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Affine-Quadratic Term Structure Models
– Toward the Understanding of Jumps in Interest Rate

Abstract

In this paper, we propose a unifying class of affine-quadratic term structure models (AQTSMs) in
the general jump-diffusion framework. Extending existing term structure models, the AQTSMs in-
corporate random jumps of stochastic intensity in the short rate process. Using information from the
Treasury futures market, we propose a GMM approach for the estimation of the risk-neutral process. A
distinguishing feature of the approach is that the time series estimates of stochastic volatility and jump
intensity are obtained, together with model parameter estimates. Our empirical results suggest that
stochastic jump intensity significantly improves the model fit to the term structure dynamics. We iden-
tify a stochastic jump intensity process that is negatively correlated with interest rate changes. Overall,
negative jumps tend to have a larger size than positive ones. Our empirical results also suggest that,
at monthly frequency, while stochastic volatility has certain predictive power of inflation, jumps are
neither triggered by nor predictive of changes in macroeconomic variables. At daily frequency, how-
ever, we document interesting patterns for jumps associated with informational shocks in the financial
market.



1 Introduction

Most existing term structure models are diffusion-type models where the underlying state variables

driving the yield curve move continuously. Several recent studies, however, have provided strong

evidence that interest rates contain jumps, that is, infrequent moves of large magnitude. Das (2002), for

example, shows that incorporating jumps captures many empirical features of the Fed Funds rate that

can not be explained by the continuous diffusion models. Johannes (2004) develops a test of detecting

jumps and finds evidence for the presence of jumps in the 3-month Treasury bill rate. Piazzesi (2005)

models the Fed’s target rate as a jump process and shows that introducing jumps helps to fit the entire

yield curve. An important question arising from these studies is: what causes jumps? Or from a

modeling point of view, what determines the arrival rate of jumps, i.e., the jump intensity? In the

aforementioned papers, the jump intensity is assumed to be either a constant (e.g. Das (2002)) or

of certain specific functional forms. For example, Johannes (2004) specifies the jump intensity as a

function of the short rate. Piazzesi (2001, 2005) model jumps based on the state of economy and the

Federal Open Market Committee (FOMC) meeting calendar. These assumptions are reasonable but

may be too restrictive to fully capture the dynamics of jumps.

In this paper, we propose a general class of affine-quadratic jump-diffusion term structure models

(AQTSMs). The key feature of the model is that the jump intensity is by itself a stochastic process,

and yet potentially correlated with other state variables such as the short rate and stochastic volatility.

This is in contrast to the assumptions on the jump intensity in existing studies. In the spirit of Cox,

Ingersoll, and Ross (1985a) and Ahn and Thompson (1988), our model is supported by a representative

agent economy and in equilibrium the instantaneous interest rate is an affine-quadratic function of

the underlying state variables. This specification extends two existing classes of diffusion-type term

structure models: the affine term structure models (ATSMs)1 and the quadratic term structure models

1The literature on the ATSMs goes back to Vasicek (1977), and Cox, Ingersoll, and Ross (1985b). Extensions include

Longstaff and Schwartz (1992), Sun (1992), Pearson and Sun (1994), Balduzzi, Das, Foresi, and Sundaram (1996), Chen

(1996), Chen and Scott (1996), Duffie and Kan (1996), Andersen and Lund (1997), Dai and Singleton (2000, