Canadian Reserves of Selected Major Metals, and Recent Production Decisions

Alan Reed

The author is with the Minerals and Metals Sector, Natural Resources Canada. Telephone: (613) 995-9071 E-mail: areed@nrcan.gc.ca

RESERVES OF SELECTED MAJOR METALS

In 2001, Canadian reserves of copper, nickel, lead, zinc, molybdenum, silver and gold decreased because only one small new mine came into production while four producing mines were closed and the amount of new ore discovered at existing mining operations was insufficient to replace the quantity of ore that was mined during the year (Table 1). This continued a trend of declining ore reserves that began in the early 1980s for base metals and in the late 1980s for gold.

The Voisey's Bay nickel-copper-cobalt deposit in Labrador is not included in Canadian reserves at the end of 2001, but a production decision was made in June 2002, resulting in an increase of 524 000 t in the reserves of copper and an increase of 893 000 t in the reserves of nickel.

Reserves Policy

Canadian reserves are estimated from information contained in annual and other corporate reports, and from the responses of mining companies to the annual Federal-Provincial/Territorial Survey of Mines and Concentrators.

Reserves reported here include only metal contained in material that is classified by companies as "proven" or "probable" (or their equivalents) at producing mines and in deposits that are firmly committed to production (Table 2). Metal contained in mineral resources classified by companies as "possible" (or its equivalents) is not included in national totals, nor is metal contained in deposits that have not advanced beyond the deposit appraisal phase (Figure 1). When available, only metal contained in mineable ore is included in Canadian totals to exclude losses inherent in the mining process. Every effort is made to achieve, from year to year, consistency in the reserves reported here; however, consistency ultimately depends on industry practice, which has evolved over the years. Imperial units reported by companies have been converted to metric units and the results have been rounded to the appropriate number of significant digits.

Reserves by Commodity

Gold

There were 1070 t of gold contained in Canadian mine reserves in December 2001. This represents a decrease of 6% (72 t) compared to December 2000. The major components of this decrease were deletions due to continuing low gold prices, together with the depletion of reserves without replacement at most of the gold mines in Canada. The only notable increases in gold reserves were reported at the Red Lake mine (+22 t) and the Williams mine (+13 t) in Ontario.

Silver

There were 12 593 t of silver contained in Canadian mine reserves in December 2001. This represents a decrease of 9% (1326 t) compared to December 2000. None of the silver-producing mines reported significant increases in their reserves during 2001.

Zinc

During 2001, Canadian reserves of zinc declined by about 1.1 Mt (12%) to a year-end total of approximately 7.8 Mt. The Sullivan mine in British Columbia and the Ruttan mine in Manitoba closed permanently and reserves decreased at most of the zinc producers. The only zinc mines to report an increase in ore reserves during 2001 were the 777 mine in Manitoba (46 000 t), the Myra Falls mine in British Columbia (76 000 t), and the Bell Allard mine in Quebec (244 000 t).

Lead

Canadian reserves of lead decreased by approximately 26% during 2001 to 970 000 t. The Sullivan mine in British Columbia closed after 92 years of production. The Brunswick No. 12 mine in New Brunswick has reserves

