Tile Drainage -Manitoba Experiences

Bruce Shewfelt, Msc., P. Eng. Michelle Harland, Msc. PFRA Morden District Office Manitoba Region Canada

En S

History in Manitoba

♦ 1980s

- Drought
- Wet Sands Research

♦ 1990s

- Wet cycle
- Pilot Project 93-97
- High Value crops
- Tile plant
- Wet sands value !

♦ 2000s

2

- Environment?
- Salinity

5 mg

Tile in Manitoba - Purpose

- Reduce risk of drown out !
 - Loamy sands
 - Sandy loams
 - Fine sandy loams
 - Silt loams
- Reduce salinity ?
 - Fine sandy loams
 - Clay loams
- Improve root zone and field access

Pilot Project – 1994 to 1997 evaluated

- drainage effectiveness
- environmental impact
- ♦ 4 sites (soil types = clay loam to sand)
- factsheet available (copies)

Design Criteria – Pilot Project

- \$300-\$500 per acre
- account for silt in soils (filter cloth)
- hydraulic conductivity varies
- drainage coefficient ~ 6 mm/day (1/4 " per day)
- considered crop demand (3 to 6 mm/day)
- considered soil storage potential and water to drain
 - clay; silt; sand
- design rainfall ?
 - 1:50 rain ~ 14 mm/day for 10 days OR 8 mm/day for 20 days
 median growing season rainfall 350 mm (14 inch)

Pilot Project Sites

Site	Acres	Soil Type	Design	Spacing Between Tile (m)	Depth to Drain Invert (m)	Outlet Type	\$/ac
A	27	sand over clay	random	30 to 40	0.9 to 1.3	gravity	510
В	21	sand	systematic	40	0.8 to 1.5	pumped	387
С	81	clay loam or sandy loam over clay	systematic	30	0.9 to 1.2	gravity	542
E	45	sandy loam over silty	systematic	30	1.2 to 1.4	gravity	461
Agriculture and Agriculture et Clay Agri-Food Canada Agriculture Canada							

P

Infrared shows drown out

Site A field boundary in yellow

LAND OWNER D. Boyachek

Bruce & Bob Bartley: Tile Drainage Performance Assessment

Ø

Monitoring Program

Precipitation
Water Table Levels
Discharge
Water Quality
Crop Management Practices

Monitoring Equipment

Solar Panel

Rain Gauge

Water Level Recorder - Flow

ata Loggei

1996 - Site A - Field Data Area Drained 27 Acres Soil Loamy Sand over Clay Total Rainfall **12 Inches** Crop Grown Corn Design Flow 103 igpm Observed Max. Flow 66 igpm 9.6 ac. ft. Discharge

(4.3" on 27 ac.)

d Agriculture et ada Agro-alimentaire Canada Site A - 1996

Canada

BOYACHEK CORN GROWERS TILE DRAIN PROJECT -1995

1996 - Site A - Water Quality

Nitrate-N

- Max. Conc.
- Min. Conc.
- Conductivity
 - Max.
 - Min.
- Pesticide Levels
 Atrazine

43.5 ppm (Apr. 24) 28.5 ppm (July 25)

1720 uS/cm (May 23) 1260 uS/cm (Apr. 21)

0.0002 ppm (July 25)

4

Comments – Producer Site A

 "the tile allowed me to get on the field in the fall of 1994 and to seed at least a week earlier in 1995"

 "the 1995 crop in the tiled low areas outyielded the crop in the untiled low areas by 70%; overall yield improvement due to tile was about 20%"

1995 - Site E - F ield Data

- Area DrainedTotal Rainfall
- Crop Grown
 Design Flow
 Observed Max. Flow gpm
- 45 Acres 15 Inches (plus 2"irrigation) Onions 194 gpm 36

\$

1996 - Site E - Field Data

Area DrainedTotal Rainfall

Crop Grown
 Design Flow
 Observed Max. Flow gpm

45 Acres 11 Inches (plus 1" irrigation) Potatoes 194 gpm 53

\$

1996 - Site E - Water Quality

Nitrate-N - Max. Conc. - Min. Conc. Conductivity Max. – Min. Pesticide Levels Furadan – Polyram

59 ppm (July 25) 3 ppm (Aug. 8)

5070 uS/cm (May 23) 1140 uS/cm (Aug. 8)

not detected (ppt) not detected (ppt)

Canada

Site E

1995 Water Table Level & Precipitation

Comments: Producer Site E

- "took awhile for impact of the drainage to become evident after installing in 1994"
- "pretty much would have lost the 45 acres onion crop in 1995 without the tile"
- (ps. Installed more tile on main farm BUT installing at 15 m spacing (50') and shallower!)

Tile Water Quality - Pilot

Conductivity

303 to 5070 uS/cm

Nitrate-N1.8 to 73.6 ppm

Pesticides 1 detect
 Atrazine 0.0002 ppm (CWQG 0.005 ppm)
 all other below D.L.'s

Pilot Project Conclusions - 1997

Tile Performance:

- water volume significant (3"to 5"/ac)
- water quality issues (nitrates and EC)
- 30 m (100 foot) spacing and 0.9 to 1.2 m (3 to 4 feet) depth adequate especially for loamy sands
- Ps. producers NOW going 50-60 foot spacing !
- gravity outlet preferred, but pumps work

Producer benefits !

- Earlier start
- Reduced drown out
- Access for spraying and cultivation
- Compaction reduced
- HOPE for salinity reduction
- PROBABLY better fertilizer utilization and timing
- Decreased surface runoff
- Frost control

Economics of Tile Drainage

PFRA Study

- "to cover the cost of the drainage, corn producers would have to realize and increase of 21to 30% in corn yields" over a ten year planning horizon
- for the most costly project this is equal to 18/bu/ac

- (†

Future (Predicted 1994)

increase tile drainage

- increased acreage of potatoes
- other high value crops
- more cost efficient designs
- increase in land values
- minimize environmental impacts
 - adopt BMPs
 - reuse/recycling of effluent water
- Iicensing issues ?
 - environmental concerns (Fisheries, Endangered Species)

Post Pilot Project 1997 - today

- Tile plant in late
 1990s
- Manitoba based contractors and self installers
- Farmer satisfied with drainage
 - Cost/benefit good
 - Design (50' spacing)
 - Tile water recycling
 - Salinity reduction
- Farmer concerns with drainage
 - Water quality
 - Downstream impacts
 (feel these are ninanada

Ŷ

En S

Questions?

