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Introduction

A bond or swap that is sold before it matures has an uncertain return. Re-
gressions on the yield curve show that excess returns for long-term bonds
and swaps are both predictable and time-varying.1 This empirical evidence
suggests that long-term interest rates contain a time-varying risk premium.
Interest rate options may contain information about this risk premium be-
cause their prices are sensitive to the volatility and market prices of the risk
factors that drive interest rates. We ask whether risk premiums estimated us-
ing interest rate option prices are better able to predict changes in long-term
interest rates.

We estimate 3-factor affine term structure models using the joint time
series of swap rates and interest rate cap prices with different maturities. We
then examine how well the estimated risk premiums predict excess returns for
long-term swaps over short-term swaps. Previous papers that address this
question use only the time-series of bond yields or swap rates to estimate
their models. Our main finding is that the risk premiums estimated using
interest rate option prices are better able to predict excess returns, both
in- and out-of-sample. In short, interest rate option prices contain valuable
information about the risk premium in long-term interest rates.

When interest rate options are included in estimation, the models with
risk factors that have stochastic volatility are best at predicting excess re-
turns. This result differs from Duffee (2002) and Cheridito et al. (2006)
who both find that the predictability of excess returns is best captured by
a model with risk factors that have constant volatility. We also find that,
with a correction for small sample bias, the models with stochastic volatil-
ity successfully capture the failure of the expectations hypothesis and match
regressions of returns on the slope of the yield curve. Dai and Singleton
(2002) find that only models with constant volatility are successful on this
dimension. An obvious additional benefit of models with stochastic volatility
is that they better capture the variation in interest rate volatility.

Previous papers that have used interest rate options to estimate dynamic
term structure models have focused on accurately pricing both options and
underlying interest rates. Umantsev (2002) estimates affine models jointly
on both swaps and swaptions and analyzes the volatility structure of these

1See Fama and Bliss (1987), Campbell and Shiller (1991), and Cochrane and Piazzesi
(2005).
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markets as well as factors influencing the behavior of interest rate risk pre-
mia. Longstaff et al. (2001) and Han (2004) explore the correlation structure
in yields that is required to simultaneously price both caps and swaptions.
Bikbov and Chernov (2004) use both Eurodollar futures and short-dated op-
tion prices to estimate affine term structure models and discriminate between
various volatility specifications. Our paper differs from these papers in that
we examine how including options in estimation impacts a model’s ability to
capture the dynamics of interest rates and predict excess returns.

The remainder of the paper is organized as follows. Section 1 discusses
excess returns in fixed income markets. Section 2 describes the data and
estimation procedure we use. Section 3 presents the fit to the cross-section
of swap rates and cap prices with different maturities. Section 4 examines
the fit to historical estimates of conditional volatility. Section 5 compares the
estimated models’ ability to predict excess returns and Section 6 examines
linear projections of excess returns on yields. Section 7 concludes. Technical
details, and all tables and figures are provided in appendices

1 Excess Returns in Fixed Income Markets

A bond or swap that is sold before it matures has an uncertain return. For
example, although the 5-year interest rate is known today, the return on a
5-year bond that is sold in one year is uncertain. Interest rate volatility is one
measure of the amount of such risk that a bond is exposed to. Investors may
demand a premium for holding this risk. In this section we use regression
analysis to test whether interest rate volatility explains variations in swap
returns.

To fix notation, let P t+τ
t be the price at time t of a zero coupon bond

that matures τ years later. Let rτ
t be the continuously compounded yield on

that bond so that

rτ
t := −

1

τ
ln
(
P t+τ

t

)
.

In ∆t years, the new price of the bond is P τ−∆t
t+∆t . Let re,τ

t,∆t be the continuously
compounded return on the bond over this period, in excess of the riskless
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return r∆t
t . That is,

re,τ
t,∆t :=

1

∆t

[
ln
(
P t+τ

t+∆t/P
t+τ

t

)
+ ln P t+∆t

t

]
,

=
1

∆t

[
− (τ − ∆t)

(
rτ−∆t
t+∆t − rτ

t

)
+ ∆t

(
rτ
t − r∆t

t

)]
. (1)

The expectations hypothesis suggests that the expected excess return on
a long-term zero coupon bond or swap is constant. Rearranging equation
(1), the expectations hypothesis implies that

Et

[
rτ−∆t
t+∆t − rτ

t

]
= constant +

∆t

τ − ∆t

(
rτ
t − r∆t

t

)
. (2)

If the expectation hypothesis holds, then regressions based on equation (2)
should yield a regression coefficient of 1. However, Fama and Bliss (1987)
and others find that the expectations hypothesis fails and the regression
coefficients are actually negative with an absolute value that increases with
the maturity of the bond under consideration.

If investors demand a time-varying premium for holding long term bonds
with an uncertain return, then interest rate volatility may provide additional
predictive power in a regression. In the subsequent regression analysis, we
use the implied volatility from at-the-money interest rate cap prices which
provides a forward looking measure of volatility that also incorporates risk
preferences.2

As a preliminary test of this hypothesis, we regress the one year excess
returns of the n-year zero coupon swap (where n = 2, 3, 4, 5) on three sets of
explanatory variables (all include a constant):

1. the slope of the yield curve, taken as rn
t − r1

t ,

2. the slope and n-year interest rate cap implied volatility,

3. 1- to 5-year zero rates.

We report the R2 from the regressions using 581 weekly observations from
June 1995 to Februrary 2006 in Table 1. The results indicate that including
the cap implied volatility in the regression increases the amount of variation

2An interest rate cap is a financial derivative that caps the interest rate that is paid
on the floating side of a swap. The market convention is to quote prices in terms of the
volatility implied by Black’s formula.
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in excess returns which is explained. However, it should be noted that the
sample size is relatively small and the regressions choose coefficients to maxi-
mize the R2 by construction (in particular there are only 10 non-overlapping
one year returns.)

The preliminary evidence in these regressions indicates that excess swap
returns depend on interest rate volatility, and suggests that it may be benefi-
cial to incorporate interest rate cap prices into a dynamic model of the term
structure of interest rates. We turn to this objective in the next section.

2 Model and Estimation Strategy

We estimate three 3-factor affine term structure models with 0, 1, or 2 factors
having stochastic volatility.3 The pricing kernel follows a diffusion process of
the form

dMt = −Mt rt dt − Mt Λ>

t dWt ,

where

rt := ρ0 + ρ1 · Xt ,

Λt :=
(√

∆ [α + βXt]
)−1 [(

KP
0 −K0

)
+
(
KP

1 −K1

)
Xt

]
, 4

and
dXt =

[
KP

0 + KP
1Xt

]
dt +

√

∆ [α + βXt] dWt .
5

We have used the notation ∆ [·] to denote a square matrix with its vector
argument along the diagonal. The drift, r, of the pricing kernel is commonly
referred to as the short interest rate and the volatility, Λ, is commonly re-
ferred to as the market price of risk.

3See Dai and Singleton (2000) for a detailed specification of the AM (N) affine term
structure models that we estimate in this paper.

5We use an extended affine market price of risk introduced by Cheridito et al. (2006)
as a generalization of the essentially affine market price of risk used in Duffee (2002). The
model specifications are described in more detail in the appendix.

5The dynamics of the state vector X under the martingale pricing measure Q defined
by

d Q

d P

∣
∣
∣
∣
t

:= e
R

t

0
ru du Mt

M0
= e−

1

2

R

t

0
Λ>u Λu du−

R

t

0
Λ>u d Wu ,
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In this setting, Duffie and Kan (1996) show that the price P T
t at time t

of a zero coupon bond that pays $1 at time T ≥ t is

P T
t = Et

[
MT

Mt

1

]

= eA(T−t)+B(T−t)·Xt ,

where the functions A and B satisfy the Riccati ODEs

d

dτ
B (τ) = −ρ1 + K>

1 B (τ) +
1

2
β>∆ [B (τ)] B (τ) , B (0) = 0 ,

d

dτ
A (τ) = −ρ0 + K>

0 B (τ) +
1

2
α>∆ [B (τ)] B (τ) , A (0) = 0 .

Using Itô’s formula, the dynamics of zero coupon bond prices are given
by

dP T
t = P T

t

[

rt + B (T − t)>
√

∆ [α + βXt] Λt

]

dt (3)

+P T
t B (T − t)>

√

∆ [α + βXt] dWt .

From (3), the instantaneous expected excess return, or risk premium, at time
t for a zero coupon bond that matures at time T is given by

B (T − t)>
√

∆ [α + βXt] Λt .

This risk premium depends on the volatility,
√

∆ [α + βXt], of the risk fac-
tors, Xt, and the market prices, Λt, of those risk factors.

The results of the regression analysis in the previous section suggest that
interest rate options may contain information about the risk premium in
interest rates. As such, we also include the prices of interest rate caps in our
model estimation. An interest rate cap is a portfolio of options on 3-month
Libor that effectively caps the interest rate that is paid on the floating side

are

dXt = [K0 + K1Xt] dt +
√

∆[α + βXt] dW Q
t ,

where

W Q
t := Wt +

∫ t

0

Λu du ,

is a Brownian motion under Q.
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of a swap. The price of a single option (caplet) on the 3-month Libor interest
rate L0.25

T−0.25 at time T − 0.25 with strike C is

Et

[
MT

Mt

0.25
(
L0.25

T−0.25 − C
)+

︸ ︷︷ ︸

caplet payoff

]

.6 (4)

As equation (4) illustrates, the caplet payoff is sensitive to the volatility of
the 3-month interest rate. The price of the caplet is also sensitive to the
market prices of risk, Λ, which are embedded in the pricing kernel, M .

The price CN
t

(
C
)

of an N -period interest rate cap with strike rate C and
3-month floating interest payments is

CN
t

(
C
)

=
N∑

n=2

Et

[
Mt+0.25 n

Mt

0.25
(
L0.25

t+0.25(n−1) − C
)+
]

, 7

=
N∑

n=2

Et

[

Mt+0.25 n

Mt

(

1

P t+0.25 n
t+0.25(n−1)

−
(
1 + 0.25 C

)

)+]

.

In the setting of affine term structure models, Duffie et al. (2000) show that
cap prices can be computed as a sum of inverted Fourier transforms. How-
ever, when the solutions A and B to the Riccati ODEs are not known in
closed form, direct Fourier inversion is too computationally expensive for
use in estimation. Instead, we use a more computationally efficient adaptive
quadrature method that is based on Joslin (2005).

Our data, obtained from Datastream, consists of Libor rates, swap rates,
and at-the-money cap implied volatilities from January 1995 to February
2006. We use 3-month Libor and the entire term structure of swap rates to
bootstrap zero coupon swap rates at 1-, 2-, 3-, 5- and 10-years.8 Finally, we
use at-the-money caps with maturities of 1-, 2-, 3-, 4-, 5-, 7-, and 10-years.

We use quasi-maximum likelihood to estimate model parameters for A0(3),
A1(3), and A2(3) models.9 The full model specifications and estimation pro-

6The 3-month Libor interest rate L0.25
T−0.25 at time T − 0.25 satisfies

1 + 0.25L0.25
T−0.25 =

1

PT
T−0.25

,

8Our bootstrap procedure assumes that forward swap zero rates are constant between
observations.

9An AM (3) model has three latent factors with M factors having stochastic volatility.
See Dai and Singleton (2000) for more details.
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cedure are described in detail in the appendix. All of the models are esti-
mated using the assumption that the model correctly prices 3-month Libor
and the 2- and 10-year swap zero coupon rates exactly and the remaining
swap zero coupon rates are assumed to be priced with error.10 For the A1(3)

o

and A2(3)
o models, we also assume that at-the-money caps with maturities

of 1-, 2-, 3-, 4-, 5-, 7-, and 10-years are priced with error. For each model, we
use the following procedure to obtain quasi-maximum likelihood estimates:

1. Randomly generate 25 feasible sets of starting parameters.

2. Starting from the best of the feasible seeds, use a gradient search
method to obtain a (local) maximum of the quasi-likelihood function
constructed using the model’s exact conditional mean and variance.11

3. Repeat these steps 1000 times to obtain a global maximum.

The parameter estimates are provided in Table 2.

3 Fit to Yields and Cap Prices

Table 3 provides the root mean squared pricing errors (in basis points) for
zero coupon swap rates with different maturities. The root mean squared er-
rors are 0 for the 3-month, 2-, and 10-year swap zero rates because the latent
states variables are chosen so that the models correctly price these instru-
ments. The root mean squared pricing errors for other maturities range from
about 4 basis points to about 10 basis points. There is very little difference
in the cross-sectional fit between the A0(3), A1(3), and A2(3) models that are
all estimated without using options. Similarly, there is also little difference
between the A1(3)

o and A2(3)
o models that are both estimated with options.

The use of options to estimate the A1(3)
o and A2(3)

o models has a only small
affect on the models’ fit to the cross-section of swap zero coupon rates with
different maturities. Including options improves the fit by less than a basis
point at the short end of the yield curve (up to 1 year) and worsens the fit by

10By assuming that a subset of securities are priced correctly by the model, we can use
these prices to invert for the values of the latent states. See Chen and Scott (1993) for
more details.

11In an affine model, the conditional mean and variance are known in closed form as the
solution to a linear constant coeffiecient ODE. See Appendix B for details.
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slightly more than a basis point at the long end of the yield curve (beyond 1
year).

Table 4 displays the root mean squared pricing errors in percentage terms
for at-the-money caps with various maturities.12 For all of the models, the
percentage pricing errors are worst for 1-year caps and decline as the matu-
rity of the cap increases.13 Amongst the models that are estimated without
including options, the A2(3) model provides the best fit to the cross-section of
at-the-money cap prices. The A1(3)

o and A2(3)
o models have slightly larger

relative pricing errors for 1-year caps than their A1(3) and A2(3) counterparts
that are estimated without options. However, the relative pricing errors for
caps with longer maturities are considerably lower when the caps are in-
cluded in estimation. For example, the root mean squared relative pricing
error for at-the-money 5-year caps is 17% in the A1(3) model and 9.2% in
the A1(3)

o model. Similarly, the root mean squared relative pricing error for
at-the-money 5-year caps is 13.3% in the A2(3) model and 9.0% in the A2(3)

o

model. The relative pricing errors for the A2(3)
o model are slightly better

than those for the A1(3)
o.

