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AQUATIC EFFECTSTECHNOLOGY EVALUATION PROGRAM

Noticeto Readers

Review of Potentially Applicable Approachesto
Benthic Invertebrate Data Analysis and Interpretation

The Aquatic Effects Technology Evauation (AETE) program was established to review appropriate
technologies for assessing the impacts of mine effluents on the aguatic environment. AETE isa cooperative
program between the Canadian mining industry, severa federa government departments and a number of
provincid governments; it is coordinated by the Canada Centre for Minerd and Energy Technology
(CANMET). The program was designed to be of direct benefit to the industry, and to government. Through
technicd and fidd evaduations, it identified cogt-effective technologies to meet environmental monitoring
requirements. The program included three main areas. acute and sublethd toxicity testing, biological
monitoring in receiving waters, and water and sediment monitoring.

The technicd evauations are conducted to document certain tools selected by AETE members, and to
provide the rationde for doing afield evauation of the tools or provide specific guidance on fied application
of amethod. In some cases, the technicd evauations induded a go/no go recommendation that AETE takes
into consderation before afield evauation of a given method is conducted.

Thetechnica evauations are published dthough they do not necessarily reflect the views of  the participants
inthe AETE Program. The technica evauations should be considered as working documents rather than
comprehengive literature reviews.  The purpose of the technicd evauations was to document specific
monitoring tools. AETE committee members would like to sress that no one sngletool can provide dl the
information required for afull understanding of environmenta effects in the aquatic environment.

For more information on the monitoring techniques, the results from their field gpplication and the find
recommendations from the program, please consult the AETE Synthesis Report to be published in the
spring of 1999.

Any comments concerning the content of this report should be directed to:

Genevieve Béchard
Manager, Metds and the Environment Program
Mining and Mineral Sciences Laboratories- CANMET
Room 330, 555 Booth Street, Ottawa, Ontario, K1A 0G1
Tel.: (613) 992-2489 Fax: (613) 992-5172
E-mall: gbechard@nrcan.gc.ca




PROGRAMME D’'EVALUATION DES TECHNIQUES DE MESURE
D'IMPACTSEN MILIEU AQUATIQUE

Avis aux lecteurs

Examen des méthodes potentielles d’analyse et d’inter prétation
des données sur les invertébrés benthiques

Le Programme d'évauation des techniques de mesure dimpacts en milieu aquatique (ETIMA) visait &
évaduer les différentes méhodes de surveillance des effets des effluents miniers sur les écosystémes
aquatiques. Il est le fruit dune collaboration entre I'industrie miniere du Canada, pluseurs ministéres
fédéraux et un certain nombre de ministéres provinciaux. Sa coordination reléve du Centre canadien de la
technologie des minéraux et de I'énergie (CANMET). Le programme éait concu pour bénéficier
directement aux entreprises miniéres aind qu'aux gouvernements. Par des éval uations techniques et des
éludes deterrain, il apermisdévauer et de déterminer, dans une perspective colit-efficacité, les techniques
qui permettent de respecter les exigences en matiére de surveillance de I'environnement. Le programme
comportait lestrois grands volets suivants : évauation de latoxicité aigué et subléde, survelllance des effets
biologiques des effluents miniers en eaux réceptrices, et surveillance de laqudité de I'eau et des sédiments.

Les évaudions techniques ont &é menées dans le but de documenter certains outils de survelllance
sdectionnés par lesmembres de I’ ETIMA et de fournir une justification pour I’ évaluation sur le terrain de
ces outils ou de fournir des lignes directrices quant a leur gpplication sur le terrain. Dans cartains cas, les
évauations techniques pourraient inclure des recommandations relaives a la pertinence d effectuer une
évauation de terrain que les membres de I’ ETIMA prennent en considération.

Les évauations techniques sont publiées bien qu’ dles ne reflétent pas nécessairement toujours I'opinion des
membres de I’ ETIMA. Les évaluations techniques devraient étre considérées comme des documents de
travail plutt que des revues de littérature complétes. Les évauations techniques visent a documenter des
outils particuliers de surveillance. Toutefois, lesmembres de I' ETIMA tiennent asouligner que tout outil
devrait étre utilisé conjointement avec d autres pour permettre d' obtenir I'information requise pour la
compréhension intégrale des impacts environnementaux en milieu aquatique.

Pour des renseignements sur I'ensemble des outils de survelllance, les résultats de leur gpplication sur le
terrain et les recommandations finales du programme, vevillez consulter le Rapport de synthése ETIMA qui
sera publié au printemps 1999.
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1.

Introduction

Thisreview isintended to be supplementary and complementary to the Taylor & Bailey (1997) report
Technical Evaluation on Methods for Benthic Invertebrate Data Analysis and I nter pretation which
covered basc design and datistica andyss principles but was limited in the literature which was
reviewed, and did not consder multivariate (heresfter abbreviated MV) approaches to benthic
invertebrate data andyss and interpretation in any depth. Little attention was paid to freshwater acidic
deposition ("acid rain") studies or to estuarine or marine pollution sudies. A number of powerful new
datistica gpproaches to monitoring of point source pollution impacts have been developed and applied
successtully by marine workers, including to mine waste pollution problems.

Taylor & Bailey de-emphasize the applicability of MV datidtica anadysis on two grounds. The first
isthat we want hypothesi s-testing Satistica methods and that the sampling designs likely to be used for
mining monitoring studies would nat provide the necessary error degrees of freedom for MV hypothess-
testing methods to be used. The second is that other, more descriptive, MV datistical methods (e.g.
ordination and clustering) are not gppropriate and not recommended even when used as the first step
in atwo-step gpproach - where a descriptive method is used to summarize the structure in the MV data
and then a hypothesis-testing method is gpplied to the first step results. With respect, | disagree on both

grounds.

| should aso emphasize that my philosophy is one of emphasizing good principles of design and
detigica analyss, and suggesting options within that framework to the end user with pros and cons
clearly stated, rather than declaring "thisis the way". There is more than one legitimate way to skin the
ca, egpecidly in gpplied Satidicd andyss. Environmenta biology has seen too much coming and going
of desgn/gtatistics fads (Green 1993b), of the approach du jour, whether it be diversty indices, the
BACI-P design, the reference sites approach, reliance on metrics, or whatever. | will not contribute to
it by describing one way of going about things and saying that is how mine discharge monitoring should
always be done.



1.1 Correlated variablesin multivariate (MV) data

In this review | will firgt discuss some principles involved in the andyss of MV data There is the
guestion of whether the variables are in fact corrdated. If they are then there are some theoretica
consderationsto kegp in mind when andysing them or testing hypotheses about them. One option isto
use only one or afew of the varidblesin univariate andyses - but which ones? Another option isto use
a decriptive MV method to summarize the corrdation structure in the MV data and then apply
hypothesistesting Setistics as a second step. Findly there is the periodicaly fashionable option of
reducing the MV information to one or more synthetic indices, "metrics’, or other descriptorswhich are
then used in univariate analyses.

1.2 Modelswith MV response data

Hypothesis testing with MV response variable data is discussed in terms of five modds an Andysis
of Variance (ANOVA) design asthe predictor (including the "reference sites approach” and repeated
measures designs), continuous predictor variables, relating three or more sets of variables eg. the
Sediment Qudity Triad, and an ANOVA design plus continuous variables as predictorsi.e. an Andyds
of Covariance (ANCOVA) modd. Finaly some recommendations for hypothes s-testing approaches
are made and discussed.

1.3 Interpretation and display of results

A common complaint about MV hypothes stesting datidicsis that the results are difficult to interpret.
| discuss interpretation of MV analyss output, effective graphicd display of MV andysis results, and
interpreting the resultsin a manner gppropriate for the satistical sophistication of the audience.

1.4 Connection between study design and statistical analysis approach

Thereisanecessary connection between study design and satistica andys's gpproach, including MV
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andyds. The ANOVA design should follow logicaly from the dlocation of samplesin space and time.
All tests of hypothesesinvolve an effect (e.g. a difference between putatively impacted areas and control
areas) whose variance is compared to an error variance (e.g. differences among control areas). There
must be a meaningful error variance, representing "null hypothesis' variation on a spatid (or temporal)

scae commensurate with the "impact” contrast. Sometimes there isn't and the best one can doisto use
"pseudoreplicate’ error (sampling error) for testing impact (Hurlbert 1984). Also there must be a
reasonably good estimate of the error variance, which is equivaent in practice to having adequate error
degrees of freedom. A rule of thumb isthat aminimum of 10 error degrees of freedom (df) is adequate
for robustness of an ANOV A Ftest in the face of moderate violations of assumptions e.g. homogeneity

of variance and normality, in a balanced design with random sampling (Harris 1985).

Power to detect ared difference, e.g. between impact and control aress, is afunction of the
meagnitude of the difference, the error variance, and the sample Sze. Study designs
which are inadequate (no error df to do desired tests of hypotheses) or marginaly adequate (low error
df resulting in tests that aren't robust and have low power), or which yield data violating parametric
datiics assumptions, can often be andysed (and hypotheses tested) using nonparametric or

randomisation procedures.

