

Prepared by the Canadian Centre for Occupational Health and Safety

Target Audience

This guide is for workers, supervisors, health and safety committee members, health and safety representatives, industrial hygienists, occupational health and safety nurses and others with an interest in hearing conservation. The technical level of this guide meets the needs of the target audience.

Summary

Noise is a major occupational hazard. Short term effects of noise exposure include temporary hearing loss, stress, annoyance, difficulty in verbal communication, and safety hazards. The primary long-term health effect of noise exposure is permanent hearing loss. Both shortterm and long-term effects can be prevented by timely recognition, evaluation and control of noise exposure.

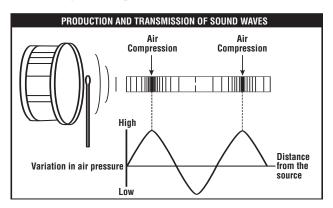
This guide provides an overview of the methods of recognition, evaluation and control of workplace noise exposure. Topics covered include: a review of the units and measures of noise; methods of measuring noise level and noise exposure; instruments used to measure noise; the relationship between noise exposure and risk of hearing loss; noise exposure limits; engineering methods of noise control; and the effectiveness of hearing protectors. Basic components of a hearing conservation program are outlined.

Table of Contents

Introduction

Section I	Why do we worry about noise		
	Health Effects: Auditory Effects		
	Health Effects: Non-Auditory Effects		
	Physiological Effects		
	Performance Effects4		
	Effect on Pregnancy 5		
Section II	Basics of Noise		
	What is noise?		
	How do I know if I have noise problem in my workplace ?		
	Production and Transmission of Noise9		
	Units and Measures of Noise10		
	<i>Frequency</i> 10		
	Sound Pressure11		
	Units and Measures of Workplace Noise12		
	A-Weighted Noise Levels		
	Sound Pressure Level and Sound Energy14		
	Continuous, Variable, Intermittent and Impulse Noise17		
	Sound Power		
	Relationship Between Sound Pressure Level and Sound Power Level18		

Section III	Measures of Workplace Noise
	Workplace Noise Level
	Noise Exposure Level of an Employee 20
	Relationship Between Noise Exposure Level and Noise Level
	Time Weighted Average (TWA) Noise Exposure Level
	Comparison: TWA based on 3-dB and 5-dB exchange rates (rules)22
	Evaluation of Noise Exposure Level
Section IV	Instruments and Methods of Measuring Noise
	Identifying Noise Problem
	Planning Noise Measurement
	Selecting Noise Measuring Instruments
	Sound Level Meter30Integrating Sound Level Meter31Noise Dosimeter31Octave Band Analyzers33
	Effects of Environmental Conditions on Noise Data
	Correction for Background Noise
	Conducting Noise Measurements
	Noise Survey
	Measuring Equivalent Noise Using An Integrating Sound Level Meter
	Noise Dosimetry
	Measuring Impulse/Impact Noise
	Documenting Noise Levels Data


Section V	Evaluating the Risk of Noise-Induced Hearing Loss
	Types of Hearing Loss
	Permanent Hearing Loss
	Hearing Loss Due to Aging
	Other Causes of Hearing Loss
	Measures of Hearing Loss
	Hearing Disability 48
	Relationship Between Noise Exposure And Hearing Loss
Section VI	Occupational Noise Exposure Limits
	Noise Exposure Limits
	Exposure Limits for Impulse/Impact Noise55
	Noise Exposure Limits for Extended Workshifts 56
	Deciding Exposure Limits for Extended Workshifts
	Canadian and U.S. Noise Regulations
	Synergistic Effects: Ototoxic Chemicals 61
	Office Noise Levels
Section VII	Managing Workplace Noise Problems
	Hearing Conservation Program Components 64
	Noise Monitoring: Hazard Identification65
	Noise Reduction: Engineering Controls
	At the Source
	Along the Path
	Hearing Protection
	Advantages and Limitations of Earplugs and Earmuffs79
	<i>Standards</i>
	Noise Reduction Rating (NRR) of Hearing Protectors
	Hearing Measurement

	Administrative Controls
	Employee Training
	Program Evaluation and Continuous Improvement
Section VIII	Occupational Health and Safety Legislation
	Canadian Legislation
	What Does the OH & S Legislation Say92
	Workplace Hazardous Material Information System WHMIS)96
	U.S. Legislation
Section IX	Information Sources
	In Canada108
	<i>In the U.S.A.</i>
Appendix A	Sound Pressure Level Calculations
	Definition of Decibel (dB)118
	Convert Dose to Equivalent Sound Level (Leq) 119
Appendix B	$\textbf{Relevant Noise Standards} \dots \dots \dots 121$
	Canadian Standards Association 121
	American National Standards Institute (ANSI)122
Appendix C	Further Reading
Appendix D	Sound Absorbing and Sound Attenuation of Some Building Materials and Furnishings $\dots . 125$