To summarize, when options are included in estimation, the fit to zero
coupon swap rates with different maturities does not change much, but the
fit to at-the-money cap prices improves for longer dated caps.14

4 Fit to Volatility

In this section we examine how well the term structure models match the
conditional volatility of interest rates. Unlike prices, conditional volatility is
not directly observed and must be estimated.15 For estimates of conditional

12Figures 1 and 2 provide 3- and 5-year at-the-money cap prices for the A1(3), A1(3)
o,

A2(3), and A2(3)
o models. Figure 3 plots the time series of prices in the A1(3)

o model
for at-the-money caps with maturities from 1 to 10 years. The time series of cap prices is
similar for the A2(3)

o model.
13The root mean squared relative pricing errors for 1-year caps range from 32.4% to

36.4%. The pricing errors for zero coupon swap rates are also largest at 1-year. Dai
and Singleton (2002) find that a fourth factor is required to capture the short end of the
yield curve. We choose to implement more parsimonious 3-factor models because we are
primarily interested in predicting changes in long term yields.

14Although not reported here, the A1(3)
o and A2(3)

o that are estimated with caps also
provide an excellent fit to the prices of at-the-money swaptions.

15Implied volatilities from cap prices are forward looking and directly observable. How-
ever, in the case of models with stochastic volatility, the market prices of risk may case
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volatility based on historical data we use an exponential weighted moving av-
erage (EWMA) with a 26-week half-life, and also estimate an EGARCH(1,1)
for each zero coupon swap rate maturity. Figure 4 plots the conditional
volatility of zero coupon swap rates in the term structure models against our
estimates of conditional volatility that use historial data. Tables 5 and 6 pro-
vide the correlation between the conditional volatilty in the pricing model
and the EGARCH and EWMA estimates of conditional volatility respec-
tively. Table 7 provides the average conditional volatilities for the pricing
models and the EGARCH and EWMA estimates.

The conditional volatility of all swap rates is constant in the A0(3) model
and therefore it cannot capture any time-series variation. Over our sample
period, the average level of conditional volatility in the A0(3) model for zero
coupon swap rates with different maturities is slightly below our estimates
based on historical data.

The volatility of the 6-month zero coupon swap rate is very similar be-
tween the A1(3) and A1(3)

o models, and between the A2(3) and A2(3)
o mod-

els. The historical estimates of the conditional volatility of the 6-month zero
coupon swap rate jump in 2001 and none of the models track this jump.
However, all of the pricing models match the average level of the estimates
of conditional volatility of the 6-month zero coupon swap rate.

For maturities beyond 1 year, the conditional volatility of zero coupon
swap rates in the A1(3), A1(3)

o, and A2(3)
o models are all highly correlated

with both the EGARCH and EWMA estimates of conditional volatility. The
correlations are highest in the A1(3) model, followed closely by the A1(3)

o

model, and then the A2(3)
o model. The conditional volatility in the A2(3)

model is positively correlated with the estimates of conditional volatility for
maturities up to 4 years, but negatively for maturities beyond 4 years. The
A1(3) and A2(3) models match the average level of conditional volatility for
the EGARCH and EWMA estimates. The average conditional volatility in
the A1(3)

o and A2(3)
o models are about 2% higher than the estimates based

on EGARCH and EWMA.
There are two possible explanations for the difference in the average level

of conditional volatility between the models that are estimated with options
versus those that are estimated without options. First, option prices could
help to better identify the true conditional volatility, which may be higher
than our estimates that are based in historical swap rates. The other possi-

the implied volatilities from cap prices to differ from the conditional volatility.
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bility is that the models are not flexible enough to match both option prices
and the conditional volatility of swap rates. When the A1(3) model is esti-
mated without including options, it matches our estimates of the conditional
volatility of swap rates (which are based on historial swap rate data), but
it has larger pricing errors for options. By contrast, when the A1(3)

o and
A2(3)

o models are estimated using options, they better match option prices,
but appear to overstate the conditional volatility of swap rates. Put differ-
ently, the A1(3)

o and A2(3)
o models better matches implied volatility from

interest rate cap prices, but the A1(3) model better matches our estimates
of conditional volatility. In term structure models with stochastic volatility,
option-implied volatility and conditional volatility are linked by the market
price of volatility risk. The second explanation suggests that the combination
of factor volatilities and market prices of risk may not be flexible enough to
capture both conditional volatility and option prices. Perhaps a more flexible
market price of risk is required, or perhaps a different source of variation,
such as jumps, is required.

5 Predictability of Excess Returns

In this section we examine how well the models capture excess returns, or
changes in long-term interest rates relative to short-term interest rates.

In an affine term structure model, the expected excess return is given by

Et

[
re,τ
t,∆t

]
:= Et

[
1

∆t
ln
(
P t+τ

t+∆t/P
t+τ

t

)
+

1

∆t
ln P t+∆t

t

]

,

=
1

∆t

{
A (τ − ∆t) + B (τ − ∆t) · Et [Xt+∆t]
− [A (τ) + B (τ) · Xt] + A (∆t) + B (∆t) · Xt

}

.16

To measure how well each model predicts excess returns, we compute the
following statistic

R2 = 1 −
var
(
Et

[
re,τ
t,∆t

]
− re,τ

t,∆t

)

var
(
re,τ
t,∆t

) .

16Recall that in an affine term structure model, the price P t+τ
t at time t of a zero coupon

swap that matures at time t + τ is given by

P t+τ
t = eA(τ)+B(τ)·Xt .
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We then compare the R2s for each model we estimate with the R2s from three
versions of the regressions of excess returns on forward rates as performed in
Cochrane and Piazzesi (2005).17

Table 8 presents the R2 statistics for 3-month excess returns for the period
from January 1995 to February 2006 that was used to estimate the model.
Amongst the three models that are estimated without options, the A1(3)
model is best at predicting in-sample 3-month excess returns for zero coupon
swaps with maturities up to 5 years. For these maturities, the A2(3) model
outperforms the A0(3) model. For maturities beyond 5 years, the A0(3)
model is best at predicting in-sample 3-month excess returns, followed by
the A1(3) model and then the A2(3) model.

