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Introduction

A standard result in optimal-control theory iscertainty equivalence, which
results under the assumption of a linear model with additive uncertainty and
a quadratic loss function. Certainty equivalence implies that only themean
values (that is, the probability-weighted average outcomes) of target
variables matter for the optimal policy setting. Consider monetary policy
under flexible inflation targeting, where inflation and the output gap are the
target variables. Because of the sizable lags in the full effects of monetary
policy actions on output and inflation, say about a year for output and about
two years for inflation, such monetary policy is most effective if it is forward
looking and relies on inflation and output-gap projections. Certainty
equivalence then implies that optimal monetary policy need only consider
mean inflation and output-gap projections. That is, the central bank need
only to do flexible “mean” inflation targeting, regardless of the degree of
uncertainty of the projections. Only the first (statistical) moment matters for
policy, not the higher moments.
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Furthermore, certainty equivalence implies that alow-probability extreme
event(that is, a large shock with a small probability) should be taken into
account by themean sizeof the event, that is, the probability-weighted size
of the shock. Such an event could, for instance, be a large and sudden
depreciation of the currency (say, the pound or the dollar), a bursting of an
asset-price bubble (say, a property-price bubble), or a war in the Middle East
with, among other disturbances, an associated oil-price hike. For the Bank
of England, the possibility of a sudden substantial depreciation of the pound
and resulting higher inflation has been a relevant example. If the Bank of
England normally aims at achieving the inflation target at a two-year
horizon, this would imply setting interest rates such that mean inflation
about two years ahead, including the possibility of a sudden depreciation,
approximately equals the inflation target. If a depreciation of the pound
would not occur during the next two years, actual inflation would most
likely end up lower than the inflation target. Since a depreciation would
occur only by a small (subjective) probability, actual inflation would with a
large probability fall short of the inflation target.

In informal discussions, several central bankers have questioned whether, in
such situations, it may make sense to put less weight on the low-probability
event than suggested by certainty equivalence and the mean size of the
event, perhaps even to ignore the low-probability event altogether. For
instance, another policy option is to wait and see, and to deal with the event
only if it occurs. Freedman (2002), at the Jackson Hole Symposium in 2002,
sponsored by the Federal Reserve Bank of Kansas City, stated, in com-
menting on Svensson (2002):

There are two points about this paper I’d like to make. The
first relates to the mean versus mode debate, and I’d like to tie
that to the asset price issue. One of the real challenges to
central banks is how to deal with small probability cases. If we
have a situation where there is, say, a 10 percent probability of
an asset price collapse and a 90 percent probability that it is
not going to happen, do you then go ahead and focus on what
one would call the mode, which is the appropriate path for
policy in the 90 percent case and say, “If the 10 percent case
happens, we’ll try and deal with it later.”? Or do we try to deal
with the mean? In that case if the small probability outcome
doesn’t happen, you are going to have an interest rate path that
is not appropriate. But even if it does happen, you will not
have moved interest rates enough to deal with the collapse of
asset prices in any case. So, it is very much an open question
of how to deal with such a situation.
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The Monetary Policy Committee (MPC) of the Bank of England has raised
issues like these, for instance, on 6–7 February 2002, in discussing the issue
of a potential depreciation of the pound (Bank of England 2002, 10):

[S]ome members placed weight on upside risks to the inflation
outlook. Two main risks to inflation were emphasised: from
the possibility of a depreciation of sterling’s exchange rate and
from the possibility that consumption would not slow as much
as projected. . . . There was evidence that the exchange rate
was overvalued. . . . Other members placed less weight on the
exchange rate risk in the published fan charts—either because
they thought the probability of a depreciation was low or
because the pass through to prices would be small or because
policy could react if and when sterling fell.

Furthermore, MPC member Nickell (2002, 19) discusses the issue of
exchange rate movements for the Bank of England’s monetary policy in
somewhat greater detail:

The important question here is should we move interest rates
up today in order to forestall the potential inflationary
consequences of a significant exchange rate fall which might
come about as UK domestic demand growth slows and inter-
national demand growth speeds up?