15 Literaturere: history of development of approaches

Literature reporting sudy design and datistical andys's goproaches to monitoring point sources, from
Stuations other than freshwater mining and pulp and paper discharges, will be cited throughout. There
are no sections explicitly devoted to such "exatic' examples.  Emphads will be on point source
dischargesthat are high in metds, for example freshwater/estuarine acidification (Yan et d. 1996; Locke
et al. 1994; CIFAS 1994; Somerfiddet al. 1994a, 1994b; Metcdfe-Smith and Green 1992; Hinch and
Stephenson 1987; Y an and Strus 1980) and industria discharges (Metcafe-Smith et al. 1996), and
marine oil & gas (Olsgard et al. 1997; Peterson et al. 1996; Kennicutt et al. 1996b; Hyland et al.
1994; Clarke 1993; Warwick 1993; Chapman et al. 1991) aswdl as mining discharges (Austen and
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Somerfield 1997; Somerfidd et al. 1994a, 1994b). Workers in marine environments have developed
powerful satistical tools which have been well tested in the fidld, especidly in recent years for impact
and monitoring studies re: oil and gas operations (where metal contaminants are aconcern, asthey are

in mining discharges).

There have been three main threads. One, associated with the Plymouth Marine Laboratory (UK),
initially emphasized descriptive MV datistical methods but recently has added tests of hypotheses using
randomisation methods. Mogt of their methods are incorporated in the PRIMER datistical package
(Carr 1996) and discussed in an accompanying manua (Clarke and Warwick 1994a). Three key
references, spanning the period 1982-1993, are (Clarke 1993; Bayne et al. 1988; Field et al. 1982).
A second thread has been the devel opment and application of sophisticated ANOV A designs (with both
univariate and multivariate regponses) for marine environmenta studies. Thereis an early book by Green
(1979), and papers plus arecent book by Underwood have been influentid (1997; 1993; 1992; 1981).
Other references to this approach are (Green and Montagna 1996; Kennicutt et al. 1996a, 1996b;
Hyland et al. 1994; Green 1993b; Hinch and Green 1989; Green 1989; Clarke and Green 1988; Green
1987, 1984). The third and most recent thread has been the development and application of the
Sediment Quality Triad (SQT) concept which reaes the three components. benthic biological community
response, contaminant concentrations in sediment, and experimentally determined toxicity of the
sedimentsto organisms. Origindly proposed by Chapman and Long, there has been much interest in the
SQT approach by workers in both marine and freshwater environments (Chapmean et al. 1997a, 1997b;
Green and Montagna 1996; Chapman 1996; Green et al. 1993; Chapman et al. 1991, 1987).

There is a large literature on  biomonitoring using organism uptake and body burden of meta
contaminants. Molluscs are often used. Some references are (Bryan and Langston 1992; Metcadfe-Smith
and Green 1992; Hinch and Green 1989; Hinch and Stephenson 1987; Imlay 1982; Eganhouse and
Young 1978; Davies and Pirie 1978; Luoma and Jenne 1977; Phillips 1976; Smith et al. 1975).
Multivariate gatigtica andyss of such datain an ANOVA design is presented in Metcdfe-Smith et al.



(1996).



2. Correlated variables

When there is more than one variable in a data s&t, elther in aresponse (Y) set or in a predictor (X)
s, the procedure for analysing the data should be carefully chosen and explicitly stated. If only one or
asubset of the variablesis used then there should be a priori reasons for the choice or esetherationae,
criterion and procedure for selection should be Sated. Partly thisisto avoid suspicion thet variables were
chosen after determining which variables showed something. After dl, 1 variadle in 20 will "show
something” (eg. aControl versus Impact area difference) in the sense of being Sgnificant a the 5% levd,
even with null hypothess data

2.1 Whether theresponsevariablesare correlated and what you can doif they aren't

Fird there is the question of whether the variables are corrdated. Thisis usudly obvious but it can
be tested. The parametric test of the null hypothesis "no non-zero correlations among p variables' is
cdled Bartlett's sphericity test, and the formula, caculaions, and aworked example are given in Green
(1979). An equivaent randomisation test which avoids the parametric assumptions (eg. normdity) is
described in Clarke and Green (1988) and implemented in the PRIMER package (Carr 1996; Clarke
and Warwick 19944).

If the variables are uncorrelated (not very likely with red field deta) then a univariate andyds can be
done on each variable, but a correction (e.g. Bonferroni's correction) should be goplied to determine the
sgnificance leve to be used in each univariate andysis S0 that if the null hypothesisis true the probability
that any of the univariate tests is sgnificant will be 5%. For example if there are five independent
(uncorrelated) variables and aunivariate ANOVA (Control vs. Impact) is done on each, then each test
should be done at a 1-(1-.05)"° = 0.0102 = 1.02% significance level. To put it the other way around,
if each test were done at asignificance level of 5%, then if the null hypothesisistrue thereis a 1-(1-.05)°
= 0.226 = 22.6% chance that at |least one of the five testswill be "significant”.



2.2 I1f theresponsevariablesare correlated

If the variables are correlated (which is likely) then it is necessary to take the among-variables
correlation structure into account, in some way. If one or a subset of the variablesis used for analyss,
then information in the other variables will be included or left out depending on the correlation structure.
One should not just arbitrarily choose variables to analyse because that would arbitrarily (and blindly)
include or omit informeation that wasin the origind set of variables. There are "variable subset sdlection”
methods which use the correlation structure to choose one or more of the variables so as to maximize
the information contained in al of the varidbles in the origind set (Green 1979; Orloci 1978, 1976,
1973). A smilar result is usualy obtained by doing a Principd Components Andysis (PCA) on the
origind st of variables and then using the variable having the strongest relationship with the first Principa
Component (PC1), adding in the variable having the strongest relaionship with PC2, and so on until the
desired subset Sze is obtained. The variables in the subsat thus obtained will not be very strongly
correlated and will contain as much as possible of the information in the origina set of variables.

Alternately the PC scores for the largest few PCs from a PCA could be used, and they would be
completdy uncorrdaed (Principa Components are dways orthogond to each other), but unlessthe PCs
(which are linear additive functions of the origina variables) are easlly interpreted it is better (easier to
explain to an audience) to use ardatively uncorrdlated subset of the origina variables. If they are
organisms you can show pictures of them. It's hard to show pictures of Principad Components.

Nonetheless, a successful example of usng PC scoresas Y variablesisin Gray et al. (1988).

If the origind set of corrdlated variables is a response to impact (e.g. organism abundances as Y
variables) then the correations themsdaves are not a problem. Multivariate Satisticd andys's handles
correation structure just fine - after dl that iswhat it is designed to do. The problem is often that there
aretoo many Y variablesin relation to the amount of data, which in practice expressesitsdf astoo few
error degrees of freedom. This was Taylor and Bailey's concern. Thus a reduction in number of Y

vaiables to a smdler number (a subset) of them is often a necessary preliminary step to doing
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hypothesstesting MV datidtica andyss (eg. MV ANOVA). Sdection of a subset of varigbleswhich
maximizes the information contained in dl of the variablesin the origina set is exactly what is wanted.

2.3 Correlated predictor variables

If the origina correlated variables are predictors, say in aregression or ANOVA or ANCOVA
modd, then the correlations are a problem because predictor variables are supposed to be independent.
At the worg the andysiswill fail dueto collinearity (no unique stable solution). At the best dl tests of
sgnificance of particular predictor varigbles or evaluaions of ther relative importance in prediction will
be compromised. A rdatively uncorrelated subset of the origind varidbles, which retains as much of the
information in the origina set as possible, can be used as predictors ingtead. As noted above, use of PC
scores as the "new” variable set for aMV ANOVA may not be the best gpproach. However, two
examples of it working well with a predictor st of variables are in Kennicutt et al. (1996a) and
Metcafe-Smith et al. (1996).

2.4 Description of structurein MV correlated data

Apart from hypothess testing, descriptive multivariate analyses (e.g. ordination and clustering) are
often useful for digplaying the structure that isin the correlations among the variables. The samples may
be dong one or more environmenta gradients, for example, and an ordination andyss (PCA,
Correspondence Andysis, Non-metric Multidimensiond Scding, etc.) can show that the inter-varigble
correlations result from such an environmental gradient.  Alternatively, the samples may cover
discontinuous areas which are different for naturd or pollution-related environmentd reasons (eg. a
Control and an Impact areq), and a cluster andysis can use the inter-variable correlations to group the
samples by those areas. Ordination and clustering can be done as afirst step in a two-step andys's
sequence, where the second step is a hypothesis-testing andysis such as MV ANOVA or contingency
table andyds, but they are often sufficiently explanatory by themsdves that formd tests are unnecessary.
For example see Figure 4.2 in Green (1979), which relates species compostion to a Before-After and
Control-Impact (BACI) design.
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2.5 Reduction of structurein MV data to a single synthetic variable - indices and
metrics

The information in MV response data (e.g. species abundances) is often boiled down to indices,
metrics and ther ilk. This seemsto be afashion that comes and goes. A didribe againg it plus a literature
review isin section 3.5 of my book (Green 1979).

