm{y}$ by the end of 2002 as capacity creep ${ }^{4}$ was reported in several smelters. With the announcements of expansions at the Alouette, Baie Comeau and Lauralco smelters, Canadian capacity could surpass $3 \mathrm{Mt} / \mathrm{y}$ by 2005 and $3.6 \mathrm{Mt} / \mathrm{y}$ by 2010 . Other potential smelter expansion projects would be in excess of the capacities noted above and are dependent on power supplies and favourable company decisions. Decisions on potential new capacity in British Columbia and elsewhere are still pending.

Figure 2
World Total Primary Aluminum Production, 1965-2002 (e)

Sources: Natural Resources Canada; International Consultative Group on Nonfrrous Metals Statistics.
(e) Estimate for 2002.

Canada is expected to produce about 2.75 Mt of primary aluminum in 2003, up slightly from 2002. The increase will result from capacity creep in existing smelters; however, reaching this level will also depend on power availability to the Kitimat smelter in northern British Columbia.

Production, Use and Inventory

World production of primary aluminum increased to 24.51 Mt in 2001 from 24.46 Mt in 2000 (see Table 8). World production in 2002 is estimated to have risen by about 5.8% to 25.9 Mt . The International Consultative Group on Nonferrous Metal Statistics reported that total world use of primary aluminum was 23.8 Mt in 2001, 4.6% lower than the revised figure of 24.9 Mt for 2000 (Table 9). On a longer-term basis, the average daily production rate has been growing at about 2% per year since 1980 (See Figure 2).

The World Bureau of Metal Statistics (WBMS) reported that, in 2002, use of primary aluminum was 24.9 Mt . Asia was the region in the world with the largest aluminum use, accounting for 38% of total world refined aluminum use. Europe accounts for 30% and North America accounts for 24\%.

Production of International Aluminium Institute (IAI) members reached 21.2 Mt in 2002 ($\sim 86 \%$ of world production). Their primary aluminum production rate increased 5.7% during the year to $59300 \mathrm{t} / \mathrm{d}$ in December

Figure 3
Canadian Primary Aluminum Production, 1985-2010

Source: Natural Resources Canada.

Figure 4
Reported Canadian Use of Aluminum, 1992-2002

Source: Natural Resources Canada, Annual Survey of Aluminum Metal Use in Canadian Establishments.
(f) Forecast.

Notes: Export figures are obtained from Canadian government trade data. Data on metal use are obtained from responses to questionnaires sent to aluminum-using companies. In 2000, over 185 Canadian companies used primary, recycled and scrap aluminum. Companies surveyed include primary metal producing, recycling, casting, rolling, extruding and foundry operations.

Figure 5
Primary Aluminum Production, Top Ten Producers, 2002 (e) and 2003 (f)

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics; World Bureau of Metal Statistics; International Aluminum Institute.
(e) Estimate; (f) Forecast.

Figure 6
Apparent Use of Primary Aluminum, 2001
Top 10 Countries - 80\% of Total

Source: International Consultative Group on Nonferrous Metals Statistics.

Figure 7
Total Apparent Use of Primary Aluminum by Country, 2001

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.

2002 from 56100 t/d in December 2001. The average production rate for all of 2002 was $58100 \mathrm{t} / \mathrm{d}$, compared with an average of $56300 \mathrm{t} / \mathrm{d}$ in 2001 (an increase of 3.2%). Members' aluminum production capacity increased from $22.976 \mathrm{Mt} / \mathrm{y}$ at the end of 2001 to $23.108 \mathrm{Mt} / \mathrm{y}$ at the end of 2002. (The IAI has an Internet site at www.world-aluminium.org.)

IAI total inventories started the year at 3.0 Mt and then declined to 2.86 Mt in July, remaining at that level until November, with a slight increase to 2.9 Mt in December. LME primary aluminum inventories continued to increase, continuing a trend that started in 2000. High-grade inventories started the year at 824000 t and increased steadily to peak at 1.30 Mt in September, declining slightly thereafter to end the year at 1.24 Mt . Similarly, aluminum alloy stocks in LME warehouses in January 2001 were approximately 86000 t and increased during the year to 121000 t in December. Aluminum alloy stocks in LME warehouses started in January 2002 at about 122000 t and declined throughout the year to 35000 t at the end of December.

The IAI also reported that members' refined ${ }^{5}$ alumina production capacity increased from a revised $53.305 \mathrm{Mt} / \mathrm{y}$ in December 2001 to $53.615 \mathrm{Mt} / \mathrm{y}$ in December 2002, while alumina production also rose from 48.488 Mt in 2001 to 49.785 Mt in 2002.

World Developments

China continues to expand production capacity; it became the largest producer of primary aluminum in the world in 2001 and increased its lead in 2002 when it produced 4.2 Mt. This rapid increase in production has placed upward pressure on alumina prices globally and has increased power costs within China. Government pressure continues on older smelters to close or modernize. Chinese primary aluminum production is expected to be above 5 Mt in 2003, firming up China's global lead.

In the northwestern United States, questions about power availability and costs continue to be issues for smelters. Financial strains on the Bonneville Power Authority (BPA) have continued and this has led BPA to announce in early 2003 that it intends to increase rates to large customers by 15% in late 2003 . While BPA power costs and availability have been an issue for the last two decades, the recent increases may be the final straw for a number of smelters. Reports of permanent and indefinite closures have started to appear. Kaiser Aluminum's plants in Mead and Tacoma have been closed and Alcoa's plans in Ferndale (Intalco) to re-open a third potline have been put on hold. About $1 \mathrm{Mt} / \mathrm{y}$ of the total U.S. annual primary capacity of approximately $3.7 \mathrm{Mt} / \mathrm{y}$ remains closed.

A lack of rainfall in Brazil forced rationing of power in mid-2001, resulting in temporary closure for about $350000 \mathrm{t} / \mathrm{y}$ of the country's capacity of $1.38 \mathrm{Mt} / \mathrm{y}$. By year-end, however, restarts had begun and were nearly completed by the end of the first quarter of 2002. Production in 2002 was approximately 1.3 Mt .

The Russian parliament proposed an end to tax exemptions on the tolling of aluminum. ${ }^{6}$ If implemented, this change in taxation could result in a slowing of expansions and modernization in Russian smelters.

Expansions, proposals and studies for new mines, refineries and smelters have been announced in many countries. Although the current high spot alumina prices (US\240\$ 270 / \mathrm{t}$ in early 2003) may delay some projects in China, a significant amount of new production capacity is expected in the near future. These new projects are expected to place increasing pressure on both operating and proposed plants with higher costs to reduce those costs or close. A partial listing of changes is tabulated in Tables 11 and 12.

The Federation of Aluminium Consumers in Europe (FACE) continued its efforts to stimulate aluminum demand by promoting the use of aluminum, assessing the impact of new technologies, and reducing the costs of primary metal through tariff reductions. FACE was formed in 1999 and has 42 members from European aluminumusing companies from 11 countries. As the European Union (EU) uses more than double the amount of primary aluminum it produces, FACE estimates that the EU's 6\% duty on unwrought aluminum imports costs European consumers US $\$ 475$ million per year. In 2002, FACE investigated the possibilities for legal action in the EU Court of Justice and continued its lobbying efforts in the EU, concentrating on the World Trade Organization to remove the tariffs. (FACE has an Internet site at www.facealuminium.com.)

Recycling

The WBMS reports Western World production of recycled aluminum metal increased to 7.9 Mt in 2002 from 7.7 Mt in 2001. This reflects a combination of the increased prices and demand for aluminum alloys. U.S. production, at 3 Mt , was the largest amount in any one country and represented almost 40% of recycled aluminum production worldwide. The U.S. Geological Survey has an Internet site at http://minerals.usgs.gov/minerals/pubs.)

Hydro Aluminium has opened a new $90000-\mathrm{t} / \mathrm{y}$ plant producing primary-quality billet in Commerce, Texas, using a feed of high-quality scrap aluminum. The plant was expected to reach full capacity early in 2003. Its opening follows the completion of another recycling plant in Henderson, Kentucky, in 2000. The Texas plant expands

Figure 8
Canadian Recycling of Aluminum, 1988-2002

Source: Natural Resources Canada, Annual Survey of Aluminum Metal Use in Canadian Establishments. (f) Author forecast for 2002.

Notes: Export figures are obtained from Canadian government trade data. Data on metal use are obtained from responses to questionnaires sent to aluminum-using companies. In 2001, 185 Canadian companies reported the use of primary, recycled and scrap aluminum. Companies surveyed include primary metal producing, recycling, casting, rolling, extruding and foundry operations.

Hydro Aluminium's recycling capacity in North America to over $400000 \mathrm{t} / \mathrm{y}$.

Reported Canadian use of outside scrap (scrap aluminum obtained from other companies) for the direct production of semi-finished or finished products was 74923 t in 2001, down approximately 25% from the 100294 t reported in 2000. The reported use of aluminum metal, including scrap used in the production of recycled aluminum ingot, was 175470 t in 2001, up from the 159419 t reported in 2000. The reported use of purchased recycled aluminum ingot was 134483 t in 2001, down from the 190026 t reported in 2000 (see Table 3b and Figure 5 on Canadian Recycling of Aluminum, and Figure 4 on Canadian Use of Aluminum).

A study of available data on Canadian used beverage can (UBC) recycling was conducted for the Aluminium Association of Canada in 2002. The 4.8 billion aluminum cans sold in Canada in 2001 contained approximately 72000 t of aluminum. ${ }^{7}$ The report indicates that about 72% of this aluminum was recovered through residential curb-side and deposit systems. Provincial recovery rates range from 71% to 94%. Much of the material is lost through disposal at purchases and activities away from home where collection and separation problems hamper metal recovery. UBCs, now sent for disposal, represent a potential income opportunity through the development of new or improved collection systems. Over the last year, the price of alloyed aluminum has risen compared to the price of primary alu-
minum. If this relative increase in value is maintained in the longer term, there may be an increased payback and incentive for recycling programs to be extended to commercial events.