3. Production and Transmission of Noise

Noise (or sound) comes from vibrating objects. Vibration can result from air flow, high speed rotating machines, friction or mechanical impacts involved in machine operation. From the source, noise spreads out as a series of air pressure fluctuations known as sound waves. The spread of sound waves from the source to other locations occurs via the surrounding air or other media such as water and solids. This process of sound transmission or propagation is similar to the spread of ripples on the surface of a lake when a rock is dropped into in the water.

The following example illustrates the production and transmission of sound waves. Imagine striking a drum surface with a stick. As a result of the impact, the drum surface vibrates back and forth. As it moves forward, it pushes the air in contact with the surface and produces a dense (high pressure) region in contact with the drum. When the surface moves in the opposite direction, it creates a rarified (low-pressure) region by decompressing the air in contact with the drum. As the drum surface vibrates, it creates alternating regions of high and low pressure.

Typical A-Weighted Sound Levels		
NOISE SOURCE	dB(A)	
pneumatic chipper at 1 metre	115	
hand-held circular saw at 1 metre	115	
textile room	103	
newspaper press	95	
power lawn mower at 1 metre	92	
diesel truck (50 km per hour at 20 metres)		
passenger car (60 km per hour at 20 metres)		
conversation at 1 metre		
quiet room	40	

Sound Pressure Level and Sound Energy

The sound pressure level is related to the sound energy entering the ears of exposed persons. The following table gives some useful relationships between changes in decibel level and corresponding changes in the sound energy.

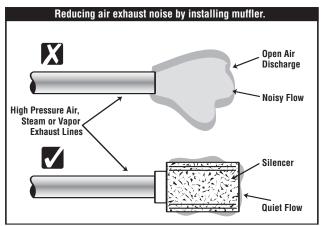
Sound Pressure Level and Sound Energy: Basic Rules				
CHANGE IN dB	CHANGE IN SOUND ENERGY			
3 dB increase	Sound energy doubled			
3 dB decrease	Sound energy halved			
10 dB increase	Sound energy increased by factor of 10			
10 dB decrease	Sound energy decreased by factor of 10			
20 dB increase	Sound energy increased by factor of 100			
20 dB decrease	Sound energy decreased by factor of 100			

- As a person ages, hearing may worsen because "age-related hearing loss" adds to the existing noise induced hearing loss.
- Both ears are equally affected except in cases when one ear is exposed to a higher noise level than the other.
- Hearing loss is a cumulative process; both level of noise and exposure time are important factors.

Hearing Loss Due to Aging

Hearing sensitivity naturally declines as people become older. Like noise-induced hearing loss, everyone is not affected equally. Age-related hearing loss adds to noiseinduced hearing loss and therefore hearing ability may continue to worsen even after a person stops working in a noisy environment.

Other Causes of Hearing Loss


Exposure to ototoxic chemicals (eg. toluene, lead, manganese), certain medications and diseases may also cause hearing loss. Generally, it is not possible to distinguish hearing loss due to noise from hearing loss due to other causes. Judgement in such cases is based on the noise exposure history.

2. Measures of Hearing Loss

Hearing loss is measured as threshold shift in dB units using an audiometer. The 0 dB threshold shift-reading of the audiometer represents the average hearing threshold level of a young adult with disease-free ears. The threshold shift as measured by audiometry is the dB level of sounds of different frequencies barely audible to that individual. A positive threshold shift represents hearing loss, and a negative threshold shift means better than average hearing.

Mufflers

A muffler is an acoustic filter. Its performance varies with the sound frequency. A muffler reduces the transmission of sound and allows the free flow of gas. Mufflers are installed to reduce noise where large quantities of high pressure gas, liquid, steam or air are discharged into the open air.

Selection Criteria for Mufflers

Acoustical Criterion: Noise reduction capability measured as insertion loss.

Insertion Loss (dB) =

SPL before muffler - SPL after muffler

Aerodynamic Criterion: Maximum acceptable pressure drop through the muffler.

Geometrical Criterion: Maximum allowable volume and restrictions on the shape.

Mechanical Criterion: Durability, maintenance, and environmental conditions.