Guidelines For Estimating White Pea (Navy) Bean Production

Date: January, 2006

This guide is designed to provide you with planning information and a format for calculating the cost of production for a white pea (navy) bean enterprise for both row crop and solid seeded production. Also available, is an Excel spreadsheet that can be downloaded from the Manitoba Agriculture, Food and Rural Initiatives website.

The cash cost inputs associated with growing a crop in Manitoba are substantial. It is extremely important for farm managers to do detailed calculations to select the optimum crop combination that will maximize profits. Detailed planning is also necessary when estimating the amount of operating credit required to finance the inputs.

Producers are encouraged to calculate their own costs of production. Costs and yields differ on each farm due to soil type, climatic conditions and agronomic practices.

Disclaimer: This budget is only a guide and is not intended as an in depth study of the cost of production of this industry. Interpretation and utilization of this information is the responsibility of the user. If you require assistance with developing your individual budget, please contact your local MAFRI office.

Industry Summary

Dry edible beans is a general term used to describe several bean market classes that include white pea (navy), pinto, black, light red kidney, dark red kidney,cranberry and great northern beans. Dry edible bean production in Manitoba is currently averaging 210,000 acres with a peak of 310,000 acres in 2002. White pea (navy) beans are the most common type accounting for over 60% of the total acres.

Traditionally white pea (navy) beans are grown as a row crop in 36 or 30 inch rows. Under this system weeds are managed through a combination of cultivation and herbicides. Harvest system consists of cutting the bean stems below the ground with a knife, putting them in a swath to dry and windrowing the swaths before combining.

New growers are looking at growing beans in row widths from 8 to 21 inches using their existing air seeders. This practice is often referred to as solid seeded or narrow row production and accounts for approximately 20% of the edible acreage in Manitoba. Solid seeded bean production relies on herbicides for weed control and requires upright varieties that lend themselves to direct combining or swathing.

White Pea (Navy) Bean - Input

Assumptions:

1. This budget outlines the cost of production for navy beans.
2. Assumes use of fertilizer.
3. Production based on recommended practices.

Table 1. Operation Profile

Number of Acres
Number of total acres
Yield per Acre (pounds)
Custom Spraying Cost per Acre
Market Price of Navy Beans (\$/lb)
Price of Diesel (\$/litre)

Row Crop Solid Seed

400	400
1,500	1500
1,700	1,500
$\$ 5.00$	$\$ 5.00$
$\$ 0.20$	$\$ 0.20$
$\$ 0.52$	$\$ 0.52$

1.03 Herbicides

Includes application costs
Edge (PPI)
Poast (PE)
Basagran (PE)
1.04 Insecticide/Fungicide

Row Crop Solid Seed
$\$ 30.00 \quad \$ 30.00$
$\$ 5.00 \quad \$ 5.00$
1
1
1.05 Crop/weed dry down

Desiccant
$\$ 14.00$
$\$ 14.00$

Machinery Costs

Pickett	$\mathbf{\$ 4 0 , 0 0 0}$
Windrower	$\mathbf{\$ 1 5 , 0 0 0}$
Cutter 8 row	$\mathbf{\$ 1 0 , 0 0 0}$
Planter 8 row	$\mathbf{\$ 1 3 , 0 0 0}$
Planter 8 row new	$\mathbf{\$ 4 0 , 0 0 0}$
Planter 12 row	$\mathbf{\$ 2 0 , 0 0 0}$
Planter 12 row new	$\mathbf{\$ 5 0 , 0 0 0}$
Header 24 ft	$\mathbf{\$ 3 0 , 0 0 0}$

White Pea (Navy) Bean - Cost of Production Summary January, 2006

	Row Crop		Solid Seed		
A. Operating Costs	\$/acre	\$/lb	\$/acre	\$/lb	Your Cost
1.01 Seed \& Treatment	\$44.20	\$0.0260	\$62.05	\$0.0414	
1.02 Fertilizer	\$31.10	\$0.0183	\$46.50	\$0.0310	
1.03 Herbicides	\$42.00	\$0.0247	\$56.00	\$0.0373	
1.04 Insecticide/Fungicide	\$35.00	\$0.0206	\$35.00	\$0.0233	
1.05 Crop/Weed Dry Down	\$14.00	\$0.0082	\$14.00	\$0.0093	
1.06 Fuel Costs	\$24.10	\$0.0142	\$18.80	\$0.0125	
1.07 Repair \& Maintenance	\$11.00	\$0.0065	\$9.40	\$0.0063	
1.08 Insurance	\$13.14	\$0.0077	\$13.14	\$0.0088	
1.09 Miscellaneous	\$8.00	\$0.0047	\$8.00	\$0.0053	
1.10 Land Taxes	\$7.00	\$0.0041	\$5.25	\$0.0035	
Subtotal Operating	\$229.54	\$0.1350	\$268.14	\$0.1788	
1.11 Interest on Operating	\$6.31	\$0.0037	\$7.37	\$0.0049	
Total Operating Costs	\$235.85	\$0.1387	\$275.51	\$0.1837	
B. Fixed Costs					
2. Depreciation					
2.01 Machinery	\$27.50	\$0.0162	\$23.50	\$0.0157	
2.02 Storage	\$2.36	\$0.0014	\$2.36	\$0.0016	
3. Investment					
3.01 Land	\$34.00	\$0.0200	\$24.00	\$0.0160	
3.02 Machinery	\$11.00	\$0.0065	\$9.40	\$0.0063	
3.03 Storage	\$1.16	\$0.0007	\$1.16	\$0.0008	
Total Fixed Costs	\$76.02	\$0.0447	\$60.42	\$0.0403	
C. Labour	\$20.70	\$0.0122	\$17.25	\$0.0115	
Total Cost of Production	\$332.57	\$0.1956	\$353.18	\$0.2355	
Estimated Yield per acre	1,700		1,500		
Disclaimer: This budget is only a guide and is not intended as an in depth study of the cost of production of this industry. Interpretation and utilization of this information is the responsibility of the user.					

White Pea (Navy) Bean Cost of Production Worksheet Row Crop Assumptions

1. This budget provides a guideline to determine the cost of production for a row crop white pea (navy) bean enterprise, based on 400 acres.
2. The investment in machinery and equipment was assumed to be $\$ 275$ per acre. The machinery complement is similar to a grain enterprise with the addition of a row crop planter, row crop cultivator, row crop sprayer and a bean windrower.
3. A yield of 1700 lbs per acre was assumed.
4. A land value of $\$ 850$ per acre was assumed.

A. Operating Costs

Your Cost

1.01 Seed \& treatment

	100,000	plants/acre	
\div	2200	seeds/lb	
x	1.15	emergence factor	\square
$=$	52	seeding rate lbs/acre	
x	$\$ 0.85$	seed cost treated with DCT $(\$ / l \mathrm{~b})$	\square
$=$	$\$ 44.20$	$\$ /$ lacre	

1.02 Fertilizer

Nitrogen		35	Ibs/acre
	x	\$0.440	cost/lb
	$=$	\$15.40	\$ /acre
$\mathrm{P}_{2} \mathrm{O}_{5}$		30	Ibs/acre
	x	\$0.290	cost/lb
	$=$	\$8.70	\$ /acre
$\mathrm{K}_{2} \mathrm{O}$		20	Ibs/acre
	x	\$0.225	cost/lb
	$=$	\$4.50	\$ /acre

1.03 Herbicide

	$\$ 18.00$	pre plant incorporated
+	$\$ 8.00$	post emergent
\pm	$\$ 16.00$	post emergent
$=$	$\$ 42.00$	\$ lacre

1.04 Insecticide/Fungicide

1 number of applications

x	$\$ 5.00$	cost/application
+	$\$ 30.00$	fungicide
$=$	$\$ 35.00$	$\$$ lacre

1.05 Crop/ Weed Dry Down
\$14.00 \$ lacre

1.06 Fuel Costs

a) Field Fuel Costs

Operation	Times Over	Width feet	Speed mph	Fuel \$/ac.	
	1	48	5	1.18	
Spray	1	90	7	0.45	\square
Cultivate	2	48	5	2.36	\square
Plant	1	24	6	1.97	\square
Cultivate	2	24	6	3.94	\square
Spray	2	90	7	0.90	\square
Puller	1	12	7	3.38	\square
Combine	1	24	3.5	$\underline{3.38}$	\square
Total				$\mathbf{\$ 1 7 . 5 5}$	\square

b) Truck Fuel Costs from field to storage
\(\left.\begin{array}{rrlr} \& \& 1700 \& lbs/acre gross yield

\& \div \& 340 \& total tons

\& = \& 5 \& tons (truck capacity)\end{array}\right]\)| \square |
| :--- |
| |
| \times |

1.07 Repair \& Maintenance

	4.0% x	percentage rate investment/acre
$=$	$\$ \mathbf{\$ 2 7 5}$	\$ lacre

\qquad

1.08 Insurance

	$\$ 8.07$	crop insurance
+	$\$ 5.07$	hail insurance
$=$	$\$ \mathbf{1 3 . 1 4}$	\$ lacre

\qquad
\$13.14 \$ lacre
1.09 Miscellaneous

$$
=\quad \$ 8.00 \quad \$ \text { lacre }
$$

1.10 Land Taxes

$$
=\quad \$ 7.00 \quad \$ \text { lacre }
$$

1.11 Interest on Operating

	$\$ 229.54$	Subtotal Operating
\div	2	average
\times	$\underline{5.5 \%}$	interest rate
$=$	$\$ 6.31$	\$ lacre

\qquad
\qquad
\qquad

B. Fixed Costs

2. Depreciation

Original Value - Salvage Value Useful Life

2.01 Machinery

	$\$ 275.00$	cost/acre
-	$\$ 0.00$	salvage value
\div	$\underline{10}$	useful life
$=$	$\$ 27.50$	\$ lacre

\qquad

2.02 Storage

$$
\begin{array}{rrl}
& \$ 52.50 & \text { cost/acre } \\
- & \$ 5.25 & \text { salvage value } \\
\div & \underline{20} & \text { useful life } \\
= & \$ 2.36 & \$ \text { lacre }
\end{array}
$$

3. Investment

Original Value + Salvage Value \times Investment Rate 2

3.01 Land

	$\$ 850.00$	cost/acre
\times	$\underline{4.0 \%}$	$\%$ investment rate
$=$	$\$ 34.00$	$\$$ lacre

\qquad
3.02 Machinery

	$\$ 275.00$	cost/acre
+	$\$ 0.00$	salvage value
\times	$\underline{4.0 \%}$	$\%$ investment rate
$=$	$\$ 11.00$	$\$$ lacre

3.03 Storage

	$\$ 52.50$	cost/acre	
+	$\$ 5.25$	salvage value	
\div	2	average	
\times	$\underline{4.0 \%}$	\% investment rate	
$=$	$\$ 1.16$	$\$$ lacre	

C. Labour

	$\$ 11.50$	\$/hour
x	1.8	hours/acre
$=$	$\$ 20.70$	$\$$ lacre

White Pea (Navy) Bean Cost of Production Worksheet

Solid Seed Assumptions

1. This budget provides a guideline to determine the cost of production for a solid seeded white pea (navy) bean enterprise, based on 400 acres.
2. The investment in machinery and equipment was assumed to be $\$ 235$ per acre. The machinery complement is similar to a grain enterprise with the addition of a flex header.
3. A yield of 1500 lbs per acre was assumed. This is slightly lower than the yield for row crop production to reflect the fact that much of the acreage lies outside the traditional bean production area.
4. A land value of $\$ 600$ per acre was assumed.

A. Operating Costs

Your Cost
1.01 Seed \& treatment

	140,000	plants/acre	
\div	2200	seeds/lb	
x	1.15	emergence factor	-
$=$	73	seeding rate lbs/acre	
x	$\$ 0.85$	seed cost treated with DCT $(\$ / \mathrm{lb})$	\square
$=$	$\$ 62.05$	$\$$ lacre	

1.02 Fertilizer

Nitrogen		70	Ibs/acre
	x	\$0.440	cost/lb
	=	\$30.80	\$ /acre
$\mathrm{P}_{2} \mathrm{O}_{5}$		30	Ibs/acre
	x	\$0.290	cost/lb
	=	\$8.70	\$ /acre
$\mathrm{K}_{2} \mathrm{O}$		20	Ibs/acre
	X	\$0.225	cost/lb
	$=$	\$4.50	\$ /acre

1.03 Herbicides

	$\$ 20.00$	pre plant incorporated
+	$\$ 12.00$	post emergent
\pm	$\$ 24.00$	post emergent
$=$	$\$ 56.00$	$\$$ lacre

\qquad
1.04 Insecticide/Fungicide

	1	number of applications
x	$\$ 5.00$	cost/application +
$=$	$\$ 30.00$	fungicide
$=$	$\$ 35.00$	$\$$ lacre

\qquad
1.05 Crop/Weed Dry Down
\$14.00 \$ lacre
1.06 Fuel Costs
a) Field Fuel Costs

Operation	Times Over	Width feet	Speed $\mathbf{m p h}$	Fuel \$/ac.
Cultivate	1	48	5	1.18
Spray	1	90	7	0.45
Cultivate	2	48	5	2.36
Plant	1	24	6	1.97
Spray	2	90	7	0.90
Swath	1	24	4.5	2.63
Combine	1	24	4	$\underline{2.95}$
Total				$\mathbf{\$ 1 2 . 4 4}$

b) Truck Fuel Costs from field to storage

		1,500	lbs/acre gross yield	
	$=$	300	total tons	
	\div	5	tons (truck capacity)	
	=	60	trips	
	X	5	miles per trip	
	$=$	300	total miles	
	\div	2.0	fuel consumption (miles/gal)	
	=	681.9	total litres (4.546 litres/gal)	
	\div	400	total acres	
	=	1.70	litres/acre	
	X	\$0.80	fuel cost (\$/litre)	
Total	$=$	\$1.36	trucking (\$ lacre)	
c) Other fuel costs		\$5.00	\$ lacre	
Total	$=$	\$18.80	fuel costs (\$ /acre)	

1.07 Repair \& Maintenance

	4.0%	percentage rate
\times	$\$ 235$	investment/acre
$=$	$\$ 9.40$	$\$$ lacre

\qquad
1.08 Insurance

	$\$ 8.07$	crop insurance
+	$\$ 5.07$	hail insurance
$=$	$\$ 13.14$	$\$$ lacre

\qquad
\$13.14 \$ lacre
1.09 Miscellaneous
$=\$ 8.00 \quad \$$ lacre
1.10 Land Taxes
$=\quad \$ 5.25 \quad \$$ lacre
1.11 Interest on Operating

	$\$ 268.14$	Subtotal Operating
\div	2	average
\times	$\underline{5.5 \%}$	interest rate
$=$	$\$ 7.37$	$\$$ lacre

B. Fixed Costs

2. Depreciation

Original Value - Salvage Value Useful Life

2.01 Machinery

	$\$ 235.00$	cost/acre
-	$\$ 0.00$	salvage value
\div	10	useful life
$=$	$\$ 23.50$	$\$$ lacre

\qquad
2.02 Storage

	$\$ 52.50$	cost/acre
-	$\$ 5.25$	salvage value
\div	$\underline{20}$	useful life
$=$	$\$ 2.36$	\$ lacre

\qquad
\qquad
3. Investment

Original Value + Salvage Value \times Investment Rate

 23.01 Land

	$\$ 600.00$	cost/acre
x	$\mathbf{4 . 0 \%}$	$\%$ investment rate
$=$	$\$ 24.00$	$\$$ lacre

\qquad
\qquad
\qquad
3.02 Machinery

	$\$ 235.00$	cost/acre
+	$\$ 0.00$	salvage value
\times	4.0%	$\%$ investment rate
$=$	$\$ 9.40$	$\$$ lacre

3.03 Storage

	$\$ 52.50$	cost/acre	
+	$\$ 5.25$	salvage value	
\div	2	average	
\times	4.0%	$\%$ investment rate	
$=$	$\$ \mathbf{\$ 1 . 1 6}$	\$ lacre	

C. Labour

	$\$ 11.50$	\$/hour
x	$\underline{1.5}$	hours/acre
$=$	$\$ 17.25$	\$ lacre

For further information contact your Manitoba Agriculture, Food and Rural Initiatives office.
Prepared by:
Peter Blawat
Keith Kyle
Farm Management Specialist
Farm Management Specialist
Bruce Brolley
Pulse Crop Specialist