When options are included in estimation, the A1(3)
o and A2(3)

o mode-
ols are better able to predict in-sample 3-month excess returns relative to
their A1(3) and A2(3) counterparts that are estimated without including op-
tions. On average, the R2s across different maturities for the A1(3)

o model
are larger than the R2s for the A1(3) model by a factor of 1.3. The improve-
ment is even larger for the A2(3) model where the R2s are larger than the
those for the A2(3) model by an average factor of 2. The A2(3)

o model is
slightly better than the A1(3)

o model at predicting in-sample 3-month excess
returns. Moreover, the R2s for both models are much closer in magnitude to
those obtained from the regressions in Cochrane and Piazzesi (2005). The
regressions in Cochrane and Piazzesi (2005) are designed to only match ex-
cess returns and so they serve as somewhat of an upper bound for the the
level of predictability of excess returns.

Table 9 provides R2’s for the out-of-sample period from April 1988 to
December 1994.18 The relative ranking of the three models that are estimated
without using options is the same as for the in-sample period described in

17For different maturities, Cochrane and Piazzesi (2005) run regressions of yields vari-
ations on a linear combination of forward rates. For each n-year zero coupon swap rate
(n = 2, 3, 4, 5), they regress

r
e,n
t,∆t − r∆t

t = βn
0 + βn

1 r1
t + βn

2 f2
t + βn

3 f3
t + βn

4 f4
t + βn

5 f5
t ,

where f τ
t := τ rτ

t − (τ − 1) rτ−1
t is the 1-year forward rate at time t between t + τ − 1 and

t + τ . CP5 are the regressions described above, while CP10 are correspondent regressions
using one period forward rates for loans between maturities that go up to 10 years. Finally,
CP5,10 use only 5 one year forward rates (which begin in 0,2,4,6, and 8 years) as regressors.

18Recall that the models were estimated with historical data from January 1995 to
February 2006, which corresponded to the availability of cap data in Datastream.
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Table 8. As is the case for the in-sample analysis, when options are included
in estimation, the A1(3)

o and A2(3)
o are better able to predict out-of-sample

3-month excess returns relative to their A1(3) and A2(3) counterparts that
were estimated without including options. On average, the R2s for the A1(3)

o

model are larger than the R2s for the A1(3) model by a factor of 1.3. The
improvement is even larger for the A2(3) model where the R2s are larger than
the those for the A2(3) model by an average factor of 2.2. For this out-of-
sample period, the A2(3)

o model is slightly better at predicting excess returns
for zero coupon swaps with maturities up to 5 years, while the A1(3)

o model
is slightly better at predicting excess returns for zero coupon swaps with
maturities beyond 5 years. Out-of-sample, the A1(3)

o and A2(3)
o modles

better predict excess returns for zero coupon swaps with maturities beyond
5 years, but the Cochrane and Piazzesi regressions CP5 and CP5,10 better
predict excess returns for swaps with maturities of 5 years or less.

Tables 10 and 11 provide the in-sample and out-of-sample predictability
for 3 month excess returns. The results are qualitatively the same as those
for 1 year excess returns.

6 Linear Projection of Yields

Dai and Singleton (2002) present two challenges for dynamic term structure
models that are related to predicting excess returns. This section examines
whether the models we estimate satisfy these challenges.

The first challenge, which Dai and Singleton (2002) refer to as LPY(I), is
to match the pattern of violations of the exectations hypothesis as in Fama
and Bliss (1987) and Campbell and Shiller (1991). These papers perform the
following regression

rn−∆t
t+∆t − rn

t = Φ0,n + Φ1,n

∆t

n − ∆t

(
rn
t − r∆

t

)
+ εn

t ,

and find that regression coefficients Φ̂1,n are increasingly negative for larger
maturities n.

Figure 5 provides the LPY(I) regression results for the models that we
estimate.19 However, in contrast to Dai and Singleton (2002), all of the
models are generally consistent with the observed slope coefficients. For all

19We compute the linear projections using 3 month changes in swap rates rather than
the 1 month changes that Dai and Singleton (2002) use. We chose 3 month changes to
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of the models, the observed slope coefficients lie within a simulated 95%
confidence interval. Figure 6 shows the 95% simulated confidence interval
for the A1(3)

o model.
Dai and Singleton (2002) refer to the second challenge that they pose as

LPY(II). This challenges states that the projection of risk-adjusted changes
in swap rates onto the slope of the yield curve should recover a regression
coefficient of 1. That is, if the risk premium in the model is correct, then the
risk premium adjusted regression

rn−∆t
t+∆t − rn

t +
∆t

n − ∆t
Et

[
re,n
t,∆t

]

︸ ︷︷ ︸

PACY n
t,∆t

= Φ0,n + Φ1,n

∆t

n − ∆t

(
rn
t − r∆

t

)

︸ ︷︷ ︸

SLOPEn
t

+εn
t , (5)

should produce a regression coefficient Φ̂1,n = 1.
We find that the combination of small sample size and near unit roots

in swap rates results in a small, but non-negligible, bias in the regression
coefficients. In order to better understand the source of this bias, note that
the regression coefficient in equation (5) is Φ̂1,n = U/V , where

U :=
M−1∑

m=0

(
PACYn

m∆t,∆t − PACYn
) (

SLOPEn
m∆t − SLOPEn

)
,

V :=
M−1∑

m=0

(
SLOPEn

m∆t − SLOPEn
) (

SLOPEn
m∆t − SLOPEn

)
,

and PACYn and SLOPEn are the sample averages. In general, E [U ] 6= E [V ].
To see this, note that

Em∆t

[
PACYn

m∆t,∆t

]
= SLOPEn

m∆t ,

therefore

E [U − V ] =
M−1∑

m=0

E
[(

SLOPEn − PACYn
)
SLOPEn

m∆t

]
,

=
M−1∑

m=0

m−1∑

k=0

E
[(

SLOPEn
k∆t − PACYn

k∆t,∆t

)
SLOPEn

m∆t

]
.

minimize the effect from bootstrapping the zero coupon yield curve. The results for 1
month changes are qualitatively similar.
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In general, for k < m, the residual εk∆t = Ek∆t

[
PACYn

k∆t,∆t

]
− SLOPEn

k∆t

may be correlated with SLOPEn
k∆t (and is likely to be more correlated when

SLOPEn
k∆t is more nearly stationary). Therefore E

[
PACYn

k∆t,∆tSLOPEn
m∆t

]
6=

E [SLOPEn
k∆tSLOPEn

m∆t].
20

The bias can be approximated by a second order Taylor series expansion:

E
[U

V

]

=
E [U ]

E [V ]
+

1

E[V ]2
(
σ2

V − cov(U, V )
)

.

Though cumbersome, this can be computed in closed form and will not, in
general, be zero. Instead of directly computing the bias, we estimate it by
simulating directly from the model and computing the deviation from unity
of the simulated LPY(II) coefficients.

Figure 7 shows the model LPY(II) regression results adjusted for the small
sample bias. The A1(3)

o and A2(3)
o models estimated with options dominate

the A0(3), A1(3), and A2(3) models estimated without options. Although we
do not recover an exact regression coefficient of one, this value is quite near
the center of the simulated confidence intervals for the A0(3), A1()

o, and
A2(3)

o models. Figure 8 shows the simulated 95% confidence interval for the
A1(3)

o model. The stochastic volatility models without options nearly follow
the 95% lower confidence bound.

7 Conclusion

Theory suggests that interest rate options may contain information about the
risk premium in long term interest rates because their prices are sensitive to
the volatility and market prices of the risk factors that drive interest rates.
We use the time series of interest rate cap prices and swap rates to estimate
3-factor affine term structure models. The risk premiums estimated using
interest rate option prices are better able to predict excess returns for long-
term swaps over short-term swaps, both in- and out-of-sample. We also find
that, with a correction for small sample bias, the models with stochastic
volatility successfully capture the failure of the expectations hypothesis and
match regressions of returns on the slope of the yield curve.

The question remains, what elements of the risk premium do including
options help to better identify? In dynamic term structure models with

20Note that this bias is essentially the same as the bias in the regression yt = α+ρyt−1−
ut when the true model is yt = yt−1 + ut. See Case 2 in Section 17.4 of Hamilton.
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stochastic volatility, interest rate cap prices depend on the price of volatility
risk. Therefore, the price of volatility risk is one element of the risk premium
that may depend on whether options are used in estimation.

As a measure of the price of volatility risk we use the difference between
the risk neutral expected zero coupon bond volatility and the expected zero
coupon bond volatility provides a measure of the price of volatility risk.
Figures 9 and 10 plot the actual long run expected volatility and the risk-
neutral long run expected volatility of zero coupon swap rates for the models
with stochastic volatility.21 When options are not included in estimation, this
measure of the price of volatility risk is more negative in the A1(3) model, and
large and positive for the A2(3) model. This measure of the price of volatility
risk is essentially zero for the A2(3)

o model that is estimated with options
and small but negative for the A1(3)

o model that is estimated with options.
Therefore, including options affects the estimated price of volatility risk. The
A1(3)

o and A2(3)
o are best at pricing interest rate caps and predicting excess

returns. These models indicate that the price of volatility risk is small, and
possibly negative.
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A Detailed Model Specifications

We estimate 3-factor affine term structure models. The state vector X follows
an diffusion process with affine drift and variance,

dXt =
[
KP

0 + KP
1Xt

]
dt +

√

∆ [α + βXt] dWt .

We have used the notation ∆ [·] to denote a square matrix with its vector
argument along the diagonal. The pricing kernel M also follows a diffusion
process

dMt = −Mt rt dt − Mt Λ>

t dWt .

The drift, r, of the pricing kernel is an affine function of the state vector

rt := ρ0 + ρ1 · Xt ,

The volatility, Λ, of the pricing kernel has an extended affine form

Λt :=
(√

∆ [α + βXt]
)−1 [(

KP
0 −K0

)
+
(
KP

1 −K1

)
Xt

]
.22

, 23

We estimate AM(3) models,24 where M = 0, 1, 2 is the number of factors
in the state vector X that have stochastic volatility. For example, in the
A0(3) model, β = 0 so that none of the factors have stochastic volatility. For
each model, Dai and Singleton (2000) and Cheridito et al. (2006) identify
the necessary restrictions required to ensure that the stochastic processes are
admissable, the parameters are identified, and the physical and risk neutral
measures are equivalent. The full specifications of the A0 (3), A1 (3), and
A2 (3) are described below.

23We use an extended affine market price of risk introduced by Cheridito et al. (2006)
as a generalization of the essentially affine market price of risk used in Duffee (2002).

23The dynamics of the state vector X under the martingale pricing measure Q defined
by

d Q

d P

∣
∣
∣
∣
t

:= e
R

t

0
ru du Mt

M0
= e−

1

2

R

t

0
Λ>u Λu du−

R

t

0
Λ>u d Wu ,

are

dXt = [K0 + K1Xt] dt +
√

∆[α + βXt] dW Q
t ,

where

W Q
t := Wt +

∫ t

0

Λu du ,

is a Brownian motion under Q.
24The models were introduced in Dai and Singleton (2000).
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A0 (3) Model Specification

KP
1 =





KP
1,11 0 0

KP
1,21 KP

1,22 0
KP

1,31 KP
1,32 KP

1,33



 , KP
0 =





KP
0,1

KP
0,2

KP
0,3



 ,

K1 =





K1,11 0 0
K1,21 K1,22 0
K1,31 K1,32 K1,33



 , K0 =





0
0
0



 ,

β =





0 0 0
0 0 0
0 0 0



 , α =





1
1
1



 ,

ρ1,1 ≥ 0 , ρ1,2 ≥ 0 , ρ1,3 ≥ 0 .

A1 (3) Model Specification

KP
1 =





KP
1,11 0 0

KP
1,21 KP

1,22 KP
1,23

KP
1,31 KP

1,32 KP
1,33



 , KP
0 =





KP
0,1

KP
0,2

KP
0,3



 ,

K1 =





K1,11 0 0
K1,21 K1,22 K1,23

K1,31 K1,32 K1,33



 , K0 =





K0,1

0
0



 ,

β =





1 0 0
β2,1 0 0
β3,1 0 0



 , α =





0
1
1



 ,

KP
0,1 ≥

1

2
, K0,1 ≥

1

2
,

β2,1 ≥ 0 , β3,1 ≥ 0 ,

ρ1,2 ≥ 0 , ρ1,3 ≥ 0 .
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A2 (3) Model Specification

KP
1 =





KP
1,11 KP

1,12 0
KP

1,21 KP
1,22 0

KP
1,31 KP

1,32 KP
1,33



 , KP
0 =





KP
0,1

KP
0,2

KP
0,3



 ,

K1 =





K1,11 K1,12 0
K1,21 K1,22 0
K1,31 K1,32 K1,33



 , K0 =





K0,1

K0,2

0



 ,

β =





1 0 0
0 1 0

β3,1 β3,2 0



 , α =





0
0
1



 ,

KP
0,1 ≥

1

2
, K0,1 ≥

1

2
, KP

0,2 ≥
1

2
, K0,2 ≥

1

2
,

β3,1 ≥ 0 , β3,2 ≥ 0 ,

ρ1,3 ≥ 0 .

B Detailed Estimation Procedure

We estimate all the models using quasi-maximum likelihood in a procedure
similar to Duffee (2002) and Dai and Singleton (2002). Using the instruments
priced without error and the risk neutral dynamics of Xt, we invert to find
the time series of states {Xt}. Given the states, we then compute the model
implied prices of the instruments priced without error. Following Dai and
Singleton (2002), we assume that the pricing errors are IID normal with mean
zero. Finally, using the physical dynamics of the state vector and the QML
approximation, we compute the likelihood of the inverted states. This gives
the liklelihod of a given set of parameters to be:

likelihood =
∏

`P
QML(Xt|Xt−1) · (Jacobian) · (likelihood of pricing errors)

We use a slighlty different procedure than Duffee (2002) to compute the
conditional mean and variance of the state variable. For a general affine
process, Xt, with conditional drift K0 +K1Xt and conditional variance H0 +
H1 ·Xt, the mean and variance of Xt conditional on X0 satisfy the differential
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equations