Figure 1

Generalized Model of the Mineral Resource Development and Mining Process

	· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·	
PHASE	MINERAL RESOURCE ASSESSMENT		MI	NERAL EXPLORAT	ION	ſ	MINERAL DEPOSIT APPRAISAL				MINE COMPLEX DEVELOPMENT	MINE PRODUCTION	ENVIRON- MENTAL RESTORATION
			GRASS-ROOT	S EXPLORATION		1 '							
	MRA	EX-1	EX-2	EX-3	EX-4	EX-5	DA-1	DA-2	DA-3	DA-4	MCD	MP	ER
STAGE	Various surveys, research and synthesis.	Exploration planning.	Regional reconnaissance and surveys.	Prospecting and ground surveys of anomalies.	Verification of anomalies and showings.	Discovery and delimitation of a mineral deposit.	Mineral depos definition.	it Project engineering.	Project economics.	Feasibility study, production decision.	Mine development, construction of processing plant and infrastructure.	Production, marketing and renewal of reserves.	Mine complex closure and decommissioning, site restoration.
OBJECTIVES	Supply informa- tion and tools required to deve- lop the mineral potential of the nation for econo- mic benefit, in the perspective of sustainable deve- lopment.	Select target commodities. Establish explo- ration objectives and strategies. Select target areas and sites. Acquire claims or permits if appropriate.	Seek anomalies of interest over wide areas by various survey methods. Select the more promi- sing targets. Acquire claims or permits.	Confirm the presence, exact location and characteristics of anomalies. Acquire claims, leases and pro- perties.	Investigate the cause of ano- malies. Find mineral show- ings. Acquire additional claims, leases and properties.	Discover, delimit and interpret grade, quality and tonnage of a new mineral deposit. Deter- mine if it consti- tutes a mineral resource of "potential econo- mic interest" to justify more intensive and detailed work.	Define the limit controls and internal distribu- tion of grades, mineralogy an sing characteri tics of the depu- sit. Acquire all data required f project engine ring and cost estimation.	 betermine, in a iterative fashio the design, plans, sche- dules, capital cost and opera s- ting cost esti- mates for all aspects of the project. Esta- bilish technical feasibility and cost sthorough and realistically 	n Obtain all the information required and determine, based on corpo- rate objectives. parameters for the economic, financial and social-political evaluation of the project.	Diligently validate and integrate pro- ject data, interpreta- tions, estimations, plans and evaluations to achieve MCD and production objec- tives. Decide on whether to under- take the mining pro- ject. Obtain permits and financing.	Complete mine development and construction on schedule and within budgets and specifications. Ensure efficient and timely mine complex start-up according to sche- dule, specifica- tions and cash flow forecasts.	Achieve commer- cial production on schedule and meet cash flow forecasts and quantity and quality specifica- tions. Achieve mine profitability and company survi- val in the perspec- tive of sustain-able development.	Restore mine site, outside plant and infrastructure to environmen- tally acceptable condition. Ensure the future quality of the environment.
EVALUATION METHODS	Geoscientific, mineral and eco- nomic surveys, research, compila- tions and synthe- sis by govern- ments, research institutes, universi- ties and industry.	Metal and mine- ral market research. Review of geolo- gical and ore deposit informa- tion and of the legal, fiscal and socio-political context in various areas.	Remote sensing, aerial photogra- phy and airborne geophysics. Prospecting, geology and geochemistry. Appraisal, rating and selection of anomalies.	Ground, geologi- cal, geochemical and geophysical prospecting and surveys. Compilation, appraisal and selection of significant ano- malies.	Geological map- ping and other surveys. Tren- ching, drilling and sampling. Appraisal of results, recom- mendations for further work, and selection of new targets.	Stripping, tren- ching, mapping, sampling, drilling and down-hole geophysics. Ini- tial mineral pro- cessing tests. Environmental and site surveys. Mineral resource estimation and inventory.	Detailed map- ping, sampling, and drilling on surface or from underground. Systematic mineral proces sing tests. Detailed envirc mental and sit surveys. Pre- feasibility studi	Pilot tests, eng neering design and planning. Capital and opr rating costs for mining, minera processing, - infrastructure, environmental protection and restoration. Technical risk es. analysis. Pre- feasibility studies.	 Market, prices, product deve- lopment and financial studies. Environmental, economic, finan- cial, and socio- political risk analysis. Pre- feasibility studies. 	Exhaustive due dili- gence review of all data, interpreta- tions, plans and estimates. Evalua- tion of profitability, given the geologi- cal, technical, financial and quali- tative risks, and the up-side factors.	Project manage- ment methods in a quality assurance perspective. Trai- ning program for personnel and detailed start-up plan to meet the requirements of this demanding period.	Production man- agement methods to ensure conti- nuous quality and efficiency improve- ments. Explora- tion, deposit appraisal and deve- lopment of new zones or deposits on-mine-site and off-mine-site.	Mine closure and decommissioning. Environmental restoration and monitoring.
RESULTS	Maps, data bases, tools and models.	Exploration projects.	Regional anomalies.	Local anomalies.	Mineral showings.	Mineral deposit.		Deposit appraisal pr	oject.	Mining project.	Mining complex.	Mineral production.	Restored site.
MINERAL		UNDISCO	VERED MINERAL F	OTENTIAL		INFERRED		DELIMITED M	NERAL RESOURCE		MINERAL	RESERVE	
INVENTORY	SPE	ECULATIVE		HYPOTHETI	CAL	RESOURCE	INDICATED	IND	CATED AND MEASU	RED	PROVEN AN	D PROBABLE	
ESTIMATION ERI	ESTIMATION ERROR (targeted margin of error of tonnage/grade estimates at the 90% confidence level)				level)	± 100%	± 50%	Indicated: ± 50 to ± 30% Measured: ± 20 to ± 10% ± 50% (often several sample grid dimensions are used in each category			Proven (feasibility: ±10%; mining: ±5%)		
INVESTMENTS	Moderate		Low, but i	increasing multiple ir	ivestments.			Larger and increa	ing multiple investme	nts.	Very large indus	strial investment.	Full compliance
RISK LEVEL	Low		Very high, but dec	creasing risk of failur	e and financial loss.			High, but dec	easing risk of failure.		Moderate to low	w industrial risk.	1