Nova Pb Inc. is a Canadian recycler of lead, oil filters and petrochemical wastes located in Ville Ste-Catherine, Quebec. Nova received environmental approvals and an operating permit to expand its operations to include the recycling of spent potliners from aluminum smelters. The company has developed a proprietary process to recycle spent potliners using a long rotary kiln and converting the lining to an inert material called CAlSiFrit ${ }^{\mathrm{TM}}$. CAlSiFrit ${ }^{\mathrm{TM}}$ is used in concrete where it partially replaces the cement, improving the rheological and mechanical properties of the resulting concrete and reducing permeability by as much as 50%. The company plans to recycle 35000 t of this material in 2003 and could expand this to 70000 t in 2004. Nova has an Internet site at www.novapb.qc.ca.

Statistics Canada, Natural Resources Canada and the Canadian Association of Recycling Industries (http://cari.recycling.org) are managing a process to improve Canadian recycling data. The existing data collection is being examined so that information presently collected can be integrated into a collection of statistics on recycling. In addition, work is also under way on determining the feasibility of obtaining new data regarding the composition and sources of discarded materials (www.recycle.nrcan.gc.ca/stats_e.htm).

Metals recycling information can be obtained through Natural Resources Canada's web site at www.recycle.nrcan. gc.ca. The web site includes a listing of companies involved in recycling activities and provides an opportunity for recycling companies to add themselves to the list.

Prices and Outlook

For alumina, IAI figures show that the alumina production capacity of its members is expected to increase from 53.6 Mt/y in December 2002 to $55.3 \mathrm{Mt} / \mathrm{y}$ in December 2003.

Primary-grade aluminum has established a longer-term price range, ranging between approximately US\$1200 and $\$ 1800 / \mathrm{t}$ (US55¢ and $82 \phi / \mathrm{lb}$) since 1993. More recently, London Metal Exchange (LME) cash settlement prices have trended down from a peak above US\$1700/t in early 2001 to trade in a range between US\$1276 and US\$1438/t (US58 $\$$ and $65 \not \subset / \mathrm{lb}$) during 2002. The 2002 average of US\$1349/t (US61 $¢ / \mathrm{lb}$) was lower than the 2001 average of US\$1444/t (US66¢/lb).

Aluminum alloy daily settlement prices on the LME increased during 2002 and have surpassed prices for primary material early in 2003. The increase in prices for longer contracts, however, has approached the price of primary material. Aluminum alloy settlement prices started 2002 at US $\$ 1035 / \mathrm{t}$ (US47 $4 / \mathrm{lb}$) and increased to end the year at US\$1337/t (US61 \downarrow / lb). For 2002, alloy prices averaged approximately US\$1234/t (US56 $\$ / \mathrm{lb}$) compared to an average of approximately US\$1174/t (US53.3 ϕ / lb) in 2001 (see Figures 9 and 10).

IAI figures show that the world primary production capacity of its members is expected to increase by about 1.8% to 23.5 Mt in December 2003 from 23.1 Mt at the end of 2002, with a slightly higher increase (3.4\%) in 2004.

Taking into account the projected increases from non-IAI members, world primary production is expected to rise by approximately 5% to about 27.2 Mt in 2003 . This increase and that of 6% in 2002 followed a half of a percent decline in 2001, and the increase is slightly above the long-term rate. The projected increases in production suggested by Table 12 indicate that this production increase may continue at a rate of 5\% for 2004 and 2005. It is possible that the declines in prices since 1994 have supported an increased long-term growth rate in aluminum production.

Over the long term, the increasing production from larger, more efficient smelters is likely to continue the long-term trend to lower production costs and prices. Given the increases in production capacity planned over the next three years, it is probable that prices will remain under pressure, which will likely further stimulate additional demand, particularly in the transportation sector.

Canadian installed capacity for the production of primary aluminum is almost $2.8 \mathrm{Mt} / \mathrm{y}$. With the announced expansions at Alouette and announcements on Baie Comeau and Deschambault, Canadian production rates are expected to increase to about $3.1 \mathrm{Mt} / \mathrm{y}$ in 2006. Studies have been undertaken on other Canadian brownfield expansions and new smelters. Should economic conditions warrant, further expansion in production could be possible.

Figure 9
London Metal Exchange Aluminum Prices, 1989-2002

[^1]Figure 10
Aluminum Alloy Prices, London Metal Exchange, 1993-2002

Sources: Natural Resources Canada; London Metal Exchange; Reuters; Metalprices.com.

Figure 11
Alumina Production, 2001 and 2002 (e)
Top Ten Producers - 80\% of Total Production of 55.7 Mt in 2002

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics; International Aluminum Institute.
(e) Estimate.

Figure 12
World Primary Aluminum Demand, 1985-2005

Sources: Natural Resources Canada; World Nonferrous Metal Statistics Group.

References

${ }^{1}$ In the classification of export statistics, Harmonized System Chapter 76 includes codes for identifiable aluminum products including primary metal, semi-fabricated products and products made of aluminum. See Table 1 for a listing of the main codes. Export data can be obtained at http://strategis.gc.ca/ sc_mrkti/tdst/engdoc/tr_homep.html or from Statistics Canada at www.statcan.ca/trade/scripts/trade_search.cgi.

2 NRCan Canadian aluminum use data for 2001 are from survey-based responses from 185 Canadian companies using primary and recycled aluminum in scrap, ingot or liquid metal form. Scrap used in the production of recycled ingot is not included in "use."
${ }^{3}$ Emissions from aluminum smelters include greenhouse gases other than CO_{2} each with different amounts of global warming potential. CO_{2} equivalents are calculated taking those factors into account.
${ }^{4}$ Capacity creep results from incremental expansion from removing bottlenecks in existing plants.

5 Aluminum is different from some other metals in that it is refined before it is smelted.
${ }^{6}$ In a tolling agreement, a plant processes material owned by others for a fee.

Figure 13
Aluminum Settlement Prices, 1985-2006

Source: Natural Resources Canada.

7 The report indicates that, in Canada, cans ranged in weight from 14 grams to 36 grams, with an average of 26 grams.

Notes: (1) Most information in this review was current as of March 31, 2003. (2) Lorraine Ralph of the Minerals and Mining Statistics Division prepared Tables 1, 3a and $3 b$, and she and others in that Division have provided assistance in generating the summary tables on Canadian aluminum. (3) Various Internet sites have been identified in this article. Please note that Natural Resources Canada has no control over the content of the web sites of other organizations, which may be modified, updated or deleted at any time. (4) This and other reviews, including previous editions, are available on the Internet at www.nrcan.gc.ca/mms/cmy/com_e.html.

Note to Readers

The intent of this document is to provide general information and to elicit discussion. It is not intended as a reference, guide or suggestion to be used in trading, investment, or other commercial activities. The author and Natural Resources Canada make no warranty of any kind with respect to the content and accept no liability, either incidental, consequential, financial or otherwise, arising from the use of this document.

TARIFFS

Item No.	Description	Canada			$\begin{gathered} \text { United States } \\ \hline \text { Canada } \end{gathered}$	$\frac{\mathrm{EU}}{\mathrm{MFN}}$	Japan
		MFN	GPT	USA			WTO (1)
2606.00.00	Aluminum ores and concentrates	Free	Free	Free	Free	Free	Free
2818.20.00	Aluminum oxide, other than artificial corundum	Free	Free	Free	Free	4\%	Free
7601.10	Unwrought aluminum, not alloyed	Free	Free	Free	Free	6\%	Free
7601.20	Unwrought aluminum alloys	Free	Free	Free	Free	6\%	Free
7602.00	Aluminum waste and scrap	Free	Free	Free	Free	Free	Free
76.03	Aluminum powders and flakes	3.5-5\%	Free	Free	Free	5.1-5.3\%	3\%
76.04	Aluminum bars, rods and profiles	Free-5\%	Free	Free	Free	7.5\%	7.5\%
76.05	Aluminum wire	Free-4\%	Free	Free	Free	7.5\%	7.5\%
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	Free-6.5\%	Free-5\%	Free	Free	7.5\%	Free-2\%
76.07	Aluminum foil not exceeding 0.2 mm	Free-6.5\%	Free-5\%	Free	Free	7.5-10\%	7.5\%
76.08	Aluminum tubes and pipes	Free-5\%	Free	Free	Free	Free-7.5\%	7.5\%
7609.00	Aluminum tube or pipe fittings	5.5\%	3\%	Free	Free	7\%	3\%
76.10	Aluminum structures (excluding prefabricated buildings of heading no. 94.06) and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	6.5\%	5\%	Free	Free	6-7\%	Free-3\%
7611.00	Aluminum reservoirs, tanks, vats and similar containers, for any material	Free-6.5\%	Free-5\%	Free	Free	6\%	3\%
76.12	Aluminum casks, drums, cans, boxes and similar containers, for any material, of a capacity not exceeding 300 litres	6.5\%	2.5-5\%	Free	Free	6\%	3\%
7613.00	Aluminum containers for compressed or liquefied gas	6.5\%	5\%	Free	Free	6\%	3\%
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	4.5\%	3\%	Free	Free	6\%	3%
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	6.5\%	Free-5\%	Free	Free	6\%	Free
76.16	Other articles of aluminum	Free-6.5\%	Free-5\%	Free	Free	6\%	3\%

Sources: Canadian Customs Tariff, effective January 2003, Canada Customs and Revenue Agency; Harmonized Tariff Schedule of the United States, 2003; Worldtariff Guidebook on Customs Tariff Schedules of Import Duties for European Union (42nd Annual Edition: 2002); Customs Tariff Schedules of Japan, 2003.
(1) WTO rate is shown; lower tariff rates may apply circumstantially.