Ṁt = K0 + K1Mt

V̇t = K1Vt + VtK
t
1 + H0 + H1 · Mt

If we let f be the (N+N 2)-vector (M, vec(V )), then by stacking these coupled
ODEs we see that f satisfies the ODE

ḟ =

[
K1 0
∆ IN ⊗ K1 + K1 ⊗ IN

]

f +

[
K0

vec(H0)

]

Where ∆ is an (N 2 × N) matrix with ∆i,j = vec(H1,·,·,i)j. Rather than con-
sidering separate cases to solve this ODE in closed form, we instead compute
the fundamental solution numerically using 4th order Runge-Kutta. From
the fundamental solution, it is then easy to compute the solution for arbitrary
initial conditions.
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C Tables and Figures

2 Year 3 Year 4 Year 5 Year
Slope Only 6.21 8.23 8.96 9.00

Slope and Cap Implied Volatility 17.29 27.52 34.26 38.06
All Yields 32.61 41.50 48.03 52.62

Table 1: Regression of Excess Returns.
This table shows the R2 from regressions of (overlapping) one year excess
returns for 2- to 5-year zero coupon swaps. The sample period is January 1995
to February 2006. In the M -year regression, slope was taken as the difference
between the M -year zero coupon swap rate and 1-year zero coupon swap rate.
The M -year cap implied volatility was used in the M -year regression.
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A0(3) A1(3) A1(3)o A2(3) A2(3)o

K1P
1,1 -1.4 (0.486) -0.21 (0.339) -0.307 (0.319) -0.244 (0.371) -2.35 (0.649)

K1P
1,2 0.448 (0.459) 0 0 1.06 (1.16) 2.94 (0.857)

K1P
1,3 -0.108 (0.108) 0 0 0 0

K1P
2,1 0.781 (0.497) -1.96 (0.501) -2.23 (0.45) 0.193 (0.157) 0.69 (0.458)

K1P
2,2 -0.893 (0.47) -0.962 (0.429) -0.441 (0.3) -1.29 (0.477) -1.06 (0.577)

K1P
2,3 0.259 (0.124) -0.58 (1.39) -0.801 (2) 0 0

K1P
3,1 -3.27 (0.728) -1.88 (4.98) -4 (9.69) 0.817 (1.8) 2.11 (0.745)

K1P
3,2 1.06 (0.652) -0.438 (1.24) -0.341 (1) -3.42 (6.83) -3.61 (0.891)

K1P
3,3 -0.46 (0.172) -0.767 (0.51) -2.19 (0.813) -0.511 (0.164) -0.321 (0.143)

K0P
1

1.04 (1.98) 1.38 (1.9) 2.28 (2.53) 1.97 (21.7) 1.61 (5.11)

K0P
2

-1.31 (1.99) -0.0177 (3.72) 7.38 (4.99) 0.614 (10.2) 0.5 (3.2)

K0P
3

-0.184 (2.95) -1.71 (9.05) -1.8 (12.2) 0 0

K
1Q
1,1

-1.3 (0.043) -0.62 (0.0128) -0.568 (0.0111) -0.0864 (0.0634) -1.29 (0.0669)

K
1Q
1,2

0 0 0 0.484 (0.377) 1.64 (0.245)

K
1Q
1,3

0 0 0 0 0

K
1Q
2,1

-0.0947 (0.0443) -2.06 (0.334) -2.11 (0.336) 0.176 (0.109) 0.0652 (0.0294)

K
1Q
2,2

-0.0298 (0.0013) -0.939 (0.42) -0.236 (0.354) -1.35 (0.0748) -0.756 (0.0601)

K
1Q
2,3

0 -0.723 (1.7) -1.21 (2.98) 0 0

K
1Q
3,1

-4 (0.159) -1.61 (4.27) -2.88 (7) 1.1 (2.31) 2.95 (0.817)

K
1Q
3,2

1.38 (0.0544) -0.592 (1.52) -0.168 (0.492) -4 (8.12) -3.64 (0.811)

K
1Q
3,3

-0.681 (0.014) -0.502 (0.413) -1.44 (0.355) -0.653 (0.0117) -0.0819 (0.00106)

K
0Q
1

0 2.81 (0.682) 3.62 (0.769) 1.67 (3.11) 0.5 (1.76)

K
0Q
2

0 0 0 1.29 (5.39) 3.42 (1.02)

K
0Q
3

0 0 0 -1.37 (13.9) -1.23 (2.84)

β1,1 0 1 1 1 1
β1,2 0 0.0638 (0.0361) 0.149 (0.0698) 0 0
β1,1 0 4.49 (21.3) 5.84 (28.6) 0 (0.0612) 0 (0.0478)
β1,1 0 0 0 1 1
β1,1 0 0 0 0.74 (3.12) 0.411 (0.253)

ρ0 0.111 (0.00229) 0.0478 (0.0186) 0.0166 (0.0111) -0.0148 (0.0871) 0.0684 (0.0422)

ρ1

1
0.00241 (2.28e-4) 0.000734 (1.48e-4) 0.000811 (1.24e-4) -8.28e-5 (6.66e-5) -0.000995 (9.91e-5)

ρ1

2
0.00022 (2.62e-4) 0.00454 (3.22e-4) 0.00309 (3.88e-4) 0.000897 (2.25e-4) 0.00113 (1.59e-4)

ρ1

3
0.00559 (8.89e-5) 0.000252 (5.55e-4) 0.000487 (0.00121) 0.00191 (0.00395) 0.00236 (6.53e-4)

M 0 1 1 2 2
N 3 3 3 3 3
mean LLK 41.6 41.7 74.6 41.6 74.7

Table 2: Parameter Estimates.
This table presents all parameter values for the different affine term structure
models we estimate. Standard errors are in parentheses. The A0(3), A1(3), and
A2(3) models were estimated by inverting 3-month, 2-year, and 10-year swap
zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and
A2(3)

o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error. If a
parameter is reported as 0 or 1, it is restricted to be so by the identification and
existence conditions in Dai and Singleton (2000) and Cheridito et al. (2006).
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

3 Month 0.0 0.0 0.0 0.0 0.0
6 Month 7.1 7.1 6.8 7.1 6.8

1 Year 9.9 9.9 9.3 10.0 9.3
2 Year 0.0 0.0 0.0 0.0 0.0
3 Year 4.1 4.1 4.5 4.1 4.5
4 Year 5.3 5.2 6.3 5.2 6.2
5 Year 5.2 5.2 6.7 5.2 6.6
7 Year 3.8 3.8 5.5 3.8 5.3

10 Year 0.0 0.0 0.0 0.0 0.0

Table 3: Pricing Errors in BPS for Swap Implied Zeros
The A0(3), A1(3), and A2(3) models were estimated by inverting 3-month,
2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros
with error. The A1(3)

o and A2(3)
o models were estimated with the additional

assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money cap prices were
measured with error.