Sources: Modified by D.A. Cranstone, A. Lemieux and M. Vallée, February 25, 1994, from M. Vallée, 1992, Guide to the Evaluation of Gold Deposits, CIM Special Volume 45, p. 4, and SOQUEM Annual Report, 1976-77, pp. 4 and 5. Revised by M. Vallée and G. Bouchard, January 2001.

sufficient for six more years of production, but the Polaris and Nanisivik mines closed in 2002.

Copper

In December 2001, Canadian reserves of copper were estimated at about 6.7 Mt, or down by about 10% (-753 000 t) from a year earlier. The reduction in copper reserves was due to production without replacement of ore at almost all of the producing copper mines.

Molybdenum

Canadian reserves of molybdenum stood at 95 000 t in December 2001, or about 2% lower than in the previous year. Reserves at the Highland Valley mine increased slightly while reserves at the Huckleberry mine were maintained at the same level as in 2000, but reserves at the Endako mine were reduced by 13 000 t. All of the molybdenum mines are in British Columbia.

Nickel

In December 2001, there were some 4.3 Mt of nickel contained in Canadian mine reserves, down by approximately 9% from 2000 levels. This decrease is due largely to reserves deleted because of low prices at Inco Limited's Ontario and Manitoba divisions (-243 000 t) and at Falconbridge's Ontario operations. Reserves were increased slightly at Falconbridge's Raglan mine in Quebec.

Inco had some 3.5 Mt of nickel in Canadian reserves at the end of 2001, or about 80% of the national total. It is expected that development of the copper-nickel-cobalt deposits at Voisey's Bay in Labrador (announced in June 2002) will increase Canada's mineable reserves of nickel by 893 000 t.

Canadian Reserves by Province and Territory

Four provinces (Ontario, British Columbia, New Brunswick and Quebec) held dominant positions in terms of Canada's proven and probable mineable reserves of major metals in December 2001 (Table 4).

Ontario had 66% of the nickel, 53% of the gold and 50% of the copper, plus 21% of the silver and 20% of the zinc.

British Columbia had 100% of the molybdenum, 34% of the copper and 27% of the silver, plus 4% of the lead, 7% of the zinc and 16% of the gold.

New Brunswick had 92% of the lead, 29% of the zinc and 21% of the silver, plus 1% of the copper.

Quebec had 29% of the zinc, 22% of the gold, 8% of the copper, 13% of the nickel and 26% of the silver.

Manitoba had 21% of the nickel, 12% of the zinc and 4% of the gold, plus 6% of the copper and 4% of the silver.

Newfoundland and Labrador had less than 1% of the gold.

The Northwest Territories had 2% of the gold.

Nunavut had 3% of the lead, 2% of the zinc, less than 1% of the gold, and less than 1% of the silver.

Canadian Reserves by Industry Classification

Canadian mines are, to a large extent, polymetallic, a complexity that the North American Industry Classification System (NAICS) tends to oversimplify (Table 5).

Current mine reserves of gold in Canada are distributed through the various NAICS classes as follows: Gold and Silver Ore Mining, 78%; Copper and Zinc Ore Mining, 15%; Nickel-Copper Ore Mining, 5%; Lead-Zinc Ore Mining, 0.5%; and Other Metal Ore Mining, 1%.

Current mine reserves of silver in Canada are distributed through the various NAICS classes as follows: Gold and Silver Ore Mining, 41%; Copper-Zinc Ore Mining, 29%; Nickel-Copper Ore Mining, 8%; and Lead-Zinc Ore Mining, 22%.

Current mine reserves of copper in Canada are distributed through the various NAICS classes as follows: Gold and Silver Ore Mining, 2%; Copper-Zinc Ore Mining, 51%; Nickel-Copper Ore Mining, 45%; Lead-Zinc Ore Mining, 2%; and Other Metal Ore Mining, 1%.

Current mine reserves of molybdenum in Canada are contained in the NAICS classes as follows: Copper-Zinc Ore Mining, 37%; and Other Metal Ore Mining, 63%.