TABLE 1. CANADIAN ALUMINUM PRODUCED AND TRADED, 2001 AND 2002

Item No.		2001		2002 (p)	
		(tonnes)	(\$000)	(tonnes)	(\$000)
PRODUC	ION	2582746	..	2708910	..
IMPORTS					
2606.00	Aluminum ores and concentrates				
	Brazil	1496401	56860	1112748	56488
	Guinea	478332	23511	836187	40488
	Ghana	281805	10594	514483	19581
	Australia	79648	2820	234375	7330
	United States	67937	5208	37467	5226
	Bermuda	67000	1451	6680	1482
	Guyana	222501	8343	16193	1145
	Greece	12484	800	18280	773
	China	25665	2615	2722	404
	Other countries	129855	6549	1051	147
	Total	2861628	118751	2780186	133064
2620.40	Ash and residues containing mainly aluminum	5747	5013	6204	5449
2818.20	Aluminum oxide (excluding artificial corundum)				
	Australia	1671455	478407	1877625	488043
	United States	1202861	358791	1215765	317396
	Jamaica	1019870	286859	810324	236279
	Brazil	681	549	65809	24186
	Suriname	-	-	33409	7898
	Venezuela	51921	14688	26172	6898
	Germany	2138	4215	7666	5324
	China	11356	7124	7112	2448
	Austria	2254	2316	1831	1183
	France	1524	1856	737	917
	Other countries	7653	5594	2500	2141
	Total	3971713	1160399	4048950	1092713
2818.30	Aluminum hydroxide	5451	7306	5650	6465
7601.10	Unwrought aluminum, not alloyed				
	United States	21054	47647	23702	56214
	Australia	62	141	430	1031
	France	-	-	55	169
	Other countries	438	1204	59	98
	Total	21554	48992	24246	57512
7601.20	Unwrought aluminum, alloyed				
	United States	193009	339093	163885	315544
	Russia	5245	10305	4148	9514
	United Kingdom	647	1402	905	2108
	Canada	53	186	342	1487
	United Arab Emirates	1313	3395	460	1157
	Netherlands	240	520	558	1142
	Germany	33	70	325	739
	Other countries	1835	4232	1213	2648
	Total	202375	359203	171836	334339
7602.00	Aluminum waste and scrap	114179	158358	137872	197560
76.03	Aluminum powders and flakes	2069	8591	1937	8210
$\begin{aligned} & 76.04 \\ & 7604.10 \end{aligned}$	Aluminum bars, rods and profiles				
	Of aluminum, not alloyed				
	United States	4611	25479	4111	23527
	Belgium	772	4097	1067	5624
	China	102	377	1238	4520
	Canada	209	1383	274	1856
	Austria	343	1335	286	727
	Other countries	509	2348	429	2049
	Total	6546	35019	7405	38303

TABLE 1 (cont'd)

Item No.		2001		2002 (p)	
		(tonnes)	(\$000)	(tonnes)	(\$000)
IMPORTS (cont'd)					
$\begin{aligned} & 7604.21 \\ & \text { to } 7604.29 \end{aligned}$	Of aluminum alloys				
	United States	25897	131879	25975	129195
	China	5216	19530	5119	21006
	South Korea	1847	6481	2099	7546
	Germany	254	1870	234	1728
	France	312	1648	219	1291
	Italy	122	669	143	1048
	Russia	180	826	225	990
	United Kingdom	280	1976	154	973
	Other countries	522	3065	560	3107
	Total	34630	167944	34728	166884
76.05	Aluminum wire	8466	33686	10354	37447
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	444096	1595642	462800	1677951
76.07	Aluminum foil not exceeding 0.2 mm	48630	237924	53134	262489
76.08	Aluminum tubes and pipes	12285	62425	14138	73812
76.09	Aluminum tube or pipe fittings	9084	61030	7016	46628
76.10	Aluminum structures and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	\cdots	104160	\ldots	121327
		(number)		(number)	
76.11	Aluminum reservoirs, tanks, vats and similar containers, for any material, of a capacity exceeding 300 litres	2300	35376	511	1562
76.12	Aluminum casks, drums, cans, boxes and similar containers, for any material, of a capacity not exceeding 300 litres	1104243318	192332	1439261603	253447
76.13	Aluminum containers for compressed or liquefied gas	99888	10129	104146	22126
		(tonnes)		(tonnes)	
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	632	2394	887	3395
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	.	89032	.	99629
76.16	Other articles of aluminum	.	287289	.	297559
EXPORTS					
2606.00	Aluminum ores and concentrates				
	United States	20	14	-	-
	Cuba	6	5	-	-
	Total	26	19	-	-

TABLE 1 (cont'd)

Item No.		2001		2002 (p)	
		(tonnes)	(\$000)	(tonnes)	(\$000)
EXPORTS (cont'd)					
2620.4	Ash and residues containing mainly aluminum				
	United States	17425	11094	48515	27904
	Sweden	-	-	166	78
	Switzerland	1436	653	155	73
	Other countries	1265	602	41	41
	Total	20126	12349	48877	28096
2818.20	Aluminum oxide (excluding artificial corundum)				
	United States	47223	43584	51432	48529
	Israel	64	106	63	62
	Other countries	1282	2184	28	33
	Total	48569	45874	51523	48624
7601.10	Unwrought aluminum, not alloyed				
	United States	934170	2169494	629027	1404015
	Netherlands	133784	283027	187611	392573
	South Korea	40417	103001	45516	107837
	Germany	15	178	37505	83103
	Mexico	10677	24832	35458	80558
	France	24817	51864	21346	45216
	Japan	22357	46413	15771	37456
	Other countries	5521	13929	35383	76889
	Total	1171758	2692738	1007617	2227647
7601.20	Unwrought aluminum alloys				
	United States	756106	1935398	984087	2376646
	Japan	86628	201615	79915	194210
	Mexico	17727	28556	29960	55652
	South Korea	18207	47465	14517	35616
	United Kingdom	5629	16104	4950	13721
	Israel	1081	2686	3414	8337
	Hong Kong	25	85	2207	5288
	Ireland	1379	3897	1652	4243
	Other countries	4479	11734	4861	15359
	Total	891261	2247540	1125563	2709072
7602.00	Aluminum waste and scrap				
	United States	267557	467709	266776	446007
	China	9147	13101	17814	24509
	Japan	6476	14817	3654	7620
	Taiwan	1300	1582	1158	1899
	South Korea	744	1081	872	1423
	United Kingdom	-	-	189	367
	Other countries	2408	3331	428	548
	Total	287632	501621	290891	482373
76.03	Aluminum powders and flakes	804	1864	126	627
76.04	Aluminum bars, rods and profiles	73526	358800	88697	413789
76.05	Aluminum wire	86627	229601	116364	296815
76.06	Aluminum plates, sheets and strip, of a thickness exceeding 0.2 mm	327258	1044309	364985	1120497
76.07	Aluminum foil not exceeding 0.2 mm	42033	223171	51318	270259
76.08	Aluminum tubes and pipes	5484	30254	4495	28858
76.09	Aluminum tube or pipe fittings	.	11445	919	10499

TABLE 1 (cont'd)

Item No.		2001		2002 (p)	
		(tonnes)	(\$000)	(tonnes)	(\$000)
EXPORTS (cont'd)					
76.10	Aluminum structures and parts of structures, aluminum plates, rods, profiles, tubes and the like, prepared for use in structures	.	346972	.	380953
		(number)		(number)	
76.11	Aluminum reservoirs, tanks, vats and similar containers, for any material, of a capacity exceeding 300 litres	230	1613	426	881
76.12	Aluminum casks, drums, cans, boxes and similar containers, for any material	551513302	100565	580168555	102882
76.13	Aluminum containers for compressed or liquefied gas	730529	3677	633156	2470
		(tonnes)		(tonnes)	
76.14	Stranded wire, cables, plaited bands and the like, of aluminum, not electrically insulated	9826	36224	14372	47642
76.15	Table, kitchen or other household articles and parts thereof, of aluminum	..	71326	.	63729
76.16	Other articles of aluminum	.	200101	.	208998

Sources: Natural Resources Canada; Statistics Canada.

- Nil; . . Not available or not applicable; (p) Preliminary.

Note: Numbers may not add to totals due to rounding.

TABLE 2. CANADA, ALUMINUM SMELTER CAPACITY

Company	As of December 31, 2002
	(t/y)
Alcan Aluminium Inc.	
Quebec	
Grande-Baie	196000
Arvida, Jonquière	248000
Alma	400000
Shawinigan	91000
Beauharnois	50000
Laterrière	219000
British Columbia	
Kitimat	275000
Alcoa Inc.	
Quebec	
Baie-Comeau	
Aluminerie de Baie-Comeau	437000
Deschambault	
Aluminerie Lauralco Inc.	240000
Aluminerie de Bécancour Inc.	
Quebec	
Bécancour	390000
Alcoa, 74.95\%	
Pechiney, 25.05\%	
Aluminerie Alouette Inc.	
Quebec	244000
Sept-Îles	
Alcan, 40\%	
Aluminium Austria Metall Québec, 20\%	
Hydro Aluminium, 20\%	
Société Générale de Financement du Québec, 13.33\%	
Marubeni Québec Inc., 6.66\%	
Total Canadian capacity	2790000
Total Alcan, 56.51\%	1576000
Total Alcoa, 34.74\%	969305
Total other, 8.75\%	244095

Source: Natural Resources Canada.

TABLE 3a. USE ${ }^{(1)}$ OF ALUMINUM METAL ${ }^{(4)}$ IN CANADA AT FIRST PROCESSING STAGE, 1999-2001

	$1999(\mathrm{r}, \mathrm{a})$	$2000(\mathrm{a}, 5)$
	(tonnes)	

METAL USED IN CASTINGS

Permanent mould	129574	(r) 132891	100420
Sand	4442	4460	4372
Die and other	205781	(r) 205031	181109
Total	339797	(r) 342383	285900
METAL USED IN WROUGHT PRODUCTS			
Sheet, plate, coil and foil	229139	(r) 214775	223864
Extrusions, including tubing	234843	230063	217562
Other wrought products (including rods, forgings and slugs)	153936	(r) 184392	179212
Total	617918	(r) 629229	620638

METAL USED IN OTHER PRODUCTS

Destructive uses (deoxidizer), non-aluminum base alloys, powder and paste and other uses	41526	(r) 41204	38789
Total used	999242	(r) 1012816	945336
Aluminum metal used for the production of recycled aluminum (2)	145959	(r) 159419	190893

	Metal Entering Plant			On Hand at December 31		
	1999	2000	2001 (p)	1999	2000	2001 (p)
Primary aluminum and alloys	733569	(r) 733232	747437	21340	(r) 17476	15657
Recycled aluminum	198370	(r) 191326	134800	5415	(r) 6672	5652
Scrap originating outside plant	253985	(r) 279190	289455	13833	(r) 13971	13037
Total	1185925	(r) 1203748	1171693	40588	(r) 38120	34347
Aluminum shipments (3)				33674	34525	42295

Source: Natural Resources Canada.
(r) Revised; (p) Preliminary.
(a) Increase in number of companies being surveyed; therefore, the closing inventory of the previous year does not equal the opening inventory of the current year.
(1) Available data as reported by users. (2) Aluminum metal used in the production of recycled aluminum is not included in usage totals. (3) Aluminum metal shipped without change. Does not refer to shipments of goods of own manufacture. (4) Aluminum metal refers to primary aluminum and alloys, purchased recycled aluminum, and outside aluminum scrap. (5) For 2001 this table is compiled from Natural Resources Canada's annual survey, "Use of Aluminum Metal" from data for 185 Canadian users. (6) Some totals prior to 2001 contained runaround aluminum scrap. In 2001 runaround scrap was removed where known from totals.
Note: Numbers may not add to totals due to rounding.