He prefers a wait-and-see approach, though:

In my view, the answer is simply no. If, and when, such a fall
in the exchange rate comes about, then is the time to make
appropriate adjustments, if any, in interest rates. To act pre-
emptively on this front is difficult because of the huge un-
certainties involved in forecasting exchange rate movements
and not really necessary because the lags to demand from
interest rates and exchange rates are of the same order of
magnitude.

He clarifies the last point by stating (Nickell 2002, footnote 16):

The argument here is that the first round, price level effects
from sudden exchange rate moves should be accommodated,
with monetary policy only acting on the potential second-
round effects.

The quotes from the Bank of England’s minutes and Nickell’s speech could
be interpreted as indicating a desire to assume the problem away and to
argue that there is no trade-off, because (i) it is appropriate to accommodate
the first-round effect on inflation of a currency depreciation, and (ii) the
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second-round effects on inflation have such long lags that they can be
handled by interest rate adjustments once the depreciation has occurred. But
what if it would be undesirable to accommodate also the first-round effect
on the price level?

Clearly, if the extreme event in question is such that there is time to react to
it in case it materializes, there is no point in trying to pre-empt the event.
Instead, there is an option value of waiting to see if the event materializes
and only then take the appropriate action. But assume that the event will,
with some probability, occur within the lag between a policy action and its
impact on the target variables and, furthermore, have a sizable direct impact
on the target variable within that lag, so that any policy action after the event
cannot undo this. Then, there is a genuine trade-off between acting to pre-
empt the event by taking it into account by its mean size, and not pre-
empting.

This paper tries to come to grips with problems of this type, when there is a
genuine trade-off between pre-empting and not, by examining what kind of
optimal policy for a low-probability shock is implied by other loss functions
than the standard quadratic one.1 The paper considers a simple policy
problem with a sequence of different loss functions: quadratic, combined
quadratic/absolute-deviation, absolute-deviation, combined quadratic/con-
stant, and perfectionist.2 Obviously, this is a short and far from exhaustive
list of possible loss functions. The paper shows that, under some simplifying
assumptions, each of these loss functions puts less weight on a low-
probability extreme event than the previous one, down to the quadratic/
constant and perfectionist loss functions, which completely ignore the low-
probability extreme event. The paper also examines the case when the size
of the extreme shock is endogenous and depends on the policy instrument.
This introduces an additional effect on optimal policy of the extreme shock
for all loss functions except the combined quadratic/constant and the
perfectionist.

1 A Simple Policy Problem

Let denote (the rate of) future inflation, and assume that future inflation is
determined by the current state of the economy, , a current (policy)
instrument, , and an exogenous future stochastic shock, , according to

1. Vickers (1998) and Wallis (1999) have previously examined whether some of these loss
functions motivate mean, median, or mode inflation targeting under normal circumstances.
2. The combined quadratic/constant loss function can be seen as a simplification of the bell
loss function examined by Bray and Goodhart (2002).
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,

where is a positive constant. Assume that the instrument has to be set
before the future shock is known but after the current state of the economy is
observed. Assume that the future shock is the sum of two independently
distributed random variables,  and ,

.

Assume that has a zero mean and a continuous distribution. It will be
interpreted as a future normal-size shock with relatively modest variance.
Let  denote the density function of the normal-size shock.

Let have a discrete distribution such that it can take two values, 0 and ,
with probability and , respectively. Let be a given
large number, and let be a small probability. (The case when the size of the
shock is endogenous will be examined in section 7.) The high-probability
outcome, , and the resulting shock, , will be identified with a
future normal outcome. The low-probability outcome, , and the
resulting shock, , will be identified with a futureextremeoutcome.
Thus, the extreme outcome is here a large inflationary shock.3

Let be the density function of the future shock . Under the assump-
tions above, it will be given by

. (1)

An example of such a density function is shown in Figure 1. The
unconditional mean of , , fulfills

.