Current mine reserves of nickel in Canada are contained 99% in the NAICS class of Nickel-Copper Ore Mining and 1% in the NAICS class of Other Metal Ore Mining.

Current mine reserves of lead in Canada are contained in the NAICS classes as follows: Copper-Zinc Ore Mining, 6%; and Lead-Zinc Ore Mining, 94%.

Current mine reserves of zinc in Canada are contained in the NAICS classes as follows: Gold and Silver Ore Mining, 17%; Copper-Zinc Ore Mining, 50%; and Lead-Zinc Ore Mining, 33%.

Apparent Life of Canadian Reserves

The apparent life (life index) of mine reserves is usually calculated by dividing the total amount of metals remaining in mine reserves at the end of a given year by the corresponding amount of metals contained in the ores produced during that year. Similar calculations are often applied at the national level.

At the national level, life indices are but a very rough measure of the expected life of aggregate mine reserves and they are often misleading unless abnormal situations are recognized. Life indices based on proven and probable reserves do not make allowances for inferred extensions to reserves at current mines, gross additions that will accrue to current reserves from the likely development, in the foreseeable future, of known orebodies for which a production decision has yet to be made, or expected changes in production rates. Furthermore, life indices tend to overstate the apparent life of reserves when, for example, annual production is abnormally low due to strikes, cutbacks or suspensions at large establishments, or when significant increases in capacity resulting from new production decisions will be coming on stream, but only several years hence.

The apparent life indices for the major metals in Canada at the end of 2001 were 21 years for nickel, 10.5 years for copper, 9.5 years for molybdenum, 8.8 years for silver, 7 years for zinc, 6 years for gold and 5.5 years for lead.

Reserve Trends

Figure 2 and Table 6 show how Canadian reserves of copper, nickel, lead, zinc, molybdenum and silver have declined since the early 1980s. In contrast, gold reserves increased substantially until 1988 before beginning to decline. At the end of 2001, Canadian reserves of copper, nickel, lead, zinc, molybdenum and silver were all lower than at any time since Natural Resources Canada began keeping records (1977) and reserves of gold were lower than in any year since 1982.

The annual aggregate change in Canadian reserves is the net result of three main factors affecting individual mines (Figure 3): additions to reserves, deletions to reserves, and production. Additions to reserves are the result of new discoveries; of new geological, metallurgical, production or other information; of a decrease in production costs; or of a rise in commodity prices, all of which increase the quantity of mineral resources that are profitable to mine. Deletions to reserves are the result of new geological, metallurgical, production or other information; of increases in costs; or of decreases in commodity prices, all of which reduce the quantity of mineral resources previously counted in mine reserves that are now expected to be mined at a profit. Production is normally the main factor reducing the reserves at individual mines but, in 2001, low metal prices were also a significant factor in the reduction of ore reserves at producing mines.

RECENT PRODUCTION DECISIONS

Several criteria need to be met for a project to be considered here to have reached the production decision stage. In general, there needs to have been a positive production feasibility study, all of the necessary permits must have been obtained, financing must have been arranged, and directors must have approved construction.

During 2001, the only new production decision was for the Hammerdown gold deposit in Newfoundland and Labrador (Richmont Mines Inc., 5.9 t).

Inco Limited's Voisey's Bay deposit in Labrador was approved for production in June 2002, resulting in an increase of 524 000 t in the reserves of copper and an increase of 893 000 t in the reserves of nickel.

OUTLOOK

Given that the only new production decision during 2001 was the Hammerdown mine (5.9 t of gold) in Newfoundland and Labrador and that prices of most of the metals covered in this chapter remained low during 2002, it is probable that mine reserves of precious metals and most base metals will decline further during 2002. The decision in June 2002 by Inco Limited to place the Voisey's Bay copper-nickel-cobalt deposit in Labrador into production will increase copper reserves by 8% and nickel reserves by 21%.

Notes: (1) Information in this review was current as of February 11, 2003. (2) This and other reviews, including previous editions, are available on the Internet at www.nrcan.gc.ca/mms/cmy/2002CMY_e.htm..

NOTE TO READERS

The intent of this document is to provide general information and to elicit discussion. It is not intended as a reference, guide or suggestion to be used in trading, investment, or other commercial activities. The author and Natural Resources Canada make no warranty of any kind with respect to the content and accept no liability, either incidental, consequential, financial or otherwise, arising from the use of this document.