	1989 (a)	1990 (a)	1991 (a)	1992 (a)	1993 (a)	1994 (a)	1995	1996 (a)	1997 (a)	1998 (a)	1999 (a)	2000 (a,4)	2001 (p,a,5)
	(tonnes)												
TYPE OF ALUMINUM METAL USED IN PRODUCTS OTHER THAN RECYCLED ALUMINUM													
Primary aluminum and alloys	393027	351877	355010	369185	447997	485845	490000	512865	558139	653320	719124	(r) 722496	735931
Purchased recycled aluminum	75031	82763	73461	87896	95774	117710	114961	119515	138852	158355	199429	(r) 190026	134483
Outside aluminum scrap	27306	18617	17768	24009	25084	31469	30441	44555	67447	78298	80689	100294	74923
Total used in products other than in recycled aluminum	495363	453257	446239	481089	568854	635024	635402	676935	764438	889973	999242	(r) 1012816	945336
TYPE OF ALUMINUM METAL USED IN RECYCLED ALUMINUM (3)													
Primary aluminum and alloys	22383	x	x	x	x	x	x	x	14650	x	10879	13765	15423
Outside aluminum scrap	79716	x	x	x	x	x	x	x	113865	x	135081	(r) 145654	175470
Total used in recycled aluminum (3)	102098	115112	101503	127818	131174	145661	146987	81629	128515	147847	145959	(r) 159419	190893

Source: Natural Resources Canada.
(p) Preliminary; (r) Revised; x Confidential
(a) Increase in number of companies being surveyed.
(1) Available data as reported by users. (2) Aluminum metal refers to primary aluminum and alloys, purchased recycled aluminum, and outside aluminum scrap. (3) Aluminum metal used in recycled aluminum is not included in "Total used in
products other than in recycled aluminum" above. (4) For 2001 this table is compiled from Natural Resources Canada's annual survey, "Use of Aluminum Metal" from data for 185 Canadian users. (5) Some totals prior to 2001 contained runaround aluminum scrap. In 2001, runaround scrap was removed where known from totals.
Note: Numbers may not add to totals due to rounding.

TABLE 4. AVERAGE ALUMINUM PRICES

Year	Month	LME Cash Settlement (1)	Metals Week U.S. Markets (1)
	(US $\$ / \mathrm{t})$	$($ US $\$ / \mathrm{lb})$	$($ US $\$ / \mathrm{lb})$

ANNUAL AVERAGES (2)

1992	1254.60	0.57	0.58
1993	1139.40	0.52	0.53
1994	1477.20	0.67	0.71
1995	1806.10	0.82	0.86
1996	1506.00	0.68	0.71
1997	1599.70	0.73	0.77
1998	1357.80	0.62	0.66
1999	1361.09	0.62	0.66
2000	1549.14	0.70	0.75
2001	1443.63	0.65	0.69
2002	1349.34	0.61	0.65

MONTHLY AVERAGES

2001	January	1615.65	0.73	0.75
	February	1604.36	0.73	0.76
	March	1509.17	0.68	0.72
	April	1496.91	0.68	0.71
	May	1538.77	0.70	0.73
	June	1466.13	0.67	0.70
	July	1416.39	0.64	0.68
	August	1377.08	0.62	0.66
	September	1344.56	0.61	0.65
	October	1282.50	0.58	0.62
	November	1327.46	0.60	0.63
	December	1344.63	0.61	0.64
2002	January	1368.59	0.62	0.65
	February	1369.34	0.62	0.64
	March	1405.00	0.64	0.67
	April	1369.99	0.62	0.66
	May	1343.30	0.61	0.66
	June	1353.97	0.61	0.66
	July	1338.09	0.61	0.65
	August	1291.60	0.59	0.63
	September	1304.25	0.59	0.63
	October	1310.58	0.59	0.63
	November	1372.20	0.62	0.66
	December	1375.07	0.62	0.66

Sources: Natural Resources Canada; Metals Week.
(1) Highest grade sold. (2) Primary ingots, minimum 99.7% purity.

TABLE 5. AVERAGE ALUMINUM ALLOY (RECYCLED) PRICES

Year	Month	LME Alloy (1) Cash Settlement
	(US $\$ / \mathrm{t}) \quad$ (US\$/lb)	

ANNUAL AVERAGES

1993	1005.2	0.46
1994	1452.9	0.66
1995	1656.0	0.75
1996	1302.8	0.59
1997	1461.0	0.66
1998	1203.8	0.55
1999	1191.2	0.54
2000	1216.9	0.55
2001	1172.1	0.53
2002	1234.2	0.56

MONTHLY AVERAGES

2001 | | January | 1150.3 | 0.52 |
| :--- | :--- | :--- | :--- |
| | February | 1258.6 | 0.57 |
| | March | 1258.0 | 0.57 |
| | April | 1239.6 | 0.56 |
| | May | 1233.3 | 0.56 |
| | June | 1194.2 | 0.54 |
| | July | 1164.8 | 0.53 |
| | August | 1164.6 | 0.53 |
| | September | 1131.9 | 0.51 |
| | October | 1095.4 | 0.50 |
| | November | 1087.5 | 0.49 |
| | December | 1087.4 | 0.49 |
| | January | 1083.30 | 0.49 |
| | February | 1172.40 | 0.53 |
| | March | 1248.30 | 0.57 |
| | April | 1245.80 | 0.57 |
| | May | 1206.00 | 0.55 |
| | June | 1235.80 | 0.56 |
| | July | 1271.00 | 0.58 |
| | August | 1250.50 | 0.57 |
| | September | 1235.30 | 0.56 |
| | October | 1227.50 | 0.56 |
| | November | 1295.50 | 0.59 |
| | December | 1335.00 | 0.61 |
| | | | |

Sources: Natural Resources Canada; Metals Week. (1) Alloy ingots, meeting LME specifications.

TABLE 6. WORLD MINE PRODUCTION OF BAUXITE, 1996-2001

	$\begin{gathered} \text { World } \\ \text { Rank } \\ \text { in } 2001 \end{gathered}$	1996	1997	1998	1999	2000	2001 (p)
	(000 tonnes)						
Australia	1	43063.0	44465.0	44553.0	48416.0	53802.0	53285.0
Guinea	2	18282.0	19250.0	17000.0	(r) 17419.1	(r) 17991.9	17312.1
Brazil	3	11060.1	11162.8	11961.1	(r) 14371.5	(r) 14290.3	13178.4
Jamaica	4	11828.6	11987.3	12646.4	11688.5	11126.5	12369.6
China	5	8878.8	9000.0	6400.0	7100.0	7900.0	7900.0
India	6	5757.5	(r) 5985.0	5980.1	6712.2	(r) 7562.1	7863.9
Bosnia and Herzegovina	7	-	-	-	-	(r) 2066.1	7699.5
Russia	8	3928.0	(r) 3988.0	(r) 4092.0	(r) 4513.0	(r) 5000.0	4805.0
Venezuela	9	4834.1	4966.8	4825.6	4166.5	4360.7	4526.5
Suriname	10	3702.5	3877.2	(r) 3931.1	3714.6	(r) 3610.3	4393.7
Kazakhstan	11	3345.9	3416.0	3436.8	3606.5	3729.6	3685.1
Guyana	12	2475.5	2467.3	2266.7	2359.3	2689.5	2012.7
Greece	13	2451.7	1876.6	1823.0	1882.5	(r) 1965.6	1931.5
Indonesia	14	842.0	808.7	1055.6	1116.3	1150.8	1237.0
Hungary	15	1055.8	742.6	1138.8	941.0	1046.5	1000.0
Ghana	16	473.2	519.2	442.5	353.1	424.6	715.5
Yugoslavia	17	323.0	470.0	226.0	500.0	630.0	610.0
Iran	18	230.4	245.0	336.0	(r) 461.6	(r) 440.0	450.0
Turkey	19	544.5	369.5	458.0	207.7	458.5	242.0
United States	20	200.0	200.0	200.0	200.0	200.0	200.0
France	21	165.0	169.0	170.0	170.0	185.0	153.0
Malaysia	22	218.7	279.1	160.3	223.7	123.3	66.1
Vietnam	23	30.0	30.0	30.0	30.0	(r) 16.0	20.0
Mozambique	24	11.5	8.2	6.1	7.9	8.1	8.6
Pakistan	25	4.1	4.9	5.0	11.2	(r) 10.4	3.7
Albania	26	3.4	4.5	4.1	4.6	3.0	3.0
Romania		175.2	127.5	161.9	-	-	-
Total world		123884.5	(r) 126420.2	(r) 123310.1	(r) 130176.8	(r) 140790.8	145671.9
\% change from previous year		4.8	2.0	-2.5	5.6	8.2	3.5

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics; World Bureau of Metal Statistics, media reports. - Nil; (p) Preliminary; (r) Revised.

