

Natural Gas Dryers for

NGV FUELING STATIONS

'Team tech talk, Globe 2006 '

March 29th, 2006

Speaker:

Marie-Geneviève Poitras

Xebec Inc.

- Established 1967, owned by domnick hunter (UK) founded in 1967.
- Manufacture and supply of high added value filtration, separation and purification products.
- ISO 9001 (2000) certified
- ASME VIII Code
- China SQLO
- CSA Electrics and other electrical codes.

"World leader in Natural Gas dryer for NGV applications and present in the NGV market for over 20 years."

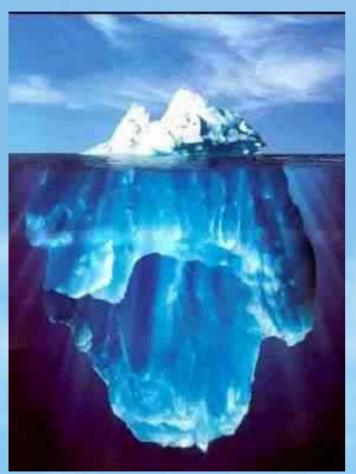
Xebec Inc.

What is Xebec?

- The industry leader in the manufacturing of Compressed Air and Natural Gas purification and dehydration equipment for the World market.
- An industry employing more than 120 knowledgeable and experienced people sharing the same goal: meeting the market standards to the extent at the best possible competitive price.
- An industry cumulating more than 25 years in the manufacturing of Natural Gas drying equipment with a dedicated CNG team at every level of the process.

Science of drying Natural Gas

- Using the latest technology (Low pressure suction side), Natural Gas needs to be contaminant free when introduced into HP compressors used in NGV applications.
- Although improving compressors performances, the LP dryer system is acting as a Natural Gas polisher to meet both ISO standards and generally recognized standards for moisture content while protecting HP cylinders against corrosion.



Science of drying Natural Gas

Using Molecular Sieve as a drying media, the ultimate goal is to dehydrate and eliminate <u>'right</u> <u>from the source'</u> any trace of unwanted contaminants to insure a safe and reliable operation.

And how does it affect our daily operations?

The tip of the Iceberg, the "Joule-Thomson" effect...

- m Freeze-ups at dispenser nozzles
- m Freeze-ups in the vehicles fuel injectors

Drying Natural Gas Operational issues!

- Actual waterload varies significantly from location to location
- Piping and distribution systems can contribute in increasing moisture in the gas
- In most cases, NG dryers are "polishers" in view of less than saturated inlet dewpoints.

Drying Natural Gas

Operational issues!

Formation of hydrates

Hydrates are a solid phase complex of water and light hydrocarbons whose formation is dependent on gas composition, pressure and temperature.

Hydrates form when enough water vapor is present in the gas

Drying Natural Gas -Safety issues!

International & Market Standards

- **CNG Fuel Standards**
 - ♦ ISO 15403
 - **◆ SAE J1616**
- **CNG Fuel Standards**
 - ♦ ISO 11439

♦ NGV2 Cylinders

Drying Natural Gas -Safety issues!

ISO 11439:2000(E), Paragraph 4.5-Gas Composition

4.5.3 Wet gas

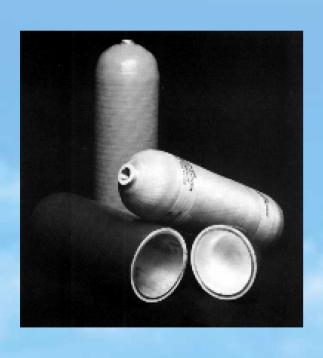
This is gas that has a higher water content than that of dry gas.

Constituent maximum limits shall be:

♦ Hydrogen sulfide and other soluble sulfides: 23 mg/m3

1 % (volume fraction) Oxygen:

◆ Carbon dioxide: 4 % (volume fraction)

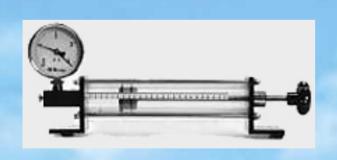

0,1% (volume fraction) ♦ Hydrogen:

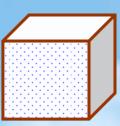
Since there is no economical means to detect and limit these H2S and CO2 constituents in the gas stream.

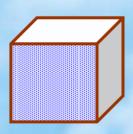
> "Conclusion reduce the moisture in the gas with DESICCANT DRYERS."

Drying Natural Gas -Safety issues!

Long-term and serious problems:


- Natural Gas contains H₂S & CO₂
- Water + H_2S or CO_2 = Acids!!
- Internal corrosion of thin-walled highpressure storage tank (spot corrosion)
- Combined with constant pressure cycling => corrosion fatigue


APPLICABLE EQUATION: CORROSION = EXPLOSION


Pressure vs. volume...

Relation between pressure and volume **Boyle & Marriott Principle** Compression = Concentration of molecules

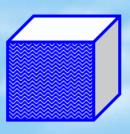
1 F³ of gas 1 Atm. = 14.7 PSIA 7 Lbs. $H_2O/MMSCF$

1 F³ of gas 245 Atm. = 3600 PSIG 1715 Lbs. H₂O/MMSCF

And what about gas temperature!

Pressure vs. temperature...

Relation between compression and gas Temperature - Joule-Thompson effect (aka Heat of compression/Expansion cooling)


Compressing gases:

- -Water per F³ increases
- -Temperature increases

245 Atm. = 3600 PSIG1715 Lbs. H₂O/MMSCF 100 deg. F

Expanding gases:

- -Temperature decreases
- -Moisture reaches dewpoint and turns into liquid!

Back to 1 Atm. = 14.7 Temp.

↓ 100 deg. F. **Dewpoint reached** FREE MOISTURE...

Natural Gas Composition Water vapor!

Briefly...

Effect without dryer...

- Gas enters compressed compressor, gets (temperature and moisture concentration increases),
- Gas enters storages and expands (temperature decreases, moisture turns into liquid...too late)
- HP gas containing moisture is traveling to the dispenser, enters vehicle cylinder and expands once again...WATER!