Figure 2 Canadian Reserves of Selected Major Metals, 1978-2001 Metal Contained in Proven and Probable Mineable Ore in Operating Mines and Deposits Committed to Production, as at December 31 of Each Year (million tonnes) Copper Contained in Mineable Ore 20 15 10 5 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 (million tonnes) Nickel Contained in Mineable Ore 10 8 6 4 2 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 (million tonnes) Lead Contained in Mineable Ore 10 8 6 4 2 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Zinc Contained in Mineable Ore (million tonnes) 30 25 20 15 10 5 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 (000 tonnes) Molybdenum Contained in Mineable Ore 600 400 200 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 (000 tonnes) Silver Contained in Mineable Ore 40 30 20 10 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Gold Contained in Mineable Ore (tonnes) 2 000 1 500 1 000 500 0 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Source: Natural Resources Canada, based on company reports and the Federal-Provincial/Territorial Survey of Mines and Concentrators. Note: This series was revised during 1996.

Figure 3 Main Components of Change in Canadian Reserves of Selected Major Metals, 1983-2001

TABLE 1. MAIN COMPONENTS OF CHANGE DURING 2001 IN CANADIAN RESERVES OF SELECTED MAJOR METALS

Metal	Units	Revised Opening Metal Balance, January 2001	Metal in Ore Mined During 2001	Metal Apparently Written Off During 2001	Metal in New Reserves Found During 2001	Net Change During 2001	Closing Metal Balance, December 2001	% Change During 2001
Copper	000 t	7 419	-690	-200	151	-753	6 666	-10
Nickel	000 t	4 782	-209	-271	32	-447	4 335	-9
Lead	000 t	1 315	-178	-221	54	-345	970	-26
Zinc	000 t	8 876	-1 034	-502	468	-1 068	7 808	-12
Molybdenum	000 t	97	-10	-6	13	-3	95	-2
Silver	t	13 919	-1 426	-535	635	-1 326	12 593	-10
Gold	t	1 142	-171	-67	136	-72	1 070	-6

Source: Natural Resources Canada, based on company reports and the Federal-Provincial Survey of Mines and Concentrators. Note: May not balance due to rounding.

TABLE 2. TONNAGES AND GRADES OF OPERATIONS INCLUDED IN CANADIAN RESERVES OF SELECTED MAJOR METALS, AS AT JANUARY 1, 2002

Tonnages classified by companies as "possible" are not included, nor are tonnages for which there is not a firm production decision. Confidential data have been suppressed from the details of this report.

					Grade			
	Tonnes	Cu	Ni	Pb	Zn	Мо	Ag	Au
		(%)	(%)	(%)	(%)	(%)	(g/t)	(g/t)
NEWFOUNDLAND AND LABRADOR								
Hammerdown Richmont Mines Inc. Proven and probable	335 658							17.49
NEW BRUNSWICK								
Prunowiak No. 12 Underground								
Nerende Mining and Exploration Inc.								
Noranda Mining and Exploration Inc.	00 404 000	0.00		0.40	0.00		105.00	
Proven	23 481 000	0.39		3.49	8.82		105.30	••
Probable	1 949 000	0.25		3.62	9.34		94.20	••
QUEBEC								
Beaufor								
Aurizon Mines Ltd.								
Louvem Mines Inc.								
Proven and probable	1 000 625							7.20
Bell Allard								
Noranda Mining and Exploration Inc								
Proven	1 853 000	1 23		0.12	12.56		38.50	0.60
Probable	317 000	0.98		0.13	19 59		40.40	0.33
Bouchard-Hébert		0.00		0.10	10.00		40.40	0.00
Broakwater Resources Ltd								
Proven and probable	3 219 000	0.60			4 90		33.00	1 00
Bousquot No. 2	0210000	0.00			4.50		00.00	1.00
Borrick Cold Corporation								
Banick Gold Corporation	800.000	0.02					4 60	5 00
Deven	800 000	0.25					4.00	5.50
Doyoli Review Cold Correction								
Combior inc								
Draven	2 505 262							5 00
Proven	3 505 502						••	5.20
	3 929 017						••	5.00
	007 084							10.40
Reserves	297 284	••					••	10.42
Kiena MeWettere Mining Inc.								
Drawer	170 000							0.00
Proven	476 000							3.02
Probable	13 000							4.76
Langiois (Grevet)								
Campior Inc.	0.000.000	0.70			11.00		50.00	
Proven and probable	2 903 000	0.70			11.20		53.00	0.10
LaHonde (Dumagami)								
Agnico-Eagle Mines Limited								
Proven and probable	32 933 528	0.36			4.05		78.86	3.09