TABLE 7. PRODUCTION OF ALUMINA (HYDRATE), 1997-2002

	World Rank in 2001	World Rank in 2002	1997	1998	1999	2000	2001	2002 (e)
		(000 tonnes)						
Australia	1	1	(r) 13384.0	13853.0	14532.0	(r) 15037.0	16271.0	16390
China	2	2	2922.8	3340.0	3822.0	(r) 4326.7	4729.1	54440
United States (3)	3	3	5093.0	5654.0	5144.0	(r) 4786.0	4340.0	4500
Jamaica	4	4	3394.2	3440.2	3569.6	3600.1	3542.4	3650
Brazil	5	5	3088.0	3322.1	3515.1	(r) 3751.0	3519.7	3650
Russia	6	6	2379.8	2465.4	2657.1	(r) 2856.0	3048.0	3200
India	7	7	1940.0	1855.0	1930.0	2107.0	2170.0	2600
Venezuela	9	8	1730.4	1553.4	(r) 1469.0	1755.3	1833.2	2000
Suriname	8	9	1725.9	1771.9	1853.1	1906.1	1893.3	1900
Ireland (1)	10	10	(r) 1272.9	(r) 1395.7	(r) 195.7	(r) 1410.7	1448.7	1540
Ukraine	11	11	1074.5	1290.7	1230.2	1360.0	1340.0	1350
Spain	13	12	1110.3	1110.0	1112.0	1123.0	1199.0	1350
Kazakhstan	12	13	1094.2	1084.5	1157.7	(r) 1216.7	1231.1	1300
Canada (2)	14	14	1165.0	1229.0	1233.0	(r) 1023.0	1036.0	1050
Italy	15	15	914.0	935.0	973.0	1022.0	993.0	1010
Germany	16	16	850.0	778.3	806.0	826.0	836.0	850
Japan	17	17	728.0	737.6	736.6	781.7	739.1	775
Greece	18	18	615.7	649.4	633.0	690.0	709.0	750
Guinea	19	19	527.0	500.0	(r) 568.5	541.0	674.3	698
France	20	20	589.0	520.0	556.0	600.0	598.0	610
Yugoslavia	22	21	159.5	(r) 152.5	156.0	186.1	200.7	225
Romania (1)	21	22	279.5	250.2	277.4	416.6	319.4	200
Hungary	23	23	350.0	(r) 138.0	(r) 156.4	(r) 204.3	200.0	200
Turkey	24	24	164.3	156.8	159.1	155.4	185.0	190
Bosnia and Herzegovina	25	25	-	-	(r) 37.0	(r) 219.4	100.0	100
Azerbaijan	27	26	-	-	(r) 76.0	(r) 217.0	95.0	100
United Kingdom	26	27	100.0	115.0	94.0	89.0	98.0	85
Slovakia			46.8	-	-	-	-	-
South Korea			70.0	-	-	-	-	-
Total world			(r) 46768.8	(r) 48224.5	(r) 49849.5	(r) 52207.1	53349.0	55713.00
\% change from previous year			4.5	3.1	3.4	4.7	2.2	4.4

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics, International Aluminium Association; media reports.

- Nil; (r) Revised.
(1) Calcined. (2) Alumina equivalent. (3) Calcined equivalent.

TABLE 8. WORLD PRODUCTION OF PRIMARY ALUMINUM, 1997-2003

	World Rank in 2001	World Rank in 2002	1997	1998	1999	2000	2001	2002 (e)	2003 (f)
		(000 tonnes)							
China	1	1	2035.0	2335.7	2598.5	(r) 2794.1	3424.6	4270.0	5100.0
Russia	2	2	2906.0	(r) 3010.0	3149.0	3247.0	3302.0	3350.0	3400.0
Canada	4	3	2327.2	2374.1	2389.8	2373.5	2582.7	2710.0	2730.0
United States	3	4	3603.4	3712.7	3778.6	3668.4	2637.0	2700.0	2650.0
Australia	5	5	1490.1	1626.2	1719.3	1761.5	1784.1	1850.0	1875.0
Brazil	6	6	1189.1	1208.0	1249.6	(r) 1271.4	1132.0	1320.0	1375.0
Norway	7	7	918.6	994.2	1009.0	1031.1	1034.2	1050.0	1150.0
India	10	8	544.9	(r) 542.0	594.0	646.3	624.1	690.0	840.0
South Africa	8	9	682.9	692.5	(r) 689.2	(r) 674.2	663.0	676.0	685.0
Germany	9	10	571.9	612.4	633.8	643.5	651.6	650.0	660.0
Venezuela	11	11	(r) 642.0	586.5	(r) 570.3	(r) 570.9	570.6	610.0	620.0
Dubai	12	12	379.2	386.6	440.7	536.0	536.0	540.0	545.0
Bahrain	13	13	489.9	501.3	502.7	509.0	522.1	525.0	530.0
France	14	14	399.4	423.6	455.1	441.2	460.9	460.0	410.0
Spain	15	15	359.9	360.4	363.9	365.7	376.4	380.0	385.0
United Kingdom	16	16	247.7	258.4	272.2	305.1	340.8	345.0	345.0
New Zealand	17	17	310.3	(r) 317.5	326.7	(r) 328.4	322.3	334.0	340.0
Tajikistan	18	18	188.9	195.6	229.1	(r) 300.0	324.0	325.0	325.0
Netherlands	19	19	231.8	(r) 264.7	287.4	301.7	293.2	295.0	295.0
Mozambique	21	20	-	-	-	(r) 63.8	270.2	270.0	300.0
Argentina	20	21	187.2	186.7	206.4	261.8	245.1	265.0	265.0
Iceland	22	22	122.9	173.4	221.5	225.7	242.6	265.0	275.0
Egypt	25	23	178.2	187.2	186.7	188.9	190.8	195.0	195.0
Italy	24	24	187.7	187.0	187.2	189.2	187.4	190.0	190.0
Romania	26	25	161.9	174.0	174.1	179.0	179.8	185.0	200.0
Indonesia	23	26	(r) 217.4	(r) 134.3	(r) 112.3	(r) 192.3	208.8	160.0	180.0
Greece	27	27	132.6	146.1	159.9	162.6	162.0	160.0	160.0
Iran	29	28	(r) 91.0	(r) 111.0	(r) 138.0	139.5	145.2	160.0	160.0
Slovakia	30	29	110.2	108.0	109.2	109.8	122.0	144.0	150.0
Yugoslavia	35	30	(r) 80.6	(r) 76.7	(r) 80.9	(r) 95.5	108.1	116.0	118.0
Ukraine	31	31	100.5	106.7	112.4	103.6	106.1	112.0	112.0
Ghana	28	32	151.6	56.1	114.2	155.5	162.3	100.0	50.0
Sweden	32	33	98.4	95.7	98.5	100.1	101.8	100.0	100.0
Bosnia	34	34	8.0	(r) 38.0	70.0	94.5	95.6	100.0	100.0
Slovenia	36	35	74.4	70.8	77.2	(r) 75.6	76.6	90.0	125.0
Cameroon	33	36	90.9	81.6	91.9	94.9	80.5	70.0	70.0
Turkey	38	37	62.0	61.8	61.7	61.5	61.7	60.0	60.0
Poland	39	38	51.5	51.5	51.6	(r) 55.5	54.6	50.0	50.0
Mexico	37	39	66.4	61.8	62.7	(r) 61.2	51.5	50.0	50.0
Switzerland	40	40	27.3	32.1	34.4	35.5	36.2	36.0	36.0
Hungary	41	41	32.5	33.7	33.6	33.9	34.6	35.0	35.0
Japan	42	42	16.7	16.3	10.9	6.5	6.6	7.0	7.0
Suriname			23.1	27.1	6.6	-	-	-	-
Azerbaijan			-	-	-	-	-	-	-
Nigeria			2.5	25.5	15.9	-	-	-	-
Total world			(r) 21793.7	(r) 22645.5	(r) 23676.7	(r) 24455.4	24511.7	25999.9	27248.0
\% change from previous year			4.5	3.9	4.6	3.3	0.2	6.1	4.8

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics; World Bureau of Metal Statistics; International Aluminium Institute; media reports.

- Nil; (e) Estimated; (f) Forecast; (r) Revised.

TABLE 9. APPARENT USE OF PRIMARY ALUMINUM, 1997-2001

	World Rank in 2001	1997	1998	1999	2000	2001
		(000 tonnes)				
Albania	76	1.0	1.0	1.0	1.0	1.0
Algeria	69	5.0	5.0	4.1	(r) 4.1	4.1
Argentina	38	94.9	106.3	82.9	(r) 80.2	70.6
Australia	16	352.0	370.3	344.4	350.5	320.0
Austria	22	162.0	159.8	142.6	168.2	201.0
Bahrain	17	(r) 191.1	(r) 200.3	(r) 226.2	(r) 239.2	261.0
Bangladesh	57	14.2	17.8	18.0	18.0	18.0
Belarus	64	7.4	9.1	9.0	9.0	9.0
Belgium	14	345.0	370.0	350.0	341.0	345.0
Brazil	12	478.6	521.4	463.1	513.7	552.8
Bulgaria	65	7.8	8.0	8.0	8.6	8.1
Cameroon	53	24.7	24.9	22.0	24.8	24.0
Canada	9	643.5	720.6	777.2	(r) 799.5	759.6
Chile	60	15.5	(r) 14.6	11.2	(r) 14.5	14.5
China (1)	2	2289.0	2421.0	2914.0	(r) 3320	3450.0
Colombia	49	42.8	36.3	27.4	(r) 32.1	30.0
Croatia	44	22.0	24.0	(r) 29.5	28.4	37.1
Cuba	77	1.0	1.0	1.0	1.0	1.0
Czech Republic	37	62.8	78.9	65.7	77.6	88.3
Denmark	41	36.0	38.9	39.4	41.2	44.0
Dubai	54	32.1	18.5	20.0	(r) 17.9	20.0
Egypt	34	97.9	91.6	82.7	81.8	96.5
Finland	45	33.1	36.2	37.1	38.5	36.9
France	7	724.2	733.8	774.2	(r) 781.4	760.9
Germany	4	1558.0	1520.0	1446.0	(r) 1542	1550.0
Ghana	58	16.0	16.0	16.0	16.0	16.0
Greece	21	203.8	212.7	212.5	(r) 230	217.5
Hungary	20	183.4	163.7	171.3	210.1	222.7
Iceland	70	1.7	3.0	3.0	3.0	3.0
India	10	553.4	566.5	569.5	602.4	589.2
Indonesia	26	203.0	75.4	138.7	145.8	162.9
Iran	30	(r) 103.9	(r) 103.1	(r) 123.2	(r) 116.8	120.0
Iraq	78	1.0	1.0	1.0	1.0	1.0
Ireland	66	5.8	6.6	8.2	10.2	7.8
Israel	43	39.5	45.9	44.0	44.8	38.0
Italy	8	671.0	674.0	734.6	(r) 762	760.0
Japan	3	2433.5	2082.0	2112.3	(r) 2224.9	2014.0
Kazakhstan	73	1.6	1.7	2.0	2.0	2.0
Lebanon	59	17.0	20.9	14.2	(r) 16	15.6
Macedonia	74	(r) 5	(r) 5.6	(r) 2.5	(r) 2.4	1.8
Malaysia	36	147.8	64.7	130.6	115.0	92.2
Mexico	32	83.2	91.1	89.6	(r) 101.5	114.0
Morocco	68	2.0	(r) 3.7	3.5	5.7	5.7
Netherlands	29	155.0	155.0	155.0	155.0	155.0
New Zealand	46	37.0	34.2	42.8	42.7	35.6
Nigeria	67	7.0	7.0	7.0	7.0	7.0
North Korea	55	20.0	20.0	20.0	20.0	20.0
Norway	18	197.0	155.0	217.0	(r) 231	240.0
Other Africa	62	12.0	10.0	12.0	12.0	12.0
Other America	51	25.0	25.0	25.0	25.0	25.0
Other Asia	42	35.0	30.0	35.0	(r) 35	40.0
Other Europe	72	2.0	1.5	2.0	(r) 2	2.0
Pakistan	63	15.0	15.0	9.4	10.0	10.0
Peru	75	2.5	2.5	0.9	1.3	1.1
Philippines	50	34.2	24.0	33.6	32.8	25.2
Poland	28	101.5	107.8	133.0	149.9	159.2
Portugal	39	75.4	68.3	82.0	78.0	66.9
Romania	33	70.6	87.7	113.6	125.7	112.5
Russia	6	(r) 469.2	489.2	(r) 562.8	748.4	786.2
Saudi Arabia	52	25.0	25.0	25.0	25.0	25.0
Singapore	61	15.0	33.5	4.3	4.1	13.6
Slovakia	47	4.6	22.2	(r) 34.1	(r) 36.4	34.9
Slovenia	35	(r) 51.8	74.6	(r) 75.5	(r) 81.7	96.1
South Africa, Rep. of	23	124.4	142.8	125.0	(r) 186.3	198.2
South Korea	5	666.3	505.7	813.9	(r) 822.5	849.6
Spain	13	430.0	435.5	494.0	525.6	507.8
Sweden	31	142.0	177.0	(r) 133	147.0	118.6
Switzerland	27	144.0	165.9	157.0	(r) 165	161.2
Taiwan	15	374.3	300.7	464.1	501.6	321.3

TABLE 9 (cont'd)

	World Rank in 2001	1997	1998	1999	2000	2001
				(000 tonnes)		
Thailand	19	232.8	128.4	155.3	195.2	227.0
Tunisia	71	2.1	4.4	2.6	3.0	3.0
Turkey	24	160.8	180.7	169.4	211.2	175.7
United States	1	5800.0	6100.0	(r) 6372	(r) 6275	5420.0
Ukraine	40	50.0	50.0	50.0	50.0	50.0
United Kingdom	11	583.0	579.0	581.0	588.0	560.0
Venezuela	25	193.4	(r) 206.2	(r) 154.8	(r) 183.4	164.7
Vietnam	48	8.4	15.6	(r) 17.6	(r) 20.3	30.9
Yugoslavia	56	23.7	19.2	13.1	16.0	18.7
World Total		(r) 22204.2	(r) 22065.5	(r) 23566.2	(r) 24856.9	23760.8
\% change from previous year		6.6	-0.6	6.8	5.5	-4.4

Sources: Natural Resources Canada; International Consultative Group on Nonferrous Metals Statistics.
(r) Revised.
(1) Starting in 1997, Hong Kong is included with China.

TABLE 10. ABBREVIATIONS OF COMPANY NAMES AND INSTITUTIONS USED IN THIS REPORT

Company	Abbreviation	Web Site Address
Alcan Inc.	Alcan	www.alcan.com
Alcoa Inc.	Alcoa	www.alcoa.com
Alcoa World Alumina and Chemicals	AWAC	www.alcoa.com
Alumina do Norte do Brasil S.A.	Alunorte	www.vale.com.br
Aluminerie Alouette Inc.	Alouette	www.alouette.qc.ca
Aluminerie de Bécancour Inc.	A.B.I.	www.alcoa.com
Aluminium Association of Canada	The Association	www.aia.aluminium.qc.ca
Aluminium Corp. of China	Chalco	..
Alumina Partners of Jamaica	Alpart	www.kaiseral.com
Cambior Inc.	Cambior	www.cambior.com
Columbia Ventures Corporation	Columbia Ventures	www.nordural.is
Comalco Ltd.	Comalco	www.riotinto.com
CVG Alcasa	Alcasa	wwwwaluminio.com.ve
Dubai Aluminium Company Limited	Dubal	www.dubal.co.ae
Aluminum Company of Egypt	Egyptalum	www.egyptalum.com.eg
Elkem ASA	Elkem	www.elkem.com
Federation of Aluminium Consumers in Europe	FACE	www.acealuminium.com
Hindalco Industries Limited	Hindalco	www.world-aluminium.org
International Aluminium Institute	IAI	www.ktdal.com
KTD L.L.C.	KTD	www.minmetals.com
Minmetals Nonferrous Metals Co., Ltd.	Minmetals	www.nalcoindia.com
National Aluminium Company Limited	Nalco	www.hydro.com
Norsk Hydro A.S.A / Hydro Aluminium a.s.	Norsk Hydro or Hydro Aluminium	www.aluminium-pechiney.com
Pechiney SA	Pechiney	www.rusal.com
Russian Aluminium (Russky Aluminii)	Rusal	www.sibirskyaluminum.com
Sibirsky Aluminium	Sibirsky (Russian Aluminum)	www.sgfqc.com
Société Générale de financement du québec	SGF	www.tomago.com.au
Tomago Aluminium Pty Ltd	Tomago	www.aluminum.org
The Aluminum Association Inc.	Aluminum Association	.
Vietnam National Mineral Corp.	Vimico	

Source: Natural Resources Canada.
. . URL not available.

TABLE 11. BAUXITE AND ALUMINA PROJECTS

Country	Project/Company	Remarks	Near-Term Change
			(t/y)
Australia	Pechiney, SA	Studies for potential 1.5-Mt/y refinery with associated mine on Cape York Peninsula.	
	Gladstone alumina refinery - Comalco	First stage of proposed $\mathbf{A} \$ 1.4$ billion refinery in central Queensland under construction; production expected in late 2004. Requires expansion of the Weipa bauxite mine proposed to $16 \mathrm{Mt} / \mathrm{y}$ from $11.5 \mathrm{Mt} / \mathrm{y}$. Potential to increase refinery capacity to $4 \mathrm{Mt} / \mathrm{y}$.	1400000
	Gove alumina refinery - Alcan	Proposed expansion of refinery from $2 \mathrm{Mt} / \mathrm{y}$ to $3.5 \mathrm{Mt} / \mathrm{y}$. Engineering studies in 2003 with environmental approvals expected in 2004; construction expected to take three years.	
	Queensland Alumina Ltd. refinery	Potential to expand capacity from $3650 \mathrm{t} / \mathrm{y}$ to $4350 \mathrm{t} / \mathrm{y}$.	
	WMC Limited	Aluminum interests transferred to new operating company.	
	Wagerup - Alcoa/WMC	Decision pending on increase in capacity of refinery.	
	Pinjarra - Alcoa	Government approvals pending on increase in capacity of refinery to $4 \mathrm{Mt} / \mathrm{y}$ from $3.4 \mathrm{Mt} / \mathrm{y}$.	
	Worsley	Expansion of refinery to 3.7 Mt/y from 3.1 Mt/y expected by 2008.	
Azerbaijan	Sumgait nonferrous metals plant	Expansion of alumina refinery from $300000 \mathrm{t} / \mathrm{y}$ to $450000 \mathrm{t} / \mathrm{y}$.	150000
Brazil	Barcarena alumina refinery - Alunorte CVRD and Norsk Hydro	Expansion completed from 1.5 to $2.3 \mathrm{Mt} / \mathrm{y}$ in late 2002. Feasibility study on further expansion to $5 \mathrm{Mt} / \mathrm{y}$. Studies for a new bauxite mine to support additional expansions.	800000
	Alunorte refinery CVRD	Expansion to $800000 \mathrm{t} / \mathrm{y}$ expected to be completed in early 2003; studies under way for further expansion.	
	Para State mine - CVRD	Studies under way for potential new 5-Mt/y mine in 2005.	
	Trombetas mine - Mineracao Rio do Norte	Expansion of mine to support Alunorte and Alumar alumina refinery expansions expected to be completed in late 2002. Production at capacity dependent on markets.	5200000
China	Baise Yinhai - Pechiney and Minmetals	Discussions on possible new 400 000-t/y alumina refinery in Guangxi, with later expansion potential to $2 \mathrm{Mt} / \mathrm{y}$.	
	Denfeng Aluminium Plant	Plans postponed for a new $100000-t / y$ refinery.	
	Guangxi Guixi Huayin Aluminium Corp Chalco/MinMetals	Feasibility studies for new 800 000-t/y refinery in Guangxi region. Construction could start in late 2003.	800000
	Guizhou refinery - Chalco	Expansion by $300000 \mathrm{t} / \mathrm{y}$ expected to be completed by end of 2003.	300000
	Guizhou - Zunyi Aluminum	Plans for new $300000-\mathrm{t} / \mathrm{y}$ refinery.	
	Huanghe Aluminium and Power Group	Plans to start up new 100 000-t/y refinery in 2003. Potential expansion to $500000 \mathrm{t} / \mathrm{y}$.	
	Henan Dengfeng Aluminium Industry Co. Ltd	Delayed plans for construction of $100000-\mathrm{t} / \mathrm{y}$ alumina refinery to feed its planned smelter expansion.	
	Pingguo refinery joint venture with Alcoa - Chalco	Joint venture delayed. Construction to finish in 2003 for doubling the capacity of refinery to $850000 \mathrm{t} / \mathrm{y}$.	400000
	Pingguo bauxite mine	New 1.1-Mt/y mine start-up expected in June to take mining capacity to $2 \mathrm{Mt} / \mathrm{y}$.	250000
	Shanxi - Chalco	Potential new 800 000-t/y alumina refinery with Shandong Electric Power. Co.	
	Zhongzhou refinery - Chalco	Expansion by $300000-t / y$ expected to be completed by end of 2003.	300000
Guinea	Dian-Dian - Russian Aluminium	Government approval of bauxite mine and refinery. Port and rail facilities to be constructed. Proposed capacity up to $11 \mathrm{Mt} / \mathrm{y}$ of bauxite and $1.2 \mathrm{Mt} / \mathrm{y}$ of alumina. Potental 240 000-t/y smelter.	
	Guinea Aluminium Products Co. (Gapco)	Discussions on expansion of Friguia alumina plant by $350000 \mathrm{t} / \mathrm{y}$, hydro dam and $240000-\mathrm{t} / \mathrm{y}$ smelter. Possible new $2.6-\mathrm{Mt} / \mathrm{y}$ refinery.	
Guyana	Linden Mining Enterprises	Government in discussions with Cambior to manage its bauxite mine. Government wishes to construct new 600 000-t/y refinery.	
India	Gujarata Alumina Bauxite Ltd.	Proposal for 750 000-t/y refinery in Gujarat. Production would not start until after 2005.	
	Korba - Bharat Aluminium	Expansion of refinery from $180000 \mathrm{t} / \mathrm{y}$ to $830000 \mathrm{t} / \mathrm{y}$ approved. Project expected to be completed in 2005.	
	Renukoot - Hindalco	Expansion and debottlnecking of refinery under way from $450000 \mathrm{t} / \mathrm{y}$ to $700000 \mathrm{t} / \mathrm{y}$. Completion expected in 2003.	250000
	Pechiney, SA	Interested in constructing a 1-Mt/y alumina refinery in Orissa, India; feasibility study under way; decision expected in 2003.	
	Korba - Bharat Aluminium	Possible expansion of refinery from $180000 \mathrm{t} / \mathrm{y}$ to $800000 \mathrm{t} / \mathrm{y}$ by 2005.	

TABLE 11 (cont'd)

Country	Project/Company	Remarks	Near-Term Change
			(t/y)
	Utkal - Alcan, Hindalco	Bauxite mine and alumina refinery in Orissa. Initial refinery capacity of $1.5 \mathrm{Mt} / \mathrm{y}$; second stage to $3 \mathrm{Mt} / \mathrm{y}$. Construction planned for 2003 may be delayed.	
Jamaica	Alumina Partners of Jamaica - Kaiser and Hydro Aluminium	Expansion of Alpart refinery from 1.45 Mt/y to 1.65 Mt/y in 2003.	200000
	Clarendon refinery - Alcoa and Jamalco	Agreement reached on 250 000-t/y expansion of Woodside refinery by 2004.	250000
Russia	Timan bauxite mine - Sual Group	Mine at Sredne-Timan in Komi Republic under development. Expected capacity to eventually reach $3 \mathrm{Mt} / \mathrm{y}$ of bauxite. Plans production of 950000 t in 2003. Possible new $1.4-\mathrm{Mt} / \mathrm{y}$ refinery and smelter to be associated with mine. Rail line completed. Hatch and Associates awarded contract for prefeasibility and engineering work on alumina refinery and smelter. Cooperation agreement with Pechiney in early 2003.	750000
Suriname	Suralco refinery - Alcoa/BHP Billiton	Agreement signed on expansion of refinery by $250000 \mathrm{t} / \mathrm{y}$ to $2 \mathrm{Mt} / \mathrm{y}$.	250000
United Kingdom	Scotland - Bruntsland Refinery - Alcan	Closure of 120 000-t/y chemical-grade alumina refinery in November 2002.	-120 000
United States	Alcoa - Point Comfort	Alumina output to increase in 2003.	300000
Vietnam	Government of Vietnam	Seeking foreign investors in bauxite and alumina refineries. Plans construction of a $300000-\mathrm{t} / \mathrm{y}$ alumina refinery; production possible in 2006.	
	Dac Nong - China Non-Ferrous Corp./Vimico	Memorandum of Understanding on a new feasibility study for a potential new $1-\mathrm{Mt} / \mathrm{y}$ refinery and bauxite mine. Production for export and a possible local $75000-\mathrm{t} / \mathrm{y}$ smelter. Decision expected in early 2003.	
Venezuela	Bauxilium - CVG Bauxilum/Pechiney	Refinery expansion under way to $2.2 \mathrm{Mt} / \mathrm{y}$.	200000
	Bauxilium - CVG Bauxilum/Pechiney	Potential second-phase expansion of refinery capacity from $2.2 \mathrm{Mt} / \mathrm{y}$ to $3 \mathrm{Mt} / \mathrm{y}$.	

Source: Natural Resources Canada, based on published reports.

TABLE 12. SMELTER PROJECTS

Country	Project/Company	Remarks	Near-Term Change Amount
			(t/y)
Australia	Boyne Island - Comalco	Deferred expansion of smelter (by $200000 \mathrm{t} / \mathrm{y}$).	
	WMC Alumina Limited Limited	Aluminum interests transferred to new operating company.	
	Kurri Kurri smelter	Hydro Aluminium to upgrade smelter. Capacity to increase by $15000 \mathrm{t} / \mathrm{y}$.	15000
	Aldoga Consortium	Proposed 560 000-t/y smelter near Gladstone received major project status. Letter of intent with Russian Aluminium on a joint venture feasibility study. Work on feasibility studies. Construction expected to start in 2003; production to start in 2005.	
	Tomago smelter - Tomago Aluminium Pty Ltd.	Partners approved upgrades resulting in $70000-\mathrm{t} / \mathrm{y}$ expansion in capacity to $530000 \mathrm{t} / \mathrm{y}$. Completion expected in 2006.	
Azerbaijan	Azerbaijan Aluminum	Continued work toward restart of smelter in 2002 with reduced capacity of $30000 \mathrm{t} / \mathrm{y}$. New smelter proposed with capacity of 150 000-200 $000 \mathrm{t} / \mathrm{y}$.	30000
Brazil	Albras - CVRD	Expanded capacity became operational in early 2002.	45000
	Sorocoba smelter - Cia Brasileira de Aluminio	Expansion of smelter under way from $230000 \mathrm{t} / \mathrm{y}$ to $340000 \mathrm{t} / \mathrm{y}$. To be completed in 2003.	110000
	Cataguazes, Minas Gerais - Cia Brasileira de Aluminio	Proposed new smelter with capacity of $500000 \mathrm{t} / \mathrm{y}$.	
Bahrain	Aluminum Bahrain	Expansion under way from $520000 \mathrm{t} / \mathrm{y}$ to $820000 \mathrm{t} / \mathrm{y}$. Construction to start in early 2003.	300000
	Aluminum Bahrain - Alcoa	Agreement on an additional expansion ($200000 \mathrm{t} / \mathrm{y}$) with Alcoa to bring total capacity to $1 \mathrm{Mt} / \mathrm{y}$ by 2005.	
Bosnia	Aluminij Mostar	Plans feasibility study for second potline to expand capacity from $110000 \mathrm{t} / \mathrm{y}$ to $220000 \mathrm{t} / \mathrm{y}$.	
Canada	Alma smelter - Alcan	To start construction on potlining centre in 2003.	
	Alouette smelter expansion - Alouette Inc.	Expansion approved; completion expected in 2005. Discussed in text.	300000
	Baie Comeau - Alcoa	Modernization planning under way. Capacity to be raised in longer term by $110000 \mathrm{t} / \mathrm{y}$. Completion in 2010.	
	Deschambault smelter (Lauralco) - Alcoa	Expansion by $330000 \mathrm{t} / \mathrm{y}$. Discussed in text.	
Chile	Alumysa proposed smelter - Noranda	Environmental and social studies under way for a proposed US\$2.75 billion hydro-electric project and smelter near Puerto Aisen.	

TABLE 12 (cont'd)

Country	Project/Company	Remarks	Near-Term Change Amoun
			(t/y)
China	Baiyin aluminum smelter	Expected completion of expansion to $100000 \mathrm{t} / \mathrm{y}$ in 2002 from $72000 \mathrm{t} / \mathrm{y}$. Expects to expand to $130000 \mathrm{t} / \mathrm{y}$ in 2003.	50000
	Baotou Aluminium	Construction under way of a $50000-\mathrm{t} / \mathrm{y}$ expansion to $180000 \mathrm{t} / \mathrm{y}$. Potential modernization with further expansion to $250000 \mathrm{t} / \mathrm{y}$.	50000
	Baise Yinhai Aluminium Co.	Delays in start-up of new $50000-\mathrm{t} / \mathrm{y}$ smelter. Planned expansion to $100000 \mathrm{t} / \mathrm{y}$ in 2003.	50000
	Jiangsu -Datun Gas and Power	Construction of a new $100000-\mathrm{t} / \mathrm{y}$ smelter started in 2002. Phase one to be $50000 \mathrm{t} / \mathrm{y}$ with expected completion in 2003.	50000
	Fushun Aluminium Company	Replacement smelter started up in late 2002. Capacity now $160000 \mathrm{t} / \mathrm{y}$. Second phase expansion of $50000 \mathrm{t} / \mathrm{y}$ expected to be completed in 2003.	50000
	Guangxi - Baise Yinhai Aluminium Co.	Completed construction of new 50 000-t/y smelter in 2002, but delayed metal production to 2003. Plans to double capacity to $100000 \mathrm{t} / \mathrm{y}$ by 2004.	50000
	Guizhou - Chalco	Expansion of smelter under way to reach $395000 \mathrm{t} / \mathrm{y}$ by 2004.	160000
	Guizhou - Zunyi aluminum plant	Expansion from $32000-\mathrm{t} / \mathrm{y}$ to $132000-\mathrm{t} / \mathrm{y}$ capacity started in 2001; to be completed in 2003.	100000
	Henan Dengfeng Aluminium Industry Co. Ltd.	Planned to complete new power generation facilities by 2003 for an eventual expansion of capacity to $100000 \mathrm{t} / \mathrm{y}$ from $40000 \mathrm{t} / \mathrm{y}$. Seeking funding for smelter expansion.	
	Henan Wanji Aluminium Co.	Completed expansion from $60000 \mathrm{t} / \mathrm{y}$ to $180000 \mathrm{t} / \mathrm{y}$.	120000
	Inner Mongolia - East Hope Group	Planning a 1-Mt/y smelter in Baotou. Construction of first phase of 150000 t/y started in late 2002.	150000
	Jiaozuo Wanfang Aluminium Co.	Smelter expansion to $180000 \mathrm{t} / \mathrm{y}$ from 110000 t ty approved and under way. Further expansion expected to 300000 t /y in 2004.	70000
	Jiamusi aluminum smelter	Seeking investors for 100 000-t/y expansion.	
	Lanzhou Aluminium Co.	Expansion of capacity by $100000 \mathrm{t} / \mathrm{y}$. Agreement in principle with Pechiney on technical cooperation and studies to be carried out in 2003 for a proposed $260000-$ ty smelter and associated electrical generation facilities in Gansu province.	100000
	Lintao aluminum plant	Company expects to modernize and expand smelter located in Gansu from $10000 \mathrm{t} / \mathrm{y}$ to 50 $000 \mathrm{t} / \mathrm{y}$ in 2003.	40000
	Nantun Shandong smelter -Yankuang Group	Construction under way of $140000-t / y$ smelter; expected to be in operation in 2004.	140000
	Ningxia Zhongning aluminum smelter	Construction to start on smelter expansion in 2003. Possible expansion to $300000 \mathrm{t} / \mathrm{y}$.	70000
	Pingguo - Chalco - joint venture with Alcoa	Waiting for approvals for proposed tripling of capacity of the Pingguo aluminum smelter from $130000 \mathrm{t} / \mathrm{y}$ to $380000 \mathrm{t} / \mathrm{y}$.	250000
	Qinghai Qiaotou Aluminum and Electricity Co.	New 150 000-t/y smelter in Qinghai expected to be completed in 2004. Possible second phase to double capacity.	50000
	Qingtongxia aluminium smelter	Plans to expand existing plant by $150000 \mathrm{t} / \mathrm{y}$. In 2001, Alcan signed a Memorandum of Understanding on a joint venture to have a 50% interest in the smelter and planned expansion. Discussions are continuing.	150000
	Shandong Aluminum	Soderberg potline closed.	-35000
	Rizhao smelter -Yankuang Group	Potential new $400000-\mathrm{t} / \mathrm{y}$ smelter. Work on financing and approvals under way.	
	Shanxi smelter - Chalco/Shanxi Zhangze Electric Power Co.	New 280 000-t/y smelter planned for 2005 in Hejin with new 600-MW power plant. Replaces proposal with Beijing Datang Power Co.	
	Shanxi - Shanxi Guanlu Co. Ltd.	Company started construction of $200000-\mathrm{t} / \mathrm{y}$ expansion of smelter; final capacity of $320000 \mathrm{t} / \mathrm{y}$. First metal expected in mid-2003.	200000
	Shijizzhuang Aluminium Co.	Feasibility study for modernization and expansion by $20000 \mathrm{t} / \mathrm{y}$.	
	Tongchuan Xinguang Aluminium Industry Co.	Modernization to phase out Soderberg pots and expansion under way. Capacity to double from $60000 \mathrm{t} / \mathrm{y}$ to $120000 \mathrm{t} / \mathrm{y}$.	
	Xinfa Aluminium Co.	Plans to expand Shandong smelter capacity from 100000 t ty to $420000 \mathrm{t} / \mathrm{y}$. Possibility for an additional $600000-t / y$ smelter.	
	Yangxin aluminium smelter	Expansion of $10000 \mathrm{t} / \mathrm{y}$ to $20000 \mathrm{t} / \mathrm{y}$.	10000
	Yichang, Hubei Smelter - Chalco	Letter of intent with partners on a feasibility study for a new $500000-t / y$ smelter near Three Gorges Dam. First phase $250000 \mathrm{t} / \mathrm{y}$ construction expected in 2004.	
	Yuci Hengyu Aluminium Industry	Seeking investors for new 100 000-t/y smelter.	
	Yugang Lonquan Aluminium Co. Ltd.	Expanded capacity in 2002 from $55000 \mathrm{t} / \mathrm{y}$ to $200000 \mathrm{t} / \mathrm{y}$.	145000
	Yunnan Aluminium - Kunming smelter	Planned modernization of smelter from Soderberg to prebake technology postponed.	

TABLE 12 (cont'd)

Country	Project/Company	Remarks	Near-Term Change Amount
			(t/y)
China (cont'd)	Zhengzhou Longxian Aluminium Power Co.	Planning for expansion in 2004 to $150000 \mathrm{t} / \mathrm{y}$ from $50000 \mathrm{t} / \mathrm{y}$.	
	Zhengzhou Shangjie aluminum plant	Planning to increase capacity in 2005 from $26000 \mathrm{t} / \mathrm{y}$ to $100000 \mathrm{t} / \mathrm{y}$.	
	Zhenxing Group Co.	Completed construction of a $40000-\mathrm{t} / \mathrm{y}$ expansion to total capacity of $60000 \mathrm{t} / \mathrm{y}$ in mid-2002.	20000
	Zouping Aluminium Co. Ltd.	Doubling capacity to $66000 \mathrm{t} / \mathrm{y}$ by mid-2002. Plans thereafter to boost production to 200000 t/y.	33000
Dubai	Dubal	Upgrade approved by government. Work under way to expand capacity from $535000 \mathrm{t} / \mathrm{y}$ to $710000 \mathrm{t} / \mathrm{y}$.	175000
Egypt	Egyptalum	Expansion and modernization - progress slower than expected but work now under way. Capacity to be raised by $50000 \mathrm{t} / \mathrm{y}$ by 2004 along with conversion of potline \#5 to prebake technology.	50000
France	Auzat - Pechiney	Smelter closure in early 2003.	-48000
Ghana	Volta - Kaiser	Two potlines closed due to lack of power in 2002.	-80 000
Guinea	Guinea Aluminium Products Co.	Discussions on possible $240000-\mathrm{t} / \mathrm{y}$ smelter.	
Iceland	Straumsvik - Icelandic Aluminum (ISAL)	Environmental studies for a possible expansion to $460000 \mathrm{t} / \mathrm{y}$ from $160000 \mathrm{t} / \mathrm{y}$.	
	Fjardaal - Alcoa	Joint Action plan and agreement with Icelandic government on new 322 000-t/y smelter (replaces the Noral project). Construction expected to start in 2005; metal production in 2007.	
	Norð̌urál - Columbia Venture Corp.	Planning expansion from 90000 t/y to $180000 \mathrm{t} / \mathrm{y}$ by 2006.	
	Atlantsal Ltd.	Feasibility studies to be completed in 2003 for a proposed $360000-\mathrm{t} / \mathrm{y}$ smelter.	
India	Angul - Nalco	Completed expansion in 2002 to $345000 \mathrm{t} / \mathrm{y}$ from $230000 \mathrm{t} / \mathrm{y}$.	115000
	Alupurram- Indian Aluminium	Smelter to be closed.	-14000
	Renukoot - Hindalco	Expansion by $120000 \mathrm{t} / \mathrm{y}$ to $360000 \mathrm{t} / \mathrm{y}$ expected to be completed in 2003.	120000
	Korba - Bharat Aluminium	Possible expansion of smelter from $100000 \mathrm{t} / \mathrm{y}$ to $300000 \mathrm{t} / \mathrm{y}$ by 2005. Signed power contract to increase production to $125000 \mathrm{t} / \mathrm{y}$ by 2003.	25000
	New smelter - Chalco and Kutch Alumina Power and Coke Company Limited	Discussions on possible $120000-\mathrm{t} / \mathrm{y}$ smelter.	
Indonesia	PT Indonesia Asham Aluminium	New power plant to ease current power shortages delayed. Once completed, planning to expand from $225000 \mathrm{t} / \mathrm{y}$ to $300000 \mathrm{t} / \mathrm{y}$.	
Iran	Iran Aluminium Company	Continued work on proposal for new Arak smelter (110 $000 \mathrm{t} / \mathrm{y}$).	
Kazakhstan	Pavlodar - Aluminum of Kazakhstan	Planning for a new $240000-\mathrm{t} / \mathrm{y}$ smelter associated with the Pavlodar alumina refinery.	
Malaysia	Bintulu - Sarawak - Dubal Aluminum	Proposed 500 000-t/y smelter, based on new hydro-electric project. Construction expected to start in 2004; metal production in 2007. Agreement between Gulf international Investment Group and Dubai Aluminium Co.	
	Perak State Development Corporation/Malaysia Aluminum Smelting Co. (Charus Development Corporation)	Potential new smelter to start construction in 2003. First stage $230000 \mathrm{t} / \mathrm{y}$ with potential expansion to $690000 \mathrm{t} / \mathrm{y}$. Proponents seeking funding and approvals.	
Mozambique	Mozal - Billiton and partners	Expansion of capacity of the Mozal smelter under way from 250000 t/y to $500000 \mathrm{t} / \mathrm{y}$. Management contract awarded to SNC Lavalin of Canada and Murray and Roberts Engineering Solutions of South Africa. Initial production expected in mid-2003.	250000
Nigeria	Ikot-Abasi	Work under way to re-open the $193000-\mathrm{t} / \mathrm{y}$ smelter. Government sale of interest expected in 2003.	
Norway	Karmøy, Årdal - Hydro Aluminium	Higher power costs resulted in reductions in planned production at Karmoy. Soderberg technology to be phased out by 2006 at Årdal; by 2009 at Karmøy.	-10 000
	Mosjøen - Elkem	Modernization and expansion under way; 60\% complete in early 2002. Expansion to be completed in 2003.	68000
	Soeral	Alcan/Norsk Hydro expansion of $44000 \mathrm{t} / \mathrm{y}$ to be completed first quarter of 2003.	
	Sunndal - Hydro Aluminium	New prebake potline nearing completion; closure of older potline advanced due to higher power costs. Capacity to reach 330000 t/y in 2004.	168000
Qatar	Ras Laffan - United Development Co, Ferrostaal, and JGC Corp.	Consortium's proposal for smelter in NE Qatar; has licence to build smelter, contract for gas supply. Smelter capacity is $500000 \mathrm{t} / \mathrm{y}$. Production expected in 2006.	
Russia	Irkutsk-Alucom-Taishet	Pilot smelter built in 2002. Proposal for new 250 000-t/y smelter and difficulty with power for pilot plant. Russian Aluminium in discussions for purchase of interest. Project may be merged with Russian Aluminium proposal.	

TABLE 12 (cont'd)

[^2]
[^0]: a Reached full capacity in mid-2001.

[^1]: Sources: Natural Resources Canada; London Metal Exchange; Reuters; Metalprices.com.

[^2]: Source: Natural Resources Canada, based on published media reports.