A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

1 Year 33.6 32.4 36.4 33.3 35.5
2 Year 19.9 19.0 14.6 16.9 14.4
3 Year 18.9 18.0 10.9 15.7 10.9
4 Year 17.3 17.3 9.6 14.2 9.6
5 Year 16.3 17.0 9.2 13.3 9.0
7 Year 14.3 16.1 8.6 11.7 8.3

10 Year 13.4 15.8 9.2 11.0 8.9

Table 4: Relative Pricing Errors in % for At-the-Money Caps
This table shows the root mean square relative pricing errors in % for at-the-
money caps. The A0(3), A1(3), and A2(3) models were estimated by inverting
3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year
zeros with error. The A1(3)

o and A2(3)
o models were estimated with the

additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money cap
prices were measured with error.
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Figure 1: Cap Prices
The top figure plots the 3-year at-the-money cap prices in the A1(3) model
(solid grey line) and the A1(3)

o model (dashed line). The actual prices are
plotted with a solid black line. The bottom figure plots the 3-year at-the-
money cap prices in the A2(3) model (solid grey line) and the A2(3)

o model
(dashed line). The actual prices are plotted with a solid black line. The A1(3)
and A2(3) models were estimated by inverting 3-month, 2-year, and 10-year
swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o

and A2(3)
o models were estimated with the additional assumption that 1-, 2-,

3-, 4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error.
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Figure 2: Cap Prices
The top figure plots the 5-year at-the-money cap prices in the A1(3) model
(solid grey line) and the A1(3)

o model (dashed line). The actual prices are
plotted with a solid black line. The bottom figure plots the 5-year at-the-
money cap prices in the A2(3) model (solid grey line) and the A2(3)

o model
(dashed line). The actual prices are plotted with a solid black line. The A1(3)
and A2(3) models were estimated by inverting 3-month, 2-year, and 10-year
swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o

and A2(3)
o models were estimated with the additional assumption that 1-, 2-,

3-, 4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error.
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Figure 3: Cap Prices for A1(3)
o model

This figure plots cap prices for 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money
caps. The think lines indicate data prices. The model prices for the A1(3)

o

model are plotted in thicker lines, with longer maturities having higher prices.
The A1(3)

o model was estimated by inverting 3-month, 2-year, and 10-year
swap zeros. Additionally, the 1-, 3-, 5-, and 7-year zeros and 1-, 2-, 3-, 4-, 5-,
7-, and 10-year at-the-money cap prices were measured with error.
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Figure 4: Realized Volatility
These figures plot weekly model conditional volatility of (from top to bottom)
6-month, 2-year, and 10-year zero coupon swap rates against various estimates
of weekly conditional volatility using historical data. For estimates of condi-
tional volatility based on historical data we use an exponential weighted mov-
ing average (EWMA) with a 26-week half-life and estimate an EGARCH(1,1)
for each maturity. The plots on the left show the conditional volatility in
the A1(3) and A1(3)

o models. The plots on the right show the conditional
volatility in the A0(3), A1(3), and A1(3)

o models.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

6 Month 0.0 19.2 28.9 39.1 30.1
1 Year 0.0 50.8 56.3 58.3 52.9
2 Year 0.0 75.0 77.0 63.2 66.9
3 Year 0.0 83.0 81.5 39.0 70.6
4 Year 0.0 84.4 81.4 15.4 71.9
5 Year 0.0 84.1 79.3 -2.6 69.3
7 Year 0.0 84.3 77.4 -21.2 66.4

10 Year 0.0 82.0 75.0 -26.7 61.6

Table 5: Correlation between model and EGARCH volatility
This table shows the correlation between model-implied one-week volatilities
and EGARCH(1,1) volatility estimates. The A0(3), A1(3), and A2(3) models
were estimated by inverting 3-month, 2-year, and 10-year swap zeros and mea-
suring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and A2(3)
o models

were estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and
10-year at-the-money cap prices were measured with error.

A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

6 Month 0.0 33.2 41.8 35.1 40.3
1 Year 0.0 55.8 62.7 54.5 63.4
2 Year 0.0 74.0 76.0 50.1 76.1
3 Year 0.0 76.7 75.6 29.6 75.6
4 Year 0.0 77.2 74.1 9.9 74.0
5 Year 0.0 77.4 73.0 -3.4 72.0
7 Year 0.0 80.6 74.2 -18.7 71.4

10 Year 0.0 80.7 75.8 -18.9 71.7

Table 6: Correlation between model and EWMA volatility
This table provides the correlation between model-implied one-week volatilities
and Exponential Weighted Moving Average volatility estimates. The EWMA
estimates were computing using a 26 week half-life. The A0(3), A1(3), and
A2(3) models were estimated by inverting 3-month, 2-year, and 10-year swap
zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and
A2(3)

o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money caps were measured with error.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o EGARCH EWMA
6 Month 7.3 6.8 6.1 6.6 6.1 6.6 6.5

1 Year 9.8 10.5 11.2 10.1 11.1 9.9 10.3
2 Year 12.0 13.1 14.8 12.7 14.8 12.6 12.9
3 Year 12.7 13.6 15.8 13.4 15.9 13.3 13.5
4 Year 12.8 13.6 16.0 13.5 16.1 13.5 13.7
5 Year 12.8 13.5 15.9 13.5 16.0 13.7 13.9
7 Year 12.8 13.2 15.3 13.4 15.4 13.6 13.8

10 Year 12.7 12.8 14.2 13.1 14.2 13.5 13.6

Table 7: Average Conditional Volatilities
This table shows the the average conditional one week volatility of swap rates,
σt(yt+1), in basis points. Semi-nonparametric estimates of the the average
conditional one week volatility are also provided. The A0(3), A1(3), and A2(3)
models were estimated by inverting 3-month, 2-year, and 10-year swap zeros
and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and A2(3)
o

models were estimated with the additional assumption that 1-, 2-, 3-, 4-, 5-,
7-, and 10-year at-the-money cap prices were measured with error.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o CP5 CP10 CP5,10

2 Yr -15.2 10.8 2.2 12.1 5.8 36.4 45.3 36.1
3 Yr -1.1 16.5 15.4 16.5 21.9 42.5 50.4 40.8
4 Yr 8.6 20.0 23.4 17.0 30.1 47.8 54.6 44.6
5 Yr 15.3 21.8 28.5 16.8 34.7 51.5 57.5 46.8
6 Yr 20.2 22.5 32.0 16.4 37.3 59.0 47.0
7 Yr 24.5 21.9 34.3 15.7 38.6 60.0 46.4
8 Yr 26.9 21.6 35.6 15.4 39.1 60.0 45.0
9 Yr 29.3 21.0 36.6 15.0 39.4 59.9 43.5
10 Yr 31.1 20.2 37.1 14.6 39.1 59.8 42.0

Table 8: In-Sample Predictability of Excess Returns (R2s in %)
This Table presents R2s obtained from overlapping weekly projections of one
year realized zero coupon swap rate returns, for different maturities, on in-
sample model implied returns. CP5 is the prediction from a regression of
excess returns on 1-year zero rates and 1-year forward rates at 1-, 2-, 3-,
and 4-years. CP10 is the prediction from a regression of excess returns on
1-year zero rates and 1-year forward rates at 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-,
and 10-years. CP5,10 uses only 5 forward rates as regressors ranging up to
10 years. Regressions are based on overlapping data. The A0(3), A1(3), and
A2(3) models were estimated by inverting 3-month, 2-year, and 10-year swap
zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and
A2(3)

o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o CP5 CP10 CP5,10

2 Yr -11.7 12.3 1.0 10.1 1.3 23.4 -75.0 30.1
3 Yr -3.3 18.9 12.0 13.6 13.9 29.1 -56.1 26.2
4 Yr 4.4 20.9 18.0 12.9 19.5 33.2 -40.5 22.5
5 Yr 10.9 21.7 23.0 12.1 23.6 36.4 -26.9 23.2
6 Yr 16.2 19.3 25.4 10.4 24.5 -19.3 18.5
7 Yr 21.3 18.2 28.7 9.5 26.3 -14.6 15.0
8 Yr 24.5 18.3 31.2 9.4 28.1 -13.4 12.2
9 Yr 27.2 16.7 32.4 8.6 28.3 -12.1 8.6
10 Yr 29.3 15.1 33.1 8.0 28.1 -10.8 5.6

Table 9: Out-of-Sample Predictability of Excess Returns (R2s in %)
This Table presents R2s obtained from overlapping weekly projections of one
year realized zero coupon swap rate returns, for different maturities, on out-
of-sample model implied returns. CP5 is the prediction from a regression
of excess returns on 1-year zero rates and 1-year forward rates at 1-, 2-, 3-,
and 4-years. CP10 is the prediction from a regression of excess returns on
1-year zero rates and 1-year forward rates at 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-,
and 10-years. CP5,10 uses only 5 forward rates as regressors ranging up to
10 years. Regressions are based on overlapping data. The A0(3), A1(3), and
A2(3) models were estimated by inverting 3-month, 2-year, and 10-year swap
zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and
A2(3)

o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

2 Yr 4.2 6.7 9.2 5.7 9.9
3 Yr 8.7 7.7 12.4 6.6 14.3
4 Yr 11.6 8.3 14.4 6.6 16.3
5 Yr 13.4 8.5 15.3 6.4 17.1
6 Yr 14.4 8.6 15.8 6.3 17.4
7 Yr 15.2 8.4 15.9 6.0 17.3
8 Yr 15.6 8.4 16.0 5.9 17.3
9 Yr 15.9 8.3 15.9 5.7 17.0
10 Yr 16.1 8.1 15.7 5.5 16.7

Table 10: In-Sample Predictability of Excess Returns (R2s)
This Table presents R2s obtained from overlapping weekly projections of 3
month realized zero coupon swap rate returns, for different maturities, on in-
sample model implied returns. Regressions are based on overlapping data. The
A0(3), A1(3), and A2(3) models were estimated by inverting 3-month, 2-year,
and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros with error.
The A1(3)

o and A2(3)
o models were estimated with the additional assumption

that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money cap prices were measured
with error.
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A0(3) A1(3) A1(3)
o A2(3) A2(3)

o

2 Yr 1.5 4.8 5.1 2.8 4.4
3 Yr 3.1 5.8 6.3 3.3 5.6
4 Yr 4.1 6.1 6.7 3.1 5.6
5 Yr 5.1 6.1 7.1 2.9 5.8
6 Yr 5.2 5.8 6.7 2.5 4.9
7 Yr 5.3 5.5 6.5 2.2 4.3
8 Yr 5.3 5.6 6.4 2.0 4.0
9 Yr 5.1 5.3 6.0 1.7 3.4
10 Yr 4.8 5.0 5.7 1.5 3.0

Table 11: Out-of-Sample Predictability of Excess Returns (R2s)
This Table presents R2s obtained from overlapping weekly projections of 3
month realized zero coupon swap rate returns, for different maturities, on out-
of-sample model implied returns. Regressions are based on overlapping data.
The A0(3), A1(3), and A2(3) models were estimated by inverting 3-month,
2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros
with error. The A1(3)

o and A2(3)
o models were estimated with the additional

assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money cap prices were
measured with error.
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Figure 5: Regression Coefficients from Linear Projection on Yields
This figure shows the regression coefficients of the Campbell-Shiller regression
Rn−1

t+1 −Rn
t on slope, (Rn

t − rt)/(n− 1). The model values are simulated mean
regression coefficients. The A0(3), A1(3), and A2(3) models were estimated by
inverting 3-month, 2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and
7-year zeros with error. The A1(3)

o and A2(3)
o models were estimated with

the additional assumption that 1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money
cap prices were measured with error.
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Figure 6: Confidence Interval for Linear Projection on Yields
This figure shows the sample regression coefficient of the Campbell-Shiller
regression Rn−1

t+1 − Rn
t on slope, (Rn

t − rt)/(n − 1) for the A1(3)
o model. The

dotted line provides the confidence interval computed from simulation. The
model was estimated by inverting 3-month, 2-year, and 10-year swap zeros
and measuring 1-, 3-, 5-, and 7-year zeros and 1-, 2-, 3-, 4-, 5-, 7-, and 10-year
at-the-money cap prices with error.
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Figure 7: Risk Premium Adjusted Linear Projection on Yields
This figure shows the regression coefficient from the projection risk premium
adjusted excess returns on the slope, (Rn

t − rt)/(n−1). The A0(3), A1(3), and
A2(3) models were estimated by inverting 3-month, 2-year, and 10-year swap
zeros and measuring 1-, 3-, 5-, and 7-year zeros with error. The A1(3)

o and
A2(3)

o models were estimated with the additional assumption that 1-, 2-, 3-,
4-, 5-, 7-, and 10-year at-the-money cap prices were measured with error.
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Figure 8: Confidence Interval for LPY(II)
This figure shows the confidence interval for the regression coefficient in the
A1(3)

o model from the projection risk premium adjusted excess returns on the
slope, (Rn

t − rt)/(n− 1). The A1(3)
o model is estimated by inverting 3-month,

2-year, and 10-year swap zeros and measuring 1-, 3-, 5-, and 7-year zeros and
1-, 2-, 3-, 4-, 5-, 7-, and 10-year at-the-money cap prices with error.
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Figure 9: Actual and Risk Neutral Expected Volatility
These figures show the long run expected volatility of zero coupon yields with
maturities up to 10 years. The plot on the left shows the expected long run
volatility in the A1(3) model that is estimated without using options. The plot
on the right shows the expected long run volatility in the A1(3)

o model that is
estimated using options. The dashed line is the expected volatility under the
risk neutral pricing measure. The solid line is the actual expected volatility.
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Figure 10: Actual and Risk Neutral Expected Volatility
These figures show the long run expected volatility of zero coupon yields with
maturities up to 10 years. The plot on the left shows the expected long run
volatility in the A2(3) model that is estimated without using options. The plot
on the right shows the expected long run volatility in the A2(3)

o model that is
estimated using options. The dashed line is the expected volatility under the
risk neutral pricing measure. The solid line is the actual expected volatility.
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