For future reference, let denote themedian of . It is (for a
continuous distribution) defined by

, (2)

where denotes the probability that the realization of
the future shock is less than or equal to a given value . Furthermore, let

3. The extreme outcome could be a large deflationary shock. This brings in issues of the
zero lower bound on interest rates and the risk for the economy of falling into a liquidity
trap with a prolonged recession and deflation. These topical issues have to do with non-
linearities in the transmission mechanism of monetary policy and raise separate issues that
are not discussed here. See Svensson (2003a), for instance, for a recent discussion of defla-
tion and liquidity traps and references to the literature on those issues.
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mode denote themodeof , that is, the set of (which can have several
elements) for which the probability density is the highest,

.

Let denote expected future inflation conditional on the future normal
outcome, thenormal mean (future)inflation,

.

We note that normal mean inflation is related to the current state of the
economy and the current instrument by

, (3)

and that the relation between realized future inflation and normal mean in-
flation is

. (4)

For given normal mean inflation, thedensity function of future inflationis
then given by . It is shown in Figure 2.Unconditional mean
(future) inflation, , will fulfill

. (5)

z( ) z z

mode z( ) arg maxh z( )≡

π

π E π η;[≡ 0]=

π x αi–=

π π z+=

h π π–( )
Eπ

Eπ πh π π–( ) πd∫≡ π γa+=

Figure 1
The density function of the shock

h(z)

(1 – γ) f(z)

γ f(z – a)

0 a
z



Optimal Policy with Low-Probability Extreme Events 85

It follows that we can conveniently discuss the policy action in terms of the
resulting normal mean inflation, and for given normal mean inflation (and
current state of the economy), then infer the corresponding instrument
setting from equation (3).

Let be a loss function over inflation with a fixed inflation target, ,
which we take to be a low positive number. The loss function has a mini-
mum for the inflation target: for all . The minimum will be
unique for the loss functions considered here ( for all ),
but this is not necessary and the treatment here can easily be extended to loss
functions that have non-unique minima, for instance those corresponding to
a “zone of indifference.”4

The policy problem then consists of selecting the normal mean inflation, ,
so as to minimize theexpected loss,

.

4. A loss function fulfilling for and for is
an example of a zone-of-indifference loss function.
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Since inflation is the only target variable (the only variable entering the loss
function), this is a case of so-called “strict” inflation targeting—an
unrealistic but simple case to deal with.

The first-order condition for an optimum can then be written

,

where is themarginal loss(function), the derivative of the loss

function with respect to inflation. Hence, we can write this simply as

. (6)

That is, the normal mean inflation should be chosen so that theexpected
marginal lossequals zero. This is theoptimal targeting rulefor this problem
(see, for instance, Svensson (2003b) on targeting rules).

2 A Quadratic Loss Function:
Mean Inflation Targeting

Consider a quadratic loss function,

. (7)

This loss function is shown as the solid curve in Figure 3. The marginal loss
is continuous, linear, and increasing in inflation,

. (8)

It is shown as the solid line AA' in Figure 4.

From the optimal targeting rule, equation (6), and the marginal loss,
equation (8), it follows that the optimal targeting rule in the quadratic case is
simply

.

That is, normal mean inflation should be set so as to make unconditional
mean inflation equal to the inflation target, what we can call (unconditional)
mean inflation targeting. This is an example of the certainty equivalence that
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Figure 3
Alternative loss functions

Figure 4
Alternative marginal loss functions
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holds under the assumption of a linear model with additive uncertainty and a
quadratic loss function.

It follows from equation (5) that the optimal normal mean inflation with a
quadratic loss function, denoted , is given by

.

It hence undershoots the inflation target by the mean future extreme event,
, the probability-weighted size of the future extreme shock.

3 An Absolute-Deviation Loss Function:
Median Inflation Targeting

Consider an absolute-deviation loss function, that is, a loss function that is
linear in the absolute deviation of inflation from the inflation target,

. (9)

This loss function is shown as the V-shaped dashed-dotted line in Figure 3.
For this loss function, the marginal loss is discontinuous at the inflation tar-
get and otherwise constant,

It is shown as the step function CBFF'B'C' in Figure 4.

The expected marginal loss is hence

,

where I have used that . The optimal targeting
rule, equation (6), requires setting this equal to zero, which results in

. (10)

It follows from equation (2) that normal mean inflation should be set so that
median future inflation equals the inflation target, what we can callmedian
inflation targeting,
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. (11)

It then follows from equations (4) and (11) that the optimal normal mean
inflation with an absolute-deviation loss function, denoted , is given by

. (12)

3.1 A special case

Assume that the normal future shock, , has a bounded symmetric support,
 (where  is a constant).5 Furthermore, assume that

. (13)

This implies that the support of the extreme shock,
, falls outside the support of the normal shock

(this is the case for the density function shown in Figure 1). This is con-
sistent with the previous assumption that the variance of the normal shock
is modest relative to the size of the extreme event.

Furthermore, in order to conveniently compute the median of the total future
shock, , assume that  is uniformly distributed,

(14)

Then the density function of the future shock, , is given by

(15)

This density function is illustrated in Figure 5.

5. The support of a probability distribution is the set of outcomes for which the density or
probability is positive.
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To compute the median of , , we assume that (recall that we
assume that is a small positive number) and use that the median then falls
within the support of the normal shock,

. (16)

It follows from equation (15) that

,

which, together with equation (2), results in a convenient expression for the
median of ,

, (17)

confirming inequality (16). It follows from equations (12) and (17) that
normal inflation with an absolute-deviation loss function will fulfill

. (18)

Unconditional mean inflation will then fulfill
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,

where the inequality holds for  and inequality (13).

4 A Combined Quadratic/Absolute-Deviation
Loss Function: Less Weight on the Extreme Event

Consider a loss function that is quadratic for moderate deviations of inflation
from the inflation target but linear in the absolute deviation from the target
for large deviations,

(19)

where denotes the deviation from the target at which the loss function
shifts from quadratic to linear. I shall refer to as thequadratic
rangeof the loss function and to as thelinear range. This loss
function is shown as the combined solid curve for the quadratic range and
short-dashed lines for the linear range in Figure 3.

Such a loss function represents a situation when a quadratic loss function
with a rising marginal loss is considered appropriate for moderate deviations
from the target. For large deviations from the target, the marginal loss is
considered constant rather than increasing, corresponding to a linear range
of the loss function.

The loss function is continuous and has a continuous marginal loss,

This marginal loss is shown in Figure 4 and consists of the constant segment
CB, the increasing linear segment BB', and the constant segment B'C'.

The expected marginal loss is then
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.

Setting the expected marginal loss equal to zero in accordance with the opti-
mal targeting rule, equation (6), results in

. (20)

This condition says that mean inflation conditional on inflation falling with-
in the quadratic range of the loss function should undershoot the inflation
target by the product of the marginal loss in the linear range times the ratio
between (i) the difference between the probability of inflation falling in the
upper linear range and the probability of inflation falling in the lower linear
range, and (ii) the probability of inflation falling in the quadratic range.

Regarding the special case discussed above, assume that , , and  fulfill

. (21)

That is,  exceeds  in inequality (13) with a sufficient margin, so

 and

fit in between (recall that is a small number, so these two expressions are
close to ). This will imply that the normal support of inflation,

, will fall within the quadratic range, and the extreme support
of inflation, , will fall within the linear range of the
loss function.

Given inequality (21), we then have

 and

.

It follows from equation (20) that the optimal normal mean inflation under
the quadratic/absolute-deviation loss function, denoted , undershoots the
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inflation target by times the marginal cost of inflation in the linear
range,6

. (22)

Unconditional mean inflation then fulfills

,

where the inequality follows from inequality (21).

5 A Combined Quadratic/Constant Loss Function:
Normal Mean Inflation Targeting

Consider a combined quadratic/constant loss function, that is, quadratic for
moderate deviations of inflation from the inflation target and constant for
large deviations,

(23)

where denotes the deviation from the target at which the loss function
shifts from quadratic to constant. The loss function is shown as the com-
bined curve for the quadratic range and horizontal long-dashed line for the
linear range in Figure 3. The loss function is continuous, whereas the
marginal loss is discontinuous at ,

6. With this optimal normal mean inflation, the normal support of inflation is
, which by equation (21) falls within the quadratic

range, . The extreme support of inflation is
, which by equation (21) falls within the linear range above
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The marginal loss function, shown in Figure 4, consists of the segment DE,
BB', and E'D'. This loss function can be seen as a simplification of the “bell
loss function,”

,

which is discussed and examined by Bray and Goodhart (2002). The bell
loss function is close to a quadratic loss function for small deviations from
the target and asymptotically approaches an upper bound for large devia-
tions. The marginal loss of the bell loss function is continuous,

,

approximately linear and increasing for small deviations from the inflation
target and approaching zero for large deviations. It can be motivated by a
finite upper bound for the loss, for instance, if the worst thing that can hap-
pen to a central banker is to be fired from the job after bad performance and
this is associated with a finite loss.

The expected marginal loss of the combined quadratic/constant loss function
is then

.

Setting this equal to zero, according to the optimal targeting rule, results in

. (24)

Expected inflation conditional on inflation falling within the quadratic range
of the loss function should equal the inflation target.

In the special case of inequality (21), we have .
It follows that optimal normal mean inflation under a combined quadratic/
constant loss function, denoted , fulfills

.
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6 A Perfectionist Loss Function:
Mode Inflation Targeting

Finally, let us consider a perfectionist, all-or-nothing, loss function, a rather
special case where only an outcome right on the inflation target is acceptable
and everything else is a failure. This can be represented with the help of
Dirac’s Delta function, , which has the properties

and

for any function . The perfectionist loss function can then be written

,

giving an unbounded gain (negative loss) when inflation equals the inflation
target and zero otherwise. The Delta function can be seen as the limit of a
sequence of -functions, the tent-shaped function illustrated in
Figure 6, when  approaches infinity,

.

I avoid illustrating the Delta function in Figure 3. It would be an infini-
tesimally thin negative spike extending to minus infinity located at
and equal to zero elsewhere.

The Delta function is not differentiable at , so we cannot specify the
marginal loss in this case. Therefore, the optimal targeting rule stating that
the expected marginal loss should equal zero does not apply here. Instead,
we have to look directly at the expected loss. It is

,

the negative of the density function for inflation at the inflation target.
Minimizing the loss then corresponds to adjusting normal mean inflation, ,
so as to maximize the probability density of an inflation outcome equal to
the inflation target. This means adjusting normal mean inflation such that the
mode of inflation coincides with the inflation target,mode inflation
targeting,

.
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It follows from equation (4) that the optimal normal mean inflation under the
perfectionist loss function, , is given by

.

For the density function in equation (1), since the probability of the
extreme event, , is a small number, the mode of coincides with the
mode of , the distribution for the normal shock,

.

That is, since the extreme event has low probability, the mode occurs for the
normal outcome and is independent of the probability and the size of the
extreme event. Thus, mode inflation targeting completely disregards the
extreme event (as long as it has low probability).

For a symmetric unimodal distribution for the normal outcome, the mode,
the mean, and the median are all equal. This is the case for the probability
distribution shown in Figure 1, for which is zero. Hence, in
this case, optimal normal inflation under the perfectionist loss function, ,
equals the inflation target,

πp

πp π∗ mode z( )–=

h z( )
γ h z( )

f z( )

mode z( ) mode z η;( 0)= =

f z( ) mode z( )
πp

Figure 6
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δn(π – π∗)
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π

n

π∗ – 1/n π∗ + 1/nπ∗
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.

For distributions that are not symmetric or unimodal, the mode, the mean,
and the median will generally differ from each other. Furthermore, the mode
is not necessarily unique. The uniform probability distribution, assumed in
the special case and shown in Figure 5, has the mode equal to the whole sup-
port of the distribution for the normal outcome,

.

Thus, in this case, the optimal normal mean inflation under the perfectionist
loss function, denoted , is not unique but given by the interval

,

which we can write as .

Thus, a rather bizarre loss function is required to give prominence to mode
projections. Furthermore, mode projections have some undesirable proper-
ties. Of possible measures of the “central tendency” of a projection, it seems
less relevant than the mean or the median. Some central banks nevertheless
present their main projections as mode projections. This practice seems dif-
ficult to defend, as noted by Svensson (2001), for instance.

