Slurry Manure on Grass: Making it Work

II. Long-term effects

S.Bittman¹, C.G.Kowalenko¹, D.E.Hunt¹, N. Patni¹, D. Rayworth¹ and T.A. Forge² ¹Agriculture and Agri-Food Canada, Agassiz, BC VOM 1A0; ²Lakehill Applied Soil Ecology, Kaleden, BC

INTRODUCTION

Liquid manure can be used as the main source of nutrients for production of forage grass (See other poster by Bittman et al.). However, to obtain same immediate response as fertilizer, manure has to be <u>applied at equivalent rates of inorganic N or twice the rate of total N</u>. Effective management of manure nutrients is important because farmers must produce high yields with minimum nutrient loss to the environment. The long-term effects on the crop-soil system of using manure as the principal nutrient source for grass production are not yet well understood.

METHODS

- STUDY AREA : Coastal BC, Canada
- 1500 mm ann. precipitation; med. texture alluvial soil
- · Tall fescue (Festuca arundinacea Schreb.)
- Harvests: May, July, August, and Sept./Oct. (1994-2000)

Agriculture et

Agroalimentaire Canada

TREATMENTS: nutrient applications in years 1994-2000

- liquid dairy manure vs. NH₄NO₃ (+ other inorganic nutrients)
- rates: 50 or 100 kg inorganic-N ha⁻¹ applied for each of 4 harvests/ year
- manure applied with 'drag-shoe' applicator

Dairy manure composition:

Water	91.7%	NH4-N	0.16%, (wet basis)
C:N	13.4 : 1	Total-N	0.31% (wet basis)
PH	6.7	С	4.1% (wet basis)

RESULTS

Table 1. Effect of applying fertilizer and dairy slurry (1994-2000) on yield, N uptake and N content of tall fescue (mean of 1998-2000). Shaded rows are equivalent rates of applied total-N.

Treatment	<u>Applie</u> Mineral		Yield	N Uptake	N Content
	kg ha-1	yr ⁻¹	kg	ha-1 yr-1	%
Control	0	0	7.3	129	1.77
Low N					
Fertilizer	200	200	13.2	288	2.18
Manure	200	400	15.0	323	2.16
High N					
Fertilizer	400	400	14.0	389	2.78
Fert./Man. ^z	400	600	16.8	450	2.67
Manure	400	800	16.5	422	2.56

^z Alternating applications of fertilizer and manure.

CROP RESPONSE (Table 1)

- At equal rates of applied <u>mineral-N</u>, manure plots had higher yields and N uptake than fertilized plots while alternating (fert./manure) plots had both high yield and N uptake.
- At equal rates of applied <u>total-N</u>, fertilized plots took up and contained more N, but yielded less, than manured plots (*shaded rows*).
- Although high manure increased grass yield compared to fertilizer, it reduced grass cover (not due to wheel traffic) (data not shown).

RESULTS (cont'd)

Table 2. Effect of fertilizer and dairy slurry (1994-2000) on soil microbial populations 1 and 3 weeks after application (in 1998). *Shaded rows are equivalent rates of total N.*

	Applie	ed N					
Treatment	Mineral	Total		Bacteria Protozoa Nematodes			
	kg ha ⁻¹	yr ⁻¹	mg soil ⁻¹ mg	soil ⁻¹ g soil ⁻¹			
Control	0	0	600 1	68 246			
Low N Fertilizer	200	200					
Manure	200	400	763 2	63 1017			
High N							
Fertilizer	400	400	521 1	07 268			
Manure	400	800	931 5	33 1092			

SOIL BIOTA (Table 2)

 Manure increased populations of bacteria, bacteria-eating nematodes and protozoa compared to fertilizer and control plots. This suggests that manure increases both N-immobilization and N-mineralization activity in the soil.

Earthworm numbers (and biomass) were higher in manure than fertilizer treatments (data not shown).

Table 3. Effect of applying fertiliz er and dairy slurry (1994-1998) on total soil carbon, nitrogen and organic matter in 1998. *Shaded rows are equivalent rates of applied total-N*.

Treatment	<u>Appli</u> Mineral		Carbon I	Total Soil Carbon Nitrogen Org. matter		
	kg ha ⁻¹ yr ⁻¹			%%		
Control	0	0	3.45	0.29	8.1	
Low N						
Fertilizer	200	200	3.21	0.27	7.8	
Manure	200	400	3.82	0.31	8.7	
High N						
Fertilizer	400	400	3.56	0.30	7.8	
Manure	400	800	3.81	0.31	8.7	

SOIL CAND N COMPOSITION (Table 3)

 High manure enriched total N, C and organic matter in the 0-15 cm soil layer compared to control and fertilizer.

 This shows that manure helps to sequester carbon and enriches the soil and probably improves its moisture holding capacity.

Table 4a. Effect of applying fertiliz er and dairy slurry (1994-1998) on extractable soil P at 3 soil depths in 1998. *Shaded rows are equivalent rates of applied total-N*.

	Applie	ed N	P	P in soil layers			
Treatment	Mineral	Total	0-15cm	15-30 cm	30-60 cm		
	kg ha	vr ⁻¹		ppm			
Control	0	0	135	89	25		
Low N							
Fertilizer	200	200	133	94	21		
Manure	200	400	162	102	32		
High N							
Fertilizer	400	400	136	99	27		
Manure	400	800	194	129	22		

Table 4b. Effect of applying fertilizer and dairy slurry (1994-1998) on extractable soil K at 3 soil depths in 1998. Shaded rows are equivalent rates of applied total-N.

	Applie	ed N	к	K in soil layers		
Treatment	Mineral	Total	0-15cm	15-30 cm	30-60 cm	
	kg ha ⁻¹	yr ⁻¹		ppm		
Control Low N	0	0	108	82	101	
Fertilizer	200	200	33	31	90	
Manure	200	400	122	99	112	
High N						
Fertilizer	400	400	41	28	70	
Manure	400	800	293	146	152	

AVAILABLE SOIL NUTRIENTS (Table 4a, b)

• Application of manure increased available soil P in the 0-15 cm depth. Some movement to the 15-30 cm layer is evident in the high manure plots.

• Application of manure increased soil potassium in the 0-15 cm depth. Movement down to the 15-30 cm layer is evident in the high manure plots

 Residual soil NO₃ in Oct. was low for low fertilizer and manure. Residual NO₃ was 65 and 140 kg/ha more than control for high-manure and high-fertilizer, respectively (not shown).

CONCLUSIONS

At equal rates of *total* N, long-term application of manure supported somewhat higher yield than fertilizer whereas fertilizer produced higher N-uptake and N content.

- Alternating fertilizer/manure combined high yield, N content and N use efficiency
- Manure increased biological activity in the soil and total soil C, N and organic matter.
- The imbalance between nutrient ratios in manure and in plants is the greatest long-term challenge to manure application