TABLE 2 (cont'd)

	Grade								
	Tonnes	Cu	Ni	Pb	Zn	Мо	Ag	Au	
		(%)	(%)	(%)	(%)	(%)	(g/t)	(g/t)	
OUEBEC (cont'd)									
Louvicourt Aur Resources Inc.									
Novicourt Inc.									
Teck Corporation	0.000.000	0.00					07.00		
Proven Probable	3 969 000	3.09			3.18		27.80	0.86	
Raglan	102 000				0.10		00.00	0.00	
Falconbridge Limited									
Proven	7 136 000	0.81	3.05						
Selbaie (Detour) A1 Open Pit	12 404 000	0.70	2.70						
Billiton Metals Canada Inc. (Gencor Ltd.)									
Proven Sigma No. 1	6 200 000	0.30		0.08	1.22			0.24	
McWatters Mining Inc.									
Proven	9 600 000							2.60	
Probable Cleaning Cient	5 479 000							2.64	
Aurizon Mines Ltd.									
Cambior inc.									
Proven	290 000							12.30	
Probable Troilus (Lac Frotet)	125 000							10.70	
Inmet Mining Corporation									
Proven	9 800 000	0.10					1.10	0.80	
Probable	17 700 000	0.10					1.10	1.10	
ONTARIO									
Campbell									
Placer Dome Inc.									
Proven	931 000							17.60	
David Bell	1010000							15.90	
Homestake Canada Inc.									
Teck Corporation	0.000.000							10.11	
Proven Dome (including Paymaster)	3 200 000							10.44	
Placer Dome Inc.									
Proven	11 179 000							1.10	
Probable Fagle Biver	14 417 000							2.00	
River Gold Mines Ltd.									
Proven	428 000							11.80	
Probable	471 000						0.90	9.40	
River Gold Mines Ltd.									
VenCan Gold Corporation									
Stockpile	6 000						0.50	••	
Falconbridge Sudbury Integrated Nickel Operations									
Proven	9 906 000	1.28	1.51						
Probable	7 113 000	1.32	1.30						
Apollo Gold Corporation									
Proven	302 538							8.45	
Probable	475 244							9.21	
Golden Giant									
Proven and probable	3 229 561						1.03	9.94	
Holloway									
Newmont Mining Corporation Proven and probable	3 424 605							6.51	
Holt-McDermott	0 424 000							0.51	
Barrick Gold Corporation									
Proven	115 212							6.72	
Hove Pond	1 120 530							7.37	
Kinross Gold Corporation									
Proven	367 000							13.31	
Probable Inco Ontario Division	554 000							14.04	
Inco Limited									
Proven	107 000 000	1.40	1.40					0.24	
Probable	89 000 000	1.17	1.23				••	0.34	

TABLE 2 (cont'd)

					Grade			
	Tonnes	Cu	Ni	Pb	Zn	Мо	Ag	Au
		(%)	(%)	(%)	(%)	(%)	(g/t)	(g/t)
ONTABIO (cont'd)								
Kidd Crook total								
Falconbridge Limited								
Proven	14 697 000	2.17			5.85		77.00	
Probable	10 285 000	2.25			6.98		54.00	
North American Palladium Ltd.								
Proven	59 940 000	0.06	0.05					0.12
Probable	33 561 000	0.05	0.05					0.12
Biver Gold Mines								
Probable	104 000							3.75
Musselwhite								
Placer Dome Inc.								
Proven	6 954 000							5.70
Probable	1 820 000							4.80
Red Lake (Arthur W. White)								
Goldcorp Inc. Provon and probable	2 002 001							45.04
Williams	2 902 991							45.94
Barrick Gold Corporation								
Teck Corporation								
Proven (underground)	8 830 000							5.83
Probable (underground)	6 580 000						••	5.17
Probable (open pit)	4 360 000							1.92
MANITOBA								
777								
Hudson Bay Mining and Smelting Co., Limited								
Proven and probable	9 800 000	2.80			4.60			
Callinan								
Proven and probable	2 400 000	1.10			4.50			
Chisel Lake North	2 100 000							
Hudson Bay Mining and Smelting Co., Limited								
Proven and probable	2 100 000			••	9.60			
Inco Limited								
Proven	22 000 000	0.13	2.08					
Probable	18 000 000	0.16	2.42					
New Britannia (Nor Acme/Snow Lake)								
TVX Gold Inc								
Reserves	2 292 000							4.86
Trout Lake								
Hudson Bay Mining and Smelting Co., Limited	4 500 000	1 20			4 40			
	4 500 000	1.20			4.40			
SASKATCHEWAN								
Konuto Lake mine								
Hudson Bay Mining and Smelting Co., Limited	700.000	4 20			1 60			
Seabee	700 000	4.20			1.00			
Claude Resources Inc.								
Proven	123 400							5.76
Probable	486 600							8.49
BRITISH COLUMBIA								
Endako								
Nissho Iwai Corporation								
Endako nit	55 400 000					0.07		
Denak pit	10 500 000					0.08		
Stockpile	26 400 000					0.05		
Eskay Creek								
Barrick Gold Corporation	685 832							58 18
Probable	607 814							25.17