7 An Endogenous Extreme Shock

Above, the size and probability of the extreme shock have been taken as
exogenous. A possible relevant case, however, is when the size and/or the
probability of the extreme shock depends on the policy instrument. For
instance, the bursting of an asset-price bubble may depend on the policy.7

A simple case is when the size of the extreme shock, , is a linear function
of the instrument,

,

where is a given large positive number and is a given number. Let us
assume that the coefficient is positive, that is, the size of the extreme
inflationary shock is increasing in the instrument. This would seem to fit the
U.K. exchange rate example, since a higher interest rate might increase the
potential overvaluation of the pound and thereby the later depreciation.

7. Pierre Duguay and Charles Goodhart made this point at the conference, which led me to
add this section to the paper. The section has benefited from additional comments from
Charles Goodhart.
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a

a a1 a2i+=
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Generally, the sign of the coefficient could depend on the nature of the
shock. The case above with exogenous obviously corresponds to .
We assume that remains a large positive number for the relevant range of
the instrument.

The probability density function of the shock  can then be written as

,

where the instrument now has a special direct effect on the density
function, since is different from zero. It follows that the density function
of inflation can be written

,

again with a direct effect of the instrument on the density, in addition to the
standard effect on normal mean inflation in equation (3).

The optimal policy now has to take the special direct effect of the instrument
into account. The expected loss is

.

The derivative of the expected loss with respect to the instrument is

.

Since by equation (3), the first term on the right side can be
written

,

the expected marginal loss times . The second term can be written

,
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the probability of the extreme event times the expected loss conditional on
the extreme event times .

The first-order condition with respect to the instrument sets the derivative

.

This, together with the above expressions, results in the optimal targeting
rule,

. (25)

It can be interpreted as follows. A marginal increase of the instru-
ment shifts the whole probability distribution of inflation in Figure 2 to the
left by . The corresponding marginal change of the expected loss is

.

Furthermore, this increases the size of the extreme shock by and
shifts the extreme part of the probability distribution of inflation in Figure 2,
the density function around , to the right by the same amount. The
corresponding marginal change of the expected loss is

,

the probability of the extreme shock times the expected marginal loss
conditional on the extreme event times the increase in the size of the extreme
shock. The sum of these marginal changes in the expected loss must be zero
in an optimum, which gives equation (25).

Policy is affected by the endogeneity of the size of the shock only when the
marginal loss conditional on the extreme shock is non-zero. Then we will
have

 instead of ,

and optimal normal mean inflation will be higher than when the size of the
extreme shock is exogenous. It will be optimal to lower the size of the
extreme shock somewhat, but this requires a lower instrument level and
results in a higher normal mean inflation.
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For thequadratic loss function, we have

, (26)

, (27)

where and denote the optimal normal mean inflation and size of the
extreme shock, respectively. They are related by

, (28)

, (29)

where denotes the optimal instrument setting. Substitution of equations
(26) and (27) into equation (25) leads to the optimal targeting rule

. (30)

Substitution of equations (28) and (29) into equation (30) allows us to solve
for the optimal and thereby and . Since we have (recall
that is assumed to remain a large positive number and is a low positive
number), we see from equation (30) that normal mean inflation will under-
shoot the inflation target by less than the mean size of the extreme shock. If

, normal mean inflation will even overshoot rather
than undershoot the inflation target.

For thecombined quadratic/absolute deviation loss function, we have

,

,

the latter under the assumption that the support of inflation for the extreme
shock falls within the linear range. Substituting this into equation (25) gives

.
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The optimal normal mean inflation undershoots the inflation target by less
than when the size of the extreme shock is exogenous, cf. equation (22).
If , the optimal normal mean inflation even overshoots the inflation
target.

For theabsolute-deviation loss function, we have

,

.

Substituting this into equation (25) gives

, (31)

which implies that the median inflation will overshoot the inflation target.
Let  be defined by

.

We have . Then,

.

The optimal normal mean inflation undershoots the inflation target by less
than when the size of the extreme shock is exogenous.

Under the special case of a uniform distribution, equation (15), we have

.

Combining this with equation (31) gives

.

For , we have , and optimal mean inflation will overshoot the
inflation target.
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For thecombined quadratic/constantloss function and theperfectionistloss
function, the endogeneity of the size of the extreme shock does not affect the
optimal policy, since then .

8 Comparing Optimal Policy
for the Different Loss Functions

Comparing the resulting optimal normal mean inflation for the different loss
functions when the size of the extreme shock is exogenous, we have

,

where , and where the median and the mode of depend on
the distribution . In the special case of inequalities (13) and (21) and
equation (14), we have

.

The quadratic loss function implies setting unconditional mean inflation
equal to the inflation target and hence letting mean inflation conditional on
the normal outcome, normal mean inflation, , undershoot the target by the
mean size of the extreme event, , the probability-weightedsizeof the
extreme event. Thus, the amount of undershooting depends both on the
probability, , and the size, , of the extreme event. The quadratic/absolute-
deviation loss function implies letting normal mean inflation, , under-
shoot the inflation target by the probability-weightedconstant marginal loss
for the extreme event, , which is less than the probability-weighted size of
the extreme event. Once the extreme shock is so large that inflation then falls
in the linear range, the weight on the extreme event is independent of the
size of the extreme event.

The absolute-deviation loss function implies setting median inflation equal
to the target; hence, letting the normal mean inflation, , undershoot the
target by the median of the total shock to inflation,

.

This puts even less weight on the extreme event (by inequality (21), is less
than ). Again, the monetary policy response is independent of the size of
the extreme event. Finally, the quadratic/constant loss function completely
ignores the extreme event, letting the normal mean inflation, , equal the
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inflation target. It ignores the extreme event when the shock is large enough
to fall in the constant range of the loss function, regardless of its probability.

The perfectionist loss function leads to a focus on mode projections and
thereby ignores the extreme event because it is low-probability, regardless of
its size. Whether this implies that normal mean inflation under- or over-
shoots the target depends on whether or not the mode of the normal shock
under- or overshoots the mean.

We have also considered the case when the size of the extreme shock is
endogenous and, more precisely, a linear function of the policy instrument.
We noted that whether the size of the extreme shock is increasing or
decreasing depends on the nature of the shock, and we took as the main case
the one where the size is increasing in the instrument, which fits the U.K.
exchange rate example. Then the size of the extreme shock and normal mean
inflation move in opposite directions when the instrument is adjusted.
Optimal normal mean inflation will then undershoot the inflation target less
for the quadratic, combined quadratic/absolute-deviation and absolute-
deviation loss functions than when the size of the extreme shock is
exogenous. If the effect on the size of the extreme shock of the instrument is
sufficiently large relative to the effect on inflation, the optimal normal mean
inflation will even overshoot the inflation target in those cases. The reason is
that lowering the instrument and increasing the normal mean inflation will
reduce the size and thereby the expected loss from the extreme shock. For
the combined quadratic/constant and perfectionist loss functions, endoge-
neity of the size of the extreme shock has no effect on policy, since the
expected loss from the extreme shock is then independent of its size.

Which of these different loss functions makes most sense for monetary
policy? This is, of course, a rather deep question. The answer depends on,
for instance, whether the loss function is an approximation to social welfare,
assigned to the central bank by society or political authorities as in a
principal-agent situation, an interpretation by the central bank of less precise
instructions or legislation, or the private loss function of a decision-maker.
In the latter case, Bray and Goodhart (2002) argue that there is nothing
worse than being fired, for which situation they find their bell loss function
with an upper bound appropriate. However, even in this case, a decision-
maker can be fired with more or less personal disgrace, making the fixed
upper bound somewhat doubtful.

One way to evaluate the sensibility of the loss functions is to consider the
marginal loss. Does it make sense that the marginal loss is increasing,
constant, or decreasing in the deviation from the target? Is the marginal loss
increasing for small deviations and constant or decreasing for large ones?
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I hope I am excused for not having any definite answers to these questions,
except that the perfectionist loss function seems rather extreme.
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