Firg of al, more information than necessary islogst. Data requiring more than one dimension cannot
be reduced to a single number without loss of the information that was in the dimensions >1. Second,
such derived synthetic variables often exhibit bad Satistical behavior when used as response variables.
Thisis especidly true when they arein whole or in part concocted asratios of origind varidbles (Atchley
et al. 1976). There are better analysi's gpproaches when aratio is the response of interest (Green 1986).
Third, indices and metrics are generdly poor a distinguishing pollution impact from "pure’ or harsh
naturd environments. For example, diversity indices typicaly have higher vauesin dightly eutrophied
conditions than in very oligotrophic or very eutrophic conditions, and they have lower vauesin clean
eduariesthan in the nearby dean rivers or the nearby dean marine environment (estuaries are oanaticaly
sressful). Fourth, there are many indices and metrics that have been derived, supposedly to respond to
different things, and yet when they are al cadculated for the same environmenta impact study they are
usudly highly corrdaed (i.e. redundant). In other words, whatever they are measuring in theory, in
practice they are responding smilarly. Fifth, when indices and metrics indicate pollution impact they
rarely explain why they do, i.e. what is going on.

Unfortunately (in my opinion), the use of indices and metrics to describe biologicad community
compoasition in pollution monitoring has recently gone into a new wave of popularity, e.g. Fore et al.
(1994), and the US EPA has emphasized metricsin its monitoring protocols. My persond theory isthat
the reason indices and metrics remain popular is that many of the senior people in indudtry, environmentd
consulting firms and government who are responsible for environmental monitoring and impact studies

have engineering backgrounds. Engineers like formulae, smple answers and one dimension a atime.
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They tend to be strong in the component of intelligence which is good for mathematics (and engineering),
as opposed to the (quite separate) component of intelligence which is good for geometry, geography,
graphs showing more than one dimengon - and MV datidics. But the redlity isthat biologica response
to the environment, indluding to pollution, usualy requires more than one dimension to describe it. One-
dimensiona approaches can missalot of that redity. They summarize it wel (to the extent that it can
be), but leave out the complexity.

2.6 Literaturere: statistical analysisof correlated variables

I will dose this section by mentioning some good generd references to the datistical andys's of
correlated variables, and to descriptive MV datigticd andyss. Re: the former, Seber (1984) isabasic
reference. To enter a an eader leve try Manly (1994). For more of an orientation to ecological
applications see Legendre and Legendre (1997). Re: decriptive MV datigticd andyss, Pidou (1984)
isagood place to start. Green (1979) may be useful. For how to use PCA in ecological applications,
i.e. how many PCsto use and try to interpret, see Jackson (1993a). A nice ecologica application of
PCA is in Sprules (1977). Kruska (1964a, 1964b) are the origina papers on Non-metric
Multidimensond Scding (NM-MDS). For comparisons of different kinds of ordination gpplied to the
same data see Gray et al. (1988) and Jackson (1993b). For computer implementation of descriptive
MV gatisticd methods, most statistical packages will do PCA. The coefficients which relate PCsto the
origind variables are called different things and sandardized in different waysin different packages and
don't look the same, S0 be prepared for that. (Stay away from Factor Andysis. The FA mode iswrong
for our kinds of data. It may be good for some gpplications in the socia sciences but it's not for us.)
NM-MDSisin PRIMER, NT-SY S, and e sewhere. Correspondence Anadysis (Smilar to PCA but for
contingency table type count data which have chi square rather than normaly didtributed errors) isin
SIMCA and esewhere. Legendre and Legendre (1997) give aworked example from which aprogram
can easily be written. Clugtering isin SAS, Minitab, NT-SY'S, CLUSTAN and dsewhere. Nemec and
Brinkhurst (1988a, 1988b) describe a method for determining how many clugters are "significant” in a
cluger andysis, and so do Clarke and Warwick (1994a). A variety of descriptive MV ddidicd andyss



programsin BASIC aregivenin Orloci (1978).

11
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3. Hypothesis-testing MV statistical analysis with correlated response variables

Genera aspects of this have been discussed above. Now | will consder the various kinds of
environmental monitoring related hypotheses and the Satistical mode s related to them.

3.1 MV responsewith ANOVA design asthe predictor

3.1.1 Introduction

Probably the most common stuation is prediction of an MV response from an ANOVA desgn. A
smple example would be a contrast of benthic community species abundances between Control and
Impact aress, or between Before and After times in the Impact area. Conceptudly thisis no different
from aunivariate (UV) one-way ANOVA with two groups. The only differenceis that the distributions
of the samples in the groups are contrasted in a space whose dimensondity is equd to the number of
response variables. For aUV ANOVA the null hypothessis that the groups have smilar digtributions
on one axis (i.e. in one dimenson). For an MV ANOVA with two response variablesit is that the groups
have asmilar digribution in a2-dimensiond pace, and so on. A mgor difference between MV and UV
ANOVA isthat in the former, but not in the latter, correlations among the response variables contain
relevant information about group digtributions and group differences. Because of this, in an MV
ANOVA two groups can have sgnificantly different - even non-overlgpping - distributions while &t the
same time having smilar and not sgnificantly different distributions on each of the response variables
taken separately. Thus, as noted in section 2 above, with correlated response variables it is necessary
to take the among-variables correlation structure into account. MV ANOVA does this, whereas UV
ANQOVAs done on each variable do not.

Of course an MV ANOVA design can be more complicated than a smple one-way two group
ANOVA. It can have more than two groups (trestment levels); be factorid e.g. the Before vs. After
Contral vs. Impact, or BACI, design (Green 1979); or nested; or repeated measures, or whatever. Any
ANOVA desgn which can beanaysed with one response variable can be andysaed with more than one,
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asan MV ANOVA, if there are sufficient error df.

3.1.2 Testing hypotheses with MV ANOVA

Inany MV ANOVA thetest gdtidtic isdifferent thanin aUV ANOVA and has different degrees of
freedom. Severd test daidtics are usudly tabulated in Satistica package output and usudly do not differ
inindicating sgnificance or nonggnificance. Ailla's Trace is conservative and is my preference (see Green
(1979) for discussion). It isusudly easer to get Sgnificancein MV tests than to interpret the sgnificant
results, so | prefer to use a conservative test. Roy's Greatest Root is different from the others, in thet it
tests group differences in only one dimension - the dimension which best separates the groups. It isa
more powerful test becauseit is not looking for group separation in the entire p-dimensiona space (p
= the number of response variables), and that saves degrees of freedom. It is gppropriate in Stuations
where only one dimension, or gradient, of differentid group responseis expected - e.g. where different
concentrations of a contaminant (a contamination "gradient™) are imposed on samples from a community
(Gray et al. 1988).

3.1.3 Satistical computing software and referencesre: MV ANOVA and CDA

MV ANOVA iseasy toimplement in most of the comprehengve generd-purpose datistical packages
(e.g. SAS, Minitab, SPSS, Sydat)). In procedures such as GLM (acronym for "generd linear modd™)
and ANOVA one enters a model statement of the form "response = predictors’, which for a UV
ANOVA (abundances of one species) with two groups (Control vs. Impact areas) might be "y = CI".
Todo thesame andyssasan MV ANOVA, or MANOVA, one smply enters amodd statement with
more than one response variable eg. "y, Yz ys = CI". That done would produce three separate UV
ANOVASs. To obtain the MV analyss output including the MV test statistics one typicaly adds a
subcommand "MANOVA - - - ". Canonica Discriminant Anadlyss (CDA) displays the group
digributionsin afew dimengons, the ones which best separate the groups, and istypicaly donefollowing
adggnificant MANOVA result as an ad to interpreting it.

There are a number of good generd and fairly accessble references for MANOVA and CDA
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(Legendre and Legendre 1997; Harris 1985; Green 1979; Pimentel 1978; Cooley and Lohnes 1971,
1962). Seber (1984) is a a higher level. Pidou (1984) explains CDA as an ordination method i.e.
without the MANOVA hypothesistesting step. Persondly | don't think that CDA is an ordinaion
method, or that it should be done unless a MANOVA test has shown sgnificance, but Pidou's
explanation of how CDA is done (with aworked example) is excellent. There are numerous examples
of ecologica/environmenta application of MANOVA and CDA based on sophisticated ANOVA
designs. Two are the GOOMEX project (Kennicutt et al. 1996b) and the following seven papers), and
my lab's studies on the use of freshwater bivaves for monitoring heavy meta pollution (Metcafe-Smith
et al. 1996; Hinch and Green 1989; Hinch and Stephenson 1987).

Examples where randomisation rather than parametric tests are used ("ANOSIM" tests) are from the
Pymouth lab (Somefidd et al. 1994b; Clarke and Warwick 1994a, 1994b; Clarke 1993).
Randomisation tests are typically for fairly smple ANOVA designs, eg. one and two-way layouts
without interaction. There are unresolved problemswith testing interactions by randomisation tests, which
israther limiting because often tests of interaction are tests of the hypotheses of grestest interest eg. the
Before-After by Control-Impact interaction in a BACI design. Vdid testing of interactions by
randomisation is currently being worked on by M.J. Anderson of Sydney University, collaborating with
K.R. Clarke, P. Legendre and C.J. ter Bragk, but for now it is necessary to use classica parametric
MANOVA for testing such hypotheses. Actudly | would usualy do so anyway, even if such
randomisation tests exigted, just as| do now for ANOVA testsin Smpler desgns where there are vaid
randomisation tests. As noted in section 1 above, MANOVA tests are robust when done with balanced

designs providing at least 10 error df, and some element of random sampling (Harris 1985).
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3.1.4 Repeated measures designs

Repesated measures designs deserve particular comment. In environmental monitoring we often
sample a more than one time, and we usudly establish Stes a the firg time. We may, and in fact should,
egtablish them randomly within areas that represent conditions (e.g. Control, Impact) but at subsequent
timeswe usudly revist the same stes. The samples (eg. grab samples) taken at each Ste are assumed
to be re-randomised at each time but the Sites are not. This is a repeated measures design (Sites are
"repeatedly measured") and should be analysed as such. In this Stuation it would not be valid to andyse
it asa Cl by Timestwo-way factorid ANOVA. There would be random replication within Ste-times
(the grab samples), but steswould be the meaningful leve of replication for testing hypotheses and Stes
at one time are not independent of Sites a other times - because they are the same Stes at every timel

Repeated measures ANOVA comes out of the medica and the socid sciences. If you randomly
assign patients to drug trestment groups (perhagps including a Control group) then the same people will
come back in at subsequent times to have their blood pressure, heart rate, body temperature, or
whatever, measured. Thus observations are not independent among times - they are repeated measures
on the same replicates. Y ou can't randomly sacrifice people - hence the need for a repeated measures
datistical model. Repeated measures ANOV A has come into ecology and environmenta studies more
recently. See the review paper by Green (1993b) for explanation of repeated measures designs (both
ample and complex), how to analyse and interpret them, the necessary assumptions, worked examples,

and references.

To prevent confusion, it should be mentioned that references to multivariate analyss of repested
measures can have two quite different meanings. Oneisthat a repeated measures andyss of data having
oneY variable (eg. abundance, dengity or cover of some species) has been done in the multivariate
mode. This means that the times are treated as variables and a MANOVA is done in which the
distribution of groups (e.g. Control vs. Impact areas) is evauated in at-dimensona space, t being the
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number of times. Given the number of times and the number of steswe usudly have in environmenta
monitoring, thet is not the way we arelikely to do the andyss. We generdly do it in the univariate mode,
which is andogous to a split plot design - a vector of times is nested within each replicate. The other
senseof "multivariate andyss of repeated measures' isthat thereis more than one Y varidble. Aswith
other ANOVA designs, arepeated measures ANOVA can be done with one or with more than one Y
vaiable, given sufficient error df.

3.1.5 The reference sites approach

The "reference Sites gpproach” (Bailey et al. 1996; Wright 1995; Reynoldson et al. 1995), which
has antecedents in the earlier work of Wright et al. (1984), should be mentioned here. The advocates
of this approach agree on the underlying concept (1 like it too), which is in essence that reference
conditions should be described by variation (usudly multivariate) among a large number of Stesin
gpparently unimpacted conditions widdly distributed within the habitat type of interest; putetively
impacted Stes are evauated (in effect tested) based on where they fdl on the reference sites probability
digribution (eg. within or beyond 1-a). This can be done either for biologica response variables such
as species abundances or for environmentd variables, or for both (e.g. for the biological response
variables"conditioned on" the naturd environmentd variables used ascovariates). However, the principa
advocates of the reference sites gpproach part company on exactly how to go about this statistically.

The point | wish to make here is that the conceptua design is essentiadly a one way ANOVA
(perhaps with dretification by habitat type e.g. depth zonesin lakes or stream order in lotic habitats),
with two groups (reference sites and putatively impacted Sites), but with the a priori congraint that the
edimate of error variation comes entirely from the reference stes group. The putetively impacted Stes
are evauated only in terms of the reference Sites didtribution. Their own ditribution does not contribute
to the evduation. In any case, when there is only one test dite (as is typicd in the reference dtes
gpproach) then an ANOVA will estimate the error variance only from the reference sites group, by
default.
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Thisin fact makes sense because there is ample evidence that pollution impact often changes not only
the means of the Y (response) variables but also their variances (Green and Montagna 1996; Green
1993b; Underwood 1993; Warwick and Clarke 1993). Evidence of heterogeneity of variance (typicaly
a higher variance among impacted dtes than among reference Stes) suggests a violaion of the
homogeneity of variance assumption for parametric ANOVA (whether UV or MV) , but in a sense that
Is irrdlevant because it is itsdlf evidence of impact. When there is heterogeneity of variance in an
ANOVA design which includes a control group it isin fact philosophicaly proper to use the control
group as the reference re: its error digtribution as wel as re: its mean vaues, and that is what the
reference Sites gpproach does. Of course if there were not heterogeneity of variance then both groups
could provide an estimate of the common within-group variance, and a pooled estimate of error variance
would be obtained as normdly donein an ANOVA.

3.1.6 Problems and philosophy re: MV ANOVA

Asdiscussad in section 2 above, and dso by Taylor & Bailey, there is often a problem with too many
Y vaiablesin reation to the amount of data, which comes out as too few error degrees of freedom for
MANOVA tests of hypotheses. In a oneeway ANOVA design, for example, as a generd rule the
number of observations minus one, less the number of groups, has to exceed the number of Y variables
in order for the MANOVA to be possible (i.e. in order for there to be any error df for tests of
hypotheses). But, as dso noted above, we want at least 10 error df in tests, for them to be robust as well
as for them to be possible. As arough rule of thumb the number of observations (less g where g isthe
number of groups) should be 2 to 3 times the number of Y variables. Some MV andyses, such as
Canonica Correlaion Analyss (see section 3.2.1 below) which tests relationships between sets of
continuous variables (e.g. biologica response and environmenta predictor variables), are more sendtive
than MANOVA to vidlations of assumptions. An even larger ratio of observations to variables is

recommended for them.
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It should be noted that the term "observations' as used here refers to the level of replication being
used to obtain the error for the hypothesis test one is talking about. If the study design includes sites
within Control and Impact areas, and grab samples within Sites, then it islikely that the "among-Sites’
level of replication would be used as the error for tests. The "among-samples within sites’ replication,
if used for this purpose, would be what Hurlbert refers to as pseudoreplication (Hurlbert 1984). Thus
it isusudly the number of gteslessg, not the number of samples, that should be 2 or 3 times the number
of Y vaiadles That is more difficult and codtly to accomplish than smply increasing the number of
samples by dropping the grab a few more times a each site, which is undoubtedly a reason why
pseudoreplicated designs are ill common.

Another reason is that sometimes there just aren’t enough reference sites, or alarge enough areain
which to dlocate enough reference stes. Mining monitoring, eg. these AETE studies, is often like that.
The BACI-P design proposed by Stewart-Oaten et al. (1986) uses "replication in time" to ded with
such Stuations, but gpart from concerns about vdidity of hypothesistesting (e.g. Green 1993b), this
datidticd desgnisintended for the BACI study design Stuation i.e. impact sSudies with Before vs. After

impact times. It is not gppropriate for monitoring programs having no pre-operation times.

| have made the argument (Green et al. 1993) that better impact/monitoring studies would be done
iIf less money were spent on the latest technology for measuring variables and instead it was spent on
having more sites (not more replicate sampling at Sites - see Cuff and Coleman (1979)) so that more
robust and powerful satistical models and tests of hypotheses (including MV) could be gpplied. Itisdso
acommon practice to try to measure too many variables, but as discussed in section 2 and dso later in
this section, there are various ways to reduce the origind number of Y variables while retaining the
maximum possible amount of information, and they should be used. If we do both, i.e. have more Sites
in our monitoring study designs and also apply afirs-step analysis to reduce the number of response
variables before doing MV hypothesstesting statigtical analys's, then we will grestly improve how we
go about these sorts of studies.
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3.2 MV response with continuousvariables as predictors

A second kind of environmenta monitoring related hypothesisis whether biologica response varigbles

Y arerdated to (can be predicted from) a set of continuous variables X, e.g. environmenta variables.

3.2.1 Canonical Correlation Analysis (CCA)

Theclasscd parametric Satistica mode for relating two sets of varigblesis Canonical Correlation
Andyss. However, as mentioned above, it is not a very robust model. It assumes linear additive
relationships both among Y and among X variables, and aso between Y and X variables, aswell as
having the usud assumptions of normdity and homogeneity of variance. More to the point, dl the
empiricad evidence suggests that Canonical Corrdation Analyss is sendtive to violaions of those
assumptions. The assumption of linear additive relationships among varigbles is often violated by red
data. For the Y variables, species abundances are not usudly linearly related. Logarithmic transformetion
can help to gpproximate inter-species linear rdaionships, but the greatest problem is with relationships
between species abundances (Y) and environmentd variables (X) which are often not only nonlinear but

a'so nonmonotonic (pecies are most abundant where the environment is optimum for them).

Canonica Corrdation Andysis can work well for other kinds of varigbles. Green (1972) used it
successfully to rdae variaion in bivalve mollusc shell morphology to water chemistry, and Marcus and
McDondd (1992) recommend using it to relate effluent toxicity to observed indream effects for the U.S,
EPA Complex Effluent Toxicity Testing Program. For species abundances versus environmental
variables reationships, however, this gatigtica modd should be used only with greet caution. There are
other ways to model and test thiskind of environmenta monitoring related hypothess. Green (1993a)
provides an extensive review of approaches to this problem, and in another paper (Green et al. 1993)
aoply the approaches to data from a pollution gradient in Vancouver Harbour. The information in these
two papers will not be presented in detall here. Briefly, the approaches fdl into two categories: one-step
and two-step.
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3.2.2 One-step methods additional to CCA

Besides Canonicd Corrdation Andysis (described in most MV gatigtics textbooks eg. Seber
(1984)), one-step methods include Mantd's test (Mantel 1970) and Procrustes andlyss (Gower 1975;
Schonemann and Carroll 1970). An ecologica application of Mantd's tet is in Anderson and
Underwood (1997). Methods not mentioned in Green (1993a; 1993b), but which should have been,
are Canonica Correspondence Anaysis (Jongman et al. 1987; ter Braak 1986) and an ANOSIM
agorithm (Clarke and Warwick 1994a; Clarke and Ainsworth 1993). Both use randomisation for testing
the null hypothesis of no reationship between the two sets of variables, as does Canonica
Correspondence Analyss. So does Mantd's test as implemented in many programs and statistica
packages. Jackson (1995, 1993a, 1993b) has built on Procrugtes Analyss (which was origindly an
entirely descriptive method) by adding arandomisation test. He illustrates its use on ecologicd data

In generd, if aparametric test of the Y set vs. X set relationship isto be done, then there hasto be
an adequate number of obsarvationsin reaion to the number of varigbles The same comments and rules
of thumb made above in reation to MANOVA and CDA agpply here as wdll. If the test is done by
randomisation, it can be done with a number of variables and a number of observations that would pose
problems for a parametric test. However, | believe that this advantage of randomisation tests, compared
to parametric tests, is somewhat illusory. The fact that atest can be done doesn't necessarily mean that
it should be done, or that it will be robugt, powerful or interpretable. The problem with parametric tests
on data having too many variablesin relation to number of obsarvationsis not just atechnica one. There
are reasons why one cant or shouldn't do them, the principd one being that the mode is

overparameterized. Thisremainstrue if arandomisation test is done on those data.
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3.2.3 Two-step methods

Two-step gpproaches discussed by Green (1993a, 1993b) involve reduction of and summary of the
information in one or both of the sets of variables prior to moddling and testing the relaionship between
the sets. Ordination (e.g. PCA) can be used, as previoudy described, and so can a variable subset
sdection dgorithm. Each PC or subset variable from the Y set can be regressed on the X set by multiple
regression, followed by Bonferroni's correction (the PCs and subset variables will be independent, or
gpproximately s0). Alternatively, PCs derived fromthe Y set can be regressed or otherwise rdated to
PCs derived from the X set. See Sprules (1977) for PCA approaches of this kind applied to lake
zooplankton communities. Cluster andysis can be applied to one or both sets of variables. If gpplied to
the' Y st only, the clusters of observations from the cluster analysis can be used as biologically defined
groups in a Canonical  Discriminant Andyss (CDA), in a multidimensona space defined by the
environmenta variables. See Green and Vascotto (1978) and Green (1979) for an example. If cluster
anadysisis gpplied to both sats of variables then the cluster frequency count datafor the Y set can be
related to that for the X set by contingency table andysis (chi-square or loglinear modd). The Y-X
relationship as expressad in the contingency table of counts can be displayed graphically usng
Correspondence Anaysis.

3.2.4 Relating mor e than two sets of variables e.g. the Sediment Quality Triad

The Sediment Quality Triad approach, which was mentioned in section 1, involves relating three sets
of variables: a biological community response set , a sediment contaminant concentrations set, and an
experimentaly determined toxicities set. References were given in section 1. In particular see Green et
al. (1993). To have good sediment contaminant concentrations data, one must have good sediment
samples, which may not be rdiably avalable in mining monitoring eg. the AETE sudies Also, the
biologica communities must be comparable i.e. not from different biogeographic regions. Neither of
these requirements may be satisfied.
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3.3 MV responsewith both ANOVA design and continuous variablesas predictors

The two modd s described above can be combined, so that the biological responseis predicted by
both an ANOVA design and by continuous environmentd variables. Thisis an andyss of covariance,
or ANCOVA (Seber 1984; Cox and McCullagh 1982; Cooley and Lohnes 1971, 1962; Cochran
1957). Aswith ANOVA, ANCOVA can easlly be done asan MV andysis. Whether UV or MV,
ANCOVA used on observationa datain environmenta monitoring gets tricky because predictors are
supposed to be independent, i.e. not corrdated. The usud ANOVA design in environmental monitoring
studies has to do with Control versus Impact areas, or Before impact versus After impact times.
Obvioudy in most such cases the ANOVA design predictor would be corrlated with (confounded
with) predictor variables measuring environmental contaminants. For example the digtribution of Control
gteson acontaminant covariate would be different than the distribution of Impact Stes. To put it another
way, ANCOVA is meant to use within-group variaion in X to adjust within-group variaion in Y.
ANCOVA is not meant to use a between-group differencein X to adjust a between-group difference
inY. Beyak and Green (unpublished) showed in smulation studies that biases to sgnificant tests are
greatest when this kind of confounding is accompanied by subgtantid error in estimation of the X
variables (the covariates). Some MV ANCOVA was used in the GOOMEX gtudies (Kennicutt et al.
1996h), and by Metcafe-Smith (1996).
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4. Interpretation of results of hypothesis-testing MV analysis

Presenting examples of multivariate andyss results here and discussing how to interpret them is
impractica, and would amount to writing a MV datigtics reference book as part of this report.
Fortunately genera reference books exist which are good a explaining how to interpret hypothess-
testing multivariate analys's results, as provided by computer output (Legendre and Legendre 1997;
Manly 1994; Harris 1985; Seber 1984; Green 1979; Pimentd 1978; Cooley and Lohnes 1971, 1962).
It is important to keep in mind that parametric hypothesstesting datistical andyses such as
MANOVA/CDA, ANCOVA and CCA usudly provide information about and test the significance of
more than one "component”, even for smple ANOVA designs. The jargon re: these components is
confusing. In MANOVA and CDA they aretypicaly referred to as discriminant functions or canonical
discriminant functions, in Canonica Correlation Anayss as canonicd variates. The latter is a more
generd term 0 here | will refer to canonicd variates regardless of the MV andyss modd. The canonical
variates are the axes of the multidimensond space in which the results of the MV andlysis are displayed.

For example, aMANOVA on datawith two groups would produce one canonica variaeregardiess
of how many response variables there were, because the number of canonical variates produced by a
MANOVA isthe number of variables, or one less than the number of groups, whichever isless. This
makes intuitive sense, geometricaly. All the information about the separation of two groups should be
expressable in one axis running through the multidimensond "variadle pace’. Smilarly, if there are three
groups (and at least two variables), complete representation of the digtributions of the three groups
should be possible in two dimensions, represented by two canonicd variates. And so on. However some
canonica variates may be trivid. Suppose there are three groups and two varigbles, but the three groups
lie more-or-less in line within the two-dimengond variable space. It is quite likely that only one of the
two possible canonicd variates would be gatigicaly sgnificant. In Canonica Corrdation Andyssthe
number of canonicd variaes is the number of variables in the set (Y or X) which has the fewest
variables. The same sort of logic applies.

When the hypothesstesting multivariate andysis is not the parametric kind but ingead is the
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randomisation-testing kind, as with the ANOSIM methods as implemented in the PRIMER package,
most of the above does not apply. Fortunately the documents provided with PRIMER (Carr 1996;
Clarke and Warwick 19949) are very dear on interpretation of andyss results, with numerous examples.

Obvioudy it helpsto have a knack for geometry when trying to understand and interpret the results
of multivariate satisics And it follows theat effective grgphica display is criticaly important. Most
everyone who has gotten into hypothesistesting multivariate satisticd andyss has discovered that it is
much esser to obtain sgnificant results than it is to convincingly interpret those results. Some good
examples of gpplication of such methods with effective graphica display as an ad to interpretation are
in Green and Vascotto (1978), Clarke (1993), Somerfidd et al. (1994b), Manly (1994), Metcdfe-
Smith et al. (1996), and some of the GOOMEX papers (e.g. Montagna and Harper 1996). Green
(1979) has a section on graphicd display of results, with examples. There are books about "tricks' for
digplaying multivariate data (Everitt 1978; Andrews 1972) but | have never found them to be particularly
usful.

Findly, one hasto be aware of the Satistical sophidtication, or lack thereof, of the intended audience.
For mogt generd audiencesit is best to avoid verbiage which will inevitably be jargon-filled, and instead
emphasize effective graphical display. Also, some methods are inherently easier to understand than
others. As mentioned in section 3 above, variable subset sdlection is easier to understand and explain
than PCA,, and both methods will often accomplish the same purpose (reduction of number of variables).
More people have an intuitive understanding of cluster andysis and contingency table andyss than of
Non-Metric Multidimensona Scaing and Canonical Discriminant Analyss Thereis often more than one
way to skin the cat in this business and there is nothing wrong with using methods that are more likely

to be comprehensble to your intended audience.
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5. Classical versus randomisation approaches

Are classic parametric datistica methods appropriate, and safe to use, on red environmenta
monitoring data? Or isit best to routingly play it safe and use nonparametric or randomisation methods?
Firg of dl, nonparametric satistical methods have largely been superseded by randomisation methods.
The former have to be derived for every particular case whereas the latter are in principle quite generd.
One smply sets up the dataiin the design layout that pertains, does the parametric anadlysis and obtains
the tet gatigtic value, then randomly re-alocates the data and cdculates the test satistic and does that
thousands of times until a null hypothesis test Satistic digtribution is adequatdly defined. Then the test
datistic value for the actud data is compared to the null hypothess digtribution obtained by
randomisation. It is pretty straightforward for smple ANOV A designs, but not for more complicated
desgns like factorid and nested ANOV As. The problem is that one has to decide what to randomise.
In afactoria design with replication, for example, the parametric ANOVA tests whether there is an
interaction in addition to the main effects. It isthe margind distributions of the main effects modd that
are tested. But if the data are totally re-randomised then any main effects will vanish dong with any
Interaction, so the null hypothesisisthe wrong one ("no interaction given no main effects’, ingtead of "no
interaction™). Thisis one disadvantage of the randomisation testing approach - that it is not clear how to
do it properly for some ANOVA designs which we would like to use.

Another disadvantage is that randomisation provides a test but doesn't fit a predictive modd as
parametric methods do. So the null hypothesis that two sets of variables are unrelated may be rejected,
but no mode isfit which describeshow they are rdaed. Interpretation is therefore more difficult. Findly,
it is not obvious to me that parametric methods are so unreliable with typica data that randomisation
methods are needed. As discussed in section 3 above, parametric methods are quite robust to failures
of assumptions as long as the design meets certain criteria. My feding is that the advantages of the
classcd parametric datistica methods outweighs concerns about their reliability. | hasten to add that
biogtatistician colleagueswho | greatly respect, K.R. Clarke for example, take the opposite stance on
thisissue and dways use randomisation methods for testing hypotheses - at least for biologica data. Of
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course one can aways use both methods and use the randomisation test as a check on the parametric
test. | often do this. The problem is what to do when they disagree, and one method accepts but the

other rgectsthe null hypothesis. The proper, consarvative gpproach isto accept the null hypothesis when
either method does so.

Good generd references for randomisation tests per se are Manly (1991) and Edgington (1995).
Manly's RT package does randomisation tests for avariety of hypotheses,
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6. General recommendations and conclusions

Monitoring studies should be planned so they provide enough Stes, within areas representing
conditions, to be adle to robustly and powerfully test hypotheses about differences among areas. Put the
effort and money into Stes, not into variables requiring high-tech measurement or into replicate sampling
at gtes. Your study design should provide meaningful error variances for tests of hypotheses. Thiswill
usudly be"among Stes' or "stes by times interaction” (the latter in arepeated measures design).

There should be at least 10 error degrees of freedom for robust hypothesis testing. If there are <10
error df check the parametric result with a randomisation test, if one is possble. Since parametric
detigtical analyses lead to explanatory or predictive modds and randomisation tests do not, it is best to
use parametric hypothess-testing methods and to use randomisation tests as checks on them. Some
would disagree.

Do not test response variables one univariate test a atime, or arbitrarily choose one or afew of them
for hypothess-testing satisticd anadys's. Choosing an organism or a contaminant to sudy becauseitis
important a priori is not arbitrary, but choosing one or afew organisms or contaminants to be the Y
vaiablesin datistical anayses after the data are in hand - without clearly stated criteriafor doing so -
isarbitrary.

With corrlated MV response data you should use MV hypothesistesting gatistics. Bear in mind
that themore Y varigbles there are, the more Sites you need. If you have too many Y varigbles, as often
happens when the biologicd community is the response and you have identified al the organismsin al
the samples, then you should reduce the number by variable subset sdlection, ordination or clustering.
If there are corrdaed predictor (X) variables, reduce them to asmdler number of relatively uncorrdated
varigbles by variable subset sdlection, ordination or clustering. Then use some hypothesstesting
datistica andyssto relate the responses Y to the ANOVA design and/or the predictor variables X.
Which andyssis best to use will depend on the origind modd and on the gpproach used to reduce the
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Y or the X sats, if that was done.

There is as much art as science in choosing a Satistica andysis sequence. Preferences are as much
aesthetic as scientific. This should not be taken as an excuse for doing any old andysis one wants. The
most gppropriate methods should aways be used. It isjust that there is often more than one legitimate
way to do it and the judgement of which isthe most appropriate way, given the objective, the data and
the intended audience, may differ among scientists - and that's OK. If amethod shows an impact and
can be successfully defended to the audience as showing the impact, then that's al that is needed.
Smilarly, if amethod indicates no impact and can be successfully defended to the audience as capable
of showing an impact had there been one, that's dl that is needed too.

Some people insst on direct (one-step) methods, or nothing. | happen to like two-step methods, in
part because each sep provides different information. The description of the structure of the multivariate
biologica response Y, or of the redundancy among predictor X variables, is ussful and important in its
own right and not just amindless data-processing step before datisticaly rdating Y and X. Furthermore,
a PCA or acluster analysis, or variable subset sdlection, are no harder to interpret than a one-step
MANOVA and CDA. After dl, we do two-step analyses dl the time without redlly thinking about it.
Sdecting which variables to use or gpplying transformations to those we do use before doing ANOVAS,
are just as much "fird seps’ in andyss as are the use of variable subset sdection or ordination or
clustering to reduce the dimensiondity of the description of the response. PCA, for example, isjust a
rotation of the origind variable axes and reduction of the origina corrdlated varigbles to a few
uncorrelated PCs is redly just a transformation. Some people don't understand and can't interpret
transformations of any kind, log or square root for example. That's tough on them, but one does
trandformations anyway if they need to be donein order for avaid hypothesstesting andysisto follow.
The procedures | have described aren't any different in that regard.

Two-step approaches remain popular with leading biogtatisticians in the environmenta impact and
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monitoring field and aso with environmenta biologists who do the work. For example the two-step
approach described by Field et al. (1982), NM-MDS ordination on the species abundancesfollowed
by relating that reduced description of the response Y to the environmenta variables X, has been much
cited and much used by marine workers over the following 11 years (Clarke 1993), and it and smilar
gpproaches are gill widely used. There are no genera differences between marine and freshwater
environments that would suggest the ingpplicability of such gpproaches for freshwater pollution

monitoring.

For judt testing whether thereisa’Y vs ANOVA desgnrdationshiporaY vs X rdationship (without
description, explanation or interpretation of the relationship), Mantd's test is dways OK.

Use consarvative MV tests and test gdtidtics. It is easy to get Sgnificance with MV tests. Concentrate

on convinangly explaining why it was sgnificant.

Do mogt of your statistical andyss in a good standard heavy duty statistical package (e.g. SAS,
Minitab, SPSS, Sydtat) rather than ad hoc "benthic community data analyss programs’. Go to other
packages or programs as necessary for particular methods e.g. randomisation tests: Primer, RT; NM-
MDS: Primer, NT-SY'S; Correspondence Anadysis SIMCA,; clustering: CLUSTAN.

Be cautious about usng CCA and ANCOVA with environmenta monitoring observationa data. Both
methodsrdate Y responsesto X predictor variables. CCA isnot robust unlessthereisavery largeratio
of dtesto variables, larger than is usudly practical. The environmental predictors (e.g. contaminants)
arerarely independent of the groups (e.g. Control vs Impact areas) in an ANCOVA.

When monitoring over time, as data from sampling the same dites at different times accumulate, a

repeated measures design may be appropriate.
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The Reference Sites gpproach is conceptualy good but it requires alarge number of Stes, larger than
isusualy practicd.

Contaminant uptake, body burden and enzyme response (e.g. metallothionein) are good response
variablesfor environmenta monitoring, if the right organism is available. Fish typicaly move too much.
Bivave molluscs are good but occur in sedimentary environments which may not be present. Caged
specimens of ether could be used.

Avoid usng indices or metricsto reduce MV response data, except whereit is necessary to compare
with other studies. Even then do it in addition to proper MV datistical andysis.

In writing the paper/report or presenting the talk, avoid the use of technica satistical verbiage. To
that end, use "accessible” gatistical methods when possible.



31
7. Bibliography

Anderson, M.J. and A.J. Underwood 1997. Effects of gastropod grazers on recruitment and succession
of an estuarine assemblage: a multivariate and univariate gpproach. Oecologia, 109: 442-453.

Andrews, D.F. 1972. Plots of high dimensional data. Biometrics, 28: 125-136.

Atchley, W.R., C.T. Gaskins, and D. Anderson 1976. Statistical properties of ratios.1.Empirical results.
Syst. Zoal., 25: 137-148.

Ausgten, M.C. and P.J. Somerfield 1997. A community level sediment bioassay applied to an estuarine
heavy metd gradient. Marine Environ. Res, 43: 315-328.

Baley, R.C., RH. Norris, and T.B. Reynoldson 1996. Study design and data andysis in benthic
macroinvertebrate assessments of freshwater ecosystems using a reference site gpproach. Ninth Annua
Technica Information Workshop, 44™ Annual Mesting of the North American Benthological Sodiety.
(Abstract)

Bayne, B.L., K.R. Clarke, and J.S. Gray 1988. Biologica Effects of Pollutants. Results of a Practica
Workshop. Mar. Ecol. Prog. Ser., 46: 1-278.

Bryan, G.W. and W.J. Langston 1992. Bioavailability, accumulaion and effects of heavy metds in
sediments with specid reference to UK estuaries: areview. Envir. Pollut., 76: 89-131.

Canadian Journa of Fisheries and Aquatic Sciences (CIFAS). 1992. Aquatic Acidification Studiesin
the Sudbury, Ontario, Canada, Area. Volume 49, Supplement No. 1.

Carr, M.R. 1996. PRIMER User Manua (Plymouth Routinesin Multivariate Ecological Research).
Natural Environment Research Council, UK, Plymouth, UK.

Chapman, P.M., R.N. Dexter, and E.R. Long 1987. Synoptic measures of sediment contamination, toxicity
and infaunal community structure (the Sediment Quality Triad). Mar. Ecol. Prog. Ser., 37: 75-96.

Chapman, P.M., E.A. Power, RIN. Dexter, and H.B. Andersen 1991. Evauation of effects associated with
an ail plaform, usang the sediment qudity triad. Env. Tox. Chem., 10: 407-424.

Chapman, P.M. 1996. Presentation and interpretation of Sediment Quality Triad data. Ecotoxicology, 5:
327-339.

Chapman, P.M., B. Anderson, R.S. Carr, V. Engle, RH. Green, J. Hameedi, M. Harmon, P.S. Haverland,



32

J. Hyland, C.G. Ingersall, E.R. Long, J. Rodgers, J., M.H. Sdlazar, P.K. Sbley, P.J. Smith, R.C. Swvartz,
B. Thompson, and H. Windom 1997a Generd guiddinesfor usng the Sediment Qudity Triad. Mar. Poll.
Bull., 34: 368-372.

Chapman, P.M., E.A. Power, and G.A. Burton, J. 1997b. Integrative assessments in aquatic ecosystems.
In: Sediment Toxicity Assessment. G.A. Burton, Jr. ed. Lewis, Boca Raton, Florida, 313-340.

Clarke, K.R. 1993. Non-parametric multivariate andyses of changes in community structure. Austr. J.
Ecal., 18: 117-143.

Clarke, K.R. and M. Ainswvorth 1993. A method of linking multivariate community Structure to
environmenta variables. Mar. Ecol. Prog. Ser., 92: 205-219.

Clarke, K.R. and R.H. Green 1988. Statigtica design and analysis for a 'biologica effects study. Mar.
Ecol. Prog. Ser., 46: 213-226.

Clarke, K.R. and R.M. Wawick 1994a. Change in marine communities: an gpproach to satidicd andyss
and interpretation. Natura Environment Research Council, UK, Plymouth, UK.

Clarke, K.R. and R.M. Warwick 1994b. Similarity-based testing for community paitern: the two-way
layout with no replication. Mar. Bial., 118: 167-176.

Cochran, W.G. 1957. Andysis of covariance: its nature and uses. Biometrics, 13: 261-281.

Cooley, W.W. and P.R. Lohnes 1962. Multivariate Procedures for the Behaviora Sciences. Wiley, New
York.

Cooley, W.W. and P.R. Lohnes 1971. Multivariate Data Analyss. Wiley, New Y ork.
Cox, D.R. and P. McCullagh 1982. Some aspects of andys's of covariance. Biometrics, 38: 541-561.

Cuff, W. and N. Coleman 1979. Optima survey design: lessons from a dratified random sample of
macrobenthos. Can. J. Fish. Aquat. Sci., 36: 351-361.

Davies, I.M. and JM. Firie 1978. The mussd Mytilus edulis as a bio-assay organism for mercury in
Seaweter. Mar. Poll. Bull., 9: 128-132.

Edgington, E.S. 1995. Randomization tests. Marcel Dekker, New Y ork.

Eganhouse, R.P. and D.R. Young 1978. In-situ uptake of mercury by the intertidd mussd, Mytilus
californianus. Mar. Pall. Bull., 9: 214-217.



33

Everitt, B. 1978. Gragphicd Techniques for Multivariate Data. Heineman, London, pp. 1-117.
Fidd, JG., K.R. Clarke, and RM. Warwick 1982. A practica strategy for andysng multispecies
digtribution patterns. Mar. Ecol. Prog. Ser., 8: 37-52.

Fore, L.S., JR. Kar, and L.L. Conquest 1994. Statidtical properties of an index of biologicd integrity used
to evaluate water resources. Can. J. Fish. Aquat. Sci., 51: 1077-1087.

Gower, J.C. 1975. Generalized Procrustes analyss. Psychometrika, 40: 33-52.

Gray, J.S.,, M. Aschan, M.R. Carr, K.R. Clarke, R.H. Green, T.H. Pearson, R. Rosenberg, and R.M.
Warwick 1988. Andyss of community attributes of the benthic macrofaunaof Frierfjord/Langesundfjord
and in amesocosm experiment. Mar. Ecol. Prog. Ser., 46: 151-165.

Green, R.H. 1972. Digribution and morphologicd variation of Lampsilis radiata (Pelecypoda, Unionidae)
in some central Canadian lakes, A multivariate statistica approach. J. Fish. Res. Board Can., 29:
1565-1570.

Green, R.H. 1979. Sampling design and datisticd methods for environmenta biologists. Wiley, New Y ork.

Green, RH. 1984. Statistical and nondatistical congderations for environmenta monitoring studies.
Environ. Monit. Assess, 4: 293-301.

Green, RH. 1986. Some gpplications of linear modds for analyss of contaminants in aguetic biota. In:
Satidtica aspects of water qudity monitoring. A.H. El-Shaarawi and R.E. Kwiatowski, eds. Elsevier, New
York.

Green, R H. 1987. Satigtica and mathematica aspects. distinction between naturd and induced variation.
In"Methods for Assessing the Effects of Mixtures of Chemicas', by V.B. Vouk, G.C. Butler, D.V. Upton,
D.V. Parke, S.C. Asher, eds,, pp. 335-354. Wiley, Chichester UK.

Green, R.H. 1989. Inference from observationd datain environmenta impact sudies: what is vaid? what
is possible? 47" Session International Statistical Indtitute. Paris.

Green, R.H. 1993a. Rdating two sets of variablesin environmenta studies. pp. 151-165. (Abstract)

Green, R.H. 1993b. Application of repested measures designs in environmenta impact and monitoring
studies. Austr. J. Ecol., 18: 81-98.

Green, R.H., JM. Boyd, and J.S. Macdondd 1993. Rdaing sets of variablesin environmentd sudies: the
Sediment Quality Triad as a paradigm. Environmetrics, 4: 439-457.



34

Green, RH. and P.A. Montagna 1996. Implications for monitoring: study designs and interpretation of
results. Can. J. Fish. Aquat. Sci., 53: 2629-2636.

Green, RH. and G.L. Vascotto 1978. A method for the andlyss of environmentd factors controlling
patterns of species composition in aquatic communities. Water Research, 12: 583-590.

Harris, R.J. 1985. A Primer of Multivariate Statistics. Academic Press, New Y ork.

Hinch, S.G. and R.H. Green 1989. The effects of source and destination on growth and meta uptakein
freshwater damsreciprocdly transplanted among south-central Ontario lakes. Can. J. Zool., 67: 855-863.

Hinch, S.G. and L.A. Stephenson 1987. Size- and age-pecific patterns of trace metd concentrationsin
freshwater clams from an acid-sengitive and a circumneutra lake. Can. J. Zool., 65: 2436-2442.

Hurlbert, S.H. 1984. Pseudoreplication and the design of ecologica fidd experiments. Ecol. Monogr., 54:
187-211.

Hyland, J., D. Hardin, M. Steinhauer, D. Coats, R. Green, and J. Neff 1994. Environmenta impact of
offshore oil development on the outer continenta shelf and dope off Point Argudlo, Cdifornia Marine
Environ. Res,, 37: 195-229.

Imlay, M.J. 1982. Use of shlls of freshwater mussds in monitoring heavy metals and environmenta
dresses: areview. Maac. Rev., 15: 1-14.

Jackson, D.A. 1993a Stopping rulesin principad components analyss: a comparison of heurigicd and
datistical approaches. Ecology, 74: 2204-2214.

Jackson, D.A. 1993b. Multivariate andlysis of benthic invertebraie communities: theimplication of choosing
particular data standardizations, measures of associations, and ordination methods. Hydrobiologia, 268:
9-26.

Jackson, D.A. 1995. PROTEST: A PROcrugtean randomization TEST of community environment
concordance. Ecoscience, 2: 297-303.

Jackson, D.A. and H.H. Harvey 1993. Fish and benthic invertebrates: community concordance and
community-environment relationships. Can. J. Fish. Aquat. Sci., 50: 2641-2651.

Jongman, R.H.G., C.JF. ter Braak, and O.F.R. van Tongeren 1987. Data andyd's in community and
landscape ecology. Pudoc Wageningen, The Hague.

Kennicutt, M.C.J,, P.N. Boothe, T.L. Wade, ST. Sweet, R. Rezak, F.J. Kdly, JM. Brooks, B.J. Predey,
and D.A. Wiesenburg 1996a. Geochemica patternsin sediments near offshore production platforms. Can.



35

J. Fish. Aquat. Sci., 53: 2554-2566.

Kennicutt, M.C.J., R.H. Green, P.A. Montagna, and P.F. Roscigno 1996b. Gulf of Mexico Offshore
Operations Monitoring Experiment (GOOMEX), Phase 1:Sublethd responses to contaminant exposure
-introduction and review. Can. J. Fish. Aquat. Sci., 53: 2540-2553.

Kruskal, J.B. 1964a. Nortmetric multidimensond scding: a numerica method.  Psychometrika, 29:
115-129.

Kruskd, J.B. 1964b. Multidimensona scaing by optimizing goodness of fit to a non-metric hypothesis.
Psychometrika, 29: 1-27.

Legendre, P. and L. Legendre 1997. Numerica ecology. Elsevier, Amgerdam.

Locke, A., W.G. Sprules, W. Kéler, and JR. Pitblado. 1994. Zooplankton communities and water
chemigtry of Sudbury arealakes. changes rdated to pH recovery. Can. J. Fish. Aquat. Sci., 51: 151-160.

Long, E.R. and P.M. Chapman. 1985. A sediment qudity triad: measures of sediment contamination,
toxicity and infaunal community compodition in Puget Sound. Mar. Poll. Bull., 16: 405-415.

Luoma, S.N. and E.A. Jenne 1977. The availability of sediment-bound cobalt, slver and zinc to a
deposit-feeding dam. In: Biologicd Implications of Metds in the Environment. H. Drucker and RE.
Wildung, eds. U.SN.T.I.S. Springfield (Conf.750929), pp. 213-231.

Manly, B.F.J. 1991. Randomization and Monte Carlo methodsin biology. Chapman and Hall, London.
Manly, B.F.J. 1994. Multivariate statistica methods: a primer. Chapman and Hall, London.

Mantel, N. 1970. A technique of nonparametric multivariate analyss. Biometrics, 26: 547-558.

Marcus, M.D. and L.L. McDondd 1992. Evaduaing the Satidtical basesfor rdating recaiving water impacts
to effluent and ambient toxicities. Env. Tox. Chem., 11: 1389-1402.

Metcdfe-Smith, JL., R.H. Green, and L.C. Grgpentine 1996. Influence of biologica factors on
concentrations of metalsin the tissues of freshwater mussdls (Elliptio complanata and Lampsilis radiata
radiata) from the St. Lawrence River. Can. J. Fish. Aquat. Sci., 53: 205-219.

Metcdfe-Smith, JL. and R.H. Green 1992. Ageing studies on three species of freshwater mussels from
ametal-polluted watershed in Nova Scotia, Canada. Can. J. Zoal., 70: 1284-1291.



36

Montagna, P.A. and D.E. Harper 1996. Benthic infaund long-term response to offshore production
platformsin the Gulf of Mexico. Can. J. Fish. Aquat. Sci., 53: 2567-2588.

Nemec, A.F.L. and R.O. Brinkhurst 1988a. The Fowlkes-Malows statistic and the comparison of two
independently determined dendrograms. Can. J. Fish. Aquat. Sci., 45: 971-975.

Nemec, A.F.L. and R.O. Brinkhurst 1988b. Using the bootstrap to assess sgnificance in the dudter andysis
of species abundance data. Can. J. Fish. Aquat. Sci., 45: 965-970.

Olsgard, F., P.J. Somerfield, and M.R. Carr 1997. Relationships between taxonomic resolution and data
trandformationsin anayses of amacrobenthic community dong a established pollution gradient. Mar. Ecol.
Prog. Ser. 1-9.

Orloci, L. 1973. Ranking characters by a dispersion criterion. Nat. Lond., 244: 371-373.

Orlodi, L. 1976. Ranking species by an information criterion. J. Ecol., 64: 417-419.

Orloci, L. 1978. Multivariate Andlysisin Vegetation Research. W. Junk, The Hague, 1-451.

Peterson, C.H., M.C.J. Kennicutt, R.H. Green, P.A. Montagna, D.E. Harper, E.N. Powdl, and P.F.
Roscigno.  1996. Ecological consequences of environmental perturbations associated with offshore
hydrocarbon production: a perspective on long-term exposures in the Gulf of Mexico. Can. J. Fish. Aquat.
Sci., 53: 2637-2654.

Phillips, D.JH. 1976. Common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead
and copper. 2. Rdationship of metalsin mussdl to those discharged by industry. Mar. Bial., 38: 71-80.

Reou, E.C. 1984. The interpretation of ecologica data. Wiley, New Y ork.

Pimentd, R.A. 1978. Marphometrics the Multivariate Andlyss of Biologicd Data. Kendd|-Hunt, Dubuque,
lowa.

Reynoldson, T.B., R.C. Bailey, K.E. Day, and R.H. Norris 1995. Biologicd guiddines for freshwater
sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for
predicting biologica state. Austr. J. Ecal., 20: 198-2109.

Schonemann, P.H. and R.M. Carroll 1970. Fitting one matrix to another under choice of acentrd dilation
and arigid motion. Psychometrika, 35(2): 245-255.

Seber, G.A.F. 1984. Multivariate observations. Wiley, New Y ork.



37

Smith, A.L., RH. Green, and A. Lutz 1975. Uptake of mercury by freshwater clams (Family Unionidag).
J. Fish. Res. Board Can., 32: 1297-1303.

Somerfied, P.J., JM. Gee, and R.M. Warwick 1994a. Soft sediment meiofaund community sructure in
relation to along-term heavy metd gradient in the Fal estuary system. Mar. Ecol. Prog. Ser., 105: 79-88.

Somerfield, P.J., JM. Gee, and R.M. Warwick 1994b. Benthic community sructure in reaion to an
ingantaneous discharge of waste water from atin mine. Mar. Poll. Bull., 28: 363-369.

Sprules, W.G. 1977. Crustacean zooplankton communities as indicators of limnologicd conditions an
gpproach using principa component analysis. J. Fish. Res. Board Can., 34: 962-975.

Stewart-Oaten, A., W.W. Murdoch, and K.R. Parker. 1986. Environmenta impact assessment:
pseudoreplication in time? Ecology, 67: 929-940.

Taylor, B.R. and R.C. Bailey. 1997. Technicd Evduation on Methods for Benthic Invertebrate Data
Andysis and Interpretation. Prepared for Natural Resources Canada.

ter Braak, C.J.F. 1986. Canonica correspondence andyss: anew egenvector technique for multivariate
direct gradient andyss. Ecology, 67: 1167-1179.

Underwood, A.J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.
Ann. Rev. Oceanogr. Mar. Bial., 19: 513-605.

Underwood, A.J. 1992. Beyond BACI: the detection of environmenta impacts on populationsin the red,
but variable, world. J. Exp. Mar. Biol. Ecol., 161: 145-178.

Underwood, A.J. 1993. The mechanics of spatidly replicated sampling programmes to detect
environmentd impactsin avarigble world. Austr. J. Ecol., 18: 99-116.

Underwood, A.J. 1997. Experiments in ecology: their logicd desgn and interpretation using anays's of
variance. Cambridge University Press, Cambridge, UK.

Warwick, R.M. 1993. Environmenta impact studies on marine communities. pragmatical considerations.
Austr. J. Ecoal., 18: 63-80.

Warwick, R.M. and K.R. Clarke 1993. Increased variahility as a symptom of stressin marine communities.
J. Exp. Mar. Biol. Ecol., 172: 215-226.

Wright, J.F., D. Moss, P. Armitage, and M.T. Furse 1984. A prdiminary classfication of running-water



38

dgtes in Great Britain based on macro-invertebrate species and the prediction of community type usng
environmental data. Freshw. Biol., 14: 221-256.

Wright, JF. 1995. Development and use of asystem for predicting the macroinvertebrate faunain flowing
waters. Austr. J. Ecol., 20: 181-197.

Yan, N.D. and R. Strus 1980. Crustacean zooplankton communities in acidic, metal-contaminated |akes
near Sudbury, Ontario. Can. J. Fish. Aquat. Sci., 37: 2282-2293.

Yan, N.D., W. Kdler, K.M. Somers, T.W. Pawson, and R.E. Girard. 1996. Recovery of crustacean
zooplankton communities from acid and meta contamination: comparing manipulated and reference lakes.
Can. J. Fish. Aquat. Sci., 53: 1301-1321.



	TITLE PAGE
	Notice to Readers
	Avis aux lecteurs
	Table of Contents
	1. Introduction
	1.1 Correlated variables in multivariate (MV) data
	1.2 Models with MV response data
	1.3 Interpretation and display of results
	1.4 Connection between study design and statistical analysis approach
	1.5 Literature re: history of development of approaches

	2. Correlated variables
	2.1 Whether the response variables are correlated and what you can do if they aren't
	2.2 If the response variables are correlated
	2.3 Correlated predictor variables
	2.4 Description of structure in MV correlated data
	2.5 Reduction of structure in MV data to a single synthetic variable - indices and metrics
	2.6 Literature re: statistical analysis of correlated variables

	3. Hypothesis-testing MV statistical analysis with correlated response variables
	3.1 MV response with ANOVA design as the predictor
	3.1.1 Introduction
	3.1.2 Testing hypotheses with MV ANOVA
	3.1.3 Statistical computing software and references re: MV ANOVA and CDA
	3.1.4 Repeated measures designs
	3.1.5 The reference sites approach
	3.1.6 Problems and philosophy re: MV ANOVA

	3.2 MV response with continuous variables as predictors
	3.2.1 Canonical Correlation Analysis (CCA)
	3.2.2 One-step methods additional to CCA
	3.2.3 Two-step methods
	3.2.4 Relating more than two sets of variables e.g. the Sediment Quality Triad
	3.3 MV response with both ANOVA design and continuous variables as predictors


	4. Interpretation of results of hypothesis-testing MV analysis
	5. Classical versus randomisation approaches
	6. General recommendations and conclusions
	7. Bibliography