TABLE 2 (cont'd)

					Grade			
	Tonnes	Cu	Ni	Pb	Zn	Мо	Ag	Au
		(%)	(%)	(%)	(%)	(%)	(g/t)	(g/t)
BRITISH COLUMBIA (cont'd)								
Highland Valley								
Cominco Ltd.								
Highmont Mining Company								
Rio Algom Limited								
	200 500 000	0.44				0.01		
Proven	292 500 000	0.41				0.01		0.01
Frobable	53 600 000	0.44				••	••	0.01
Imporial Motals Corporation								
Mitsubishi-Dowa-Furukawa-Marubeni								
Probable	56 498 000	0 49				0.01	2 81	0.06
Kemess South		0.10				0.01	2.01	0.00
Imperial Metals Corporation								
Proven	132 587 792	0.23						0.70
Mount Polley								
Imperial Metals Corporation								
Sumitomo								
Probable	31 909 452	0.36						0.34
Myra Falls								
Boliden Limited								
Proven	6 470 000	1.40		0.50	7.50		46.00	1.40
Probable	1 930 000	1.10		0.50	5.20		43.00	1.50
NORTHWEST TERRITORIES								
Con								
Miramar Mining Corporation								
Proven	258 000							11.31
Probable	602 000							12.00
Giant Open Pit-Giant Underground								
Miramar Mining Corporation								
Proven	27 000							13.02
Probable	67 000						••	11.52
NUNAVUT								
Lupin								
Echo Bay Mines Ltd.								
Proven and probable	1 240 122						8.78	
Nanisivik								
Breakwater Resources Ltd.								
Proven and probable	772 000			0.40	7.40		30.00	
Polaris								
Preven	700.000			0.00	10.00			
Proven	780 000			2.90	12.60			

Source: Natural Resources Canada, based on published company reports.

Not available in published reports or estimated by autor. Notes: One tonne (t) = 1.1023113 short tons. One gram per tonne (g/t) = 0.02916668 troy oz per short ton.

TABLE 3. PRODUCTION DECISIONS ADDED TO CANADIAN RESERVE TOTALS AS AT DECEMBER 31, 2001

Project	Operators and Major Partners	Province	Metals
Hammerdown	Richmont Mines Inc.	N.L.	Gold

Source: Natural Resources Canada, based on company reports.

TABLE 4. CANADIAN RESERVES OF SELECTED MAJOR METALS BY PROVINCE AND TERRITORY, AS AT **DECEMBER 31, 2001**

Metal	Units (3)	N.L.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	B.C.	Yukon	N.W.T.	Nunavut	Canada (5)
Copper	000 t	_	_	96	512	3 363	417	29	2 249	_	_	-	6 666
Nickel	000 t	-	-	-	560	2 882	893	-	-	-	-	-	4 335
Lead	000 t	-	-	890	8	-	4	-	42	-	-	26	970
Zinc	000 t	-	-	2 253	2 266	1 578	958	11	586	-	-	155	7 808
Molybdenum	000 t	-	-	-	-	-	-	-	95	-	-	-	95
Silver	t	-	-	2 656	3 250	2 720	528	11	3 391	-	4	34	12 593
Gold (4)	t	6	-	2	239	572	46	6	178	-	20	2	1 070

Metal Contained in Proven and Probable Mineable Ore (1) in Operating Mines (2) and Deposits Committed to Production

Source: Natural Resources Canada, based on company reports and the Federal-Provincial/Territorial Survey of Mines and Concentrators. - Nil or less than one unit.

(1) No allowance is made for losses in milling, smelting and refining. Excludes material classified as "possible." Includes geological reserves for some mines that do not report mineable ore. (2) Includes metal in mines where production has been suspended temporarily. (3) One tonne (t) = 1.1023113 short tons = 32 150.746 troy oz. (4) Excludes metal in placer deposits because reserves data are generally unavailable. (5) May not balance due to rounding at the provincial/territorial level.

TABLE 5. CANADIAN RESERVES OF SELECTED MAJOR METALS BY INDUSTRY, AS AT **DECEMBER 31, 2001**

Metal Contained in Proven and Probable Mineable Ore⁽¹⁾ in Operating Mines⁽²⁾ and Deposits Committed to Production

	NAICS no. (5)	Gold and Silver Ore Mining 212220	Copper-Zinc Ore Mining 212233	Nickel-Copper Ore Mining 212232	Lead-Zinc Ore Mining 212231	All Other Metal Ore Mining 212299	Canada (6)
	(Units (3))						
Copper	000 t	149	3 377	2 972	116	53	6 666
Nickel	000 t	-	-	4 288	-	47	4 335
Lead	000 t	-	54	-	916	-	970
Zinc	000 t	1 334	3 908	-	2 566	-	7 808
Molybdenum	000 t	-	35	-	-	60	95
Silver	t	5 116	3 695	997	2 786	-	12 593
Gold (4)	t	833	163	58	5	11	1 070

Source: Natural Resources Canada, based on company reports and the Federal-Provincial/Territorial Survey of Mines and Concentrators. - Nil or less than one unit.

(1) No allowance is made for losses in milling, smelting and refining. Excludes material classified as "possible." Includes "geological reserves" for some mines that do not report mineable ore. (2) Includes metal in mines where production has been suspended temporarily. (3) One tonne (t) = 1.1023113 short tons = 32 150.746 troy oz. (4) Excludes metal in placer deposits because reserves data are generally unavailable.

(5) NAICS = North American Industry Classification System. (6) May not balance due to rounding at the NAICS level.

TABLE 6. CANADIAN RESERVES OF SELECTED MAJOR METALS AS AT DECEMBER 31 OF EACH YEAR, 1977-2001

Metal Contained in Proven and Probable Mineable Ore⁽¹⁾ in Operating Mines⁽²⁾ and Deposits Committed to Production

Year	Copper	Nickel	Lead	Zinc	Molybdenum	Silver	Gold (3)
	(000 t)	(t)	(t)				
1977	16 914	7 749	8 954	26 953	369	30 991	493
1978	16 184	7 843	8 930	26 721	464	30 995	505
1979	16 721	7 947	8 992	26 581	549	32 124	575
1980	16 714	8 348	9 637	27 742	551	33 804	826
1981	15 511	7 781	9 380	26 833	505	32 092	851
1982	16 889	7 546	9 139	26 216	469	31 204	833
1983	16 214	7 393	9 081	26 313	442	31 425	1 172
1984	15 530	7 191	9 180	26 000	361	30 757	1 208
1985	14 201	7 041	8 503	24 553	331	29 442	1 373
1986	12 918	6 780	7 599	22 936	312	25 914	1 507
1987	12 927	6 562	7 129	21 471	231	25 103	1 705
1988	12 485	6 286	6 811	20 710	208	26 122	1 801
1989	12 082	6 092	6 717	20 479	207	24 393	1 645
1990	11 261	5 776	5 643	17 847	198	20 102	1 542
1991	11 040	5 691	4 957	16 038	186	17 859	1 433
1992	10 755	5 605	4 328	14 584	163	15 974	1 345
1993	9 740	5 409	4 149	14 206	161	15 576	1 333
1994	9 533	5 334	3 861	14 514	148	19 146	1 513
1995	9 250	5 832	3 660	14 712	129	19 073	1 540
1996	9 667	5 623	3 450	13 660	144	18 911	1 724
1997	9 032	5 122	2 344	10 588	149	16 697	1 510
1998	8 402	5 683	1 845	10 159	121	15 738	1 415
1999	7 761	4 983	1 586	10 210	119	15 368	1 326
2000	7 419	4 782	1 315	8 876	97	13 919	1 142
2001	6 666	4 335	970	7 808	95	12 593	1 070

Source: Natural Resources Canada, based on company reports and the Federal-Provincial/Territorial Survey of Mines and Concentrators.

(1) No allowance is made for losses in milling, smelting and refining. Excludes material classified as "possible." Includes "geological reserves" for some mines that do not report mineable ore. (2) Includes metal in mines where production has been suspended temporarily. (3) Excludes metal in placer deposits because reserves data are generally unavailable. Note: One tonne (t) = 1.1023113 short tons = 32 150.746 troy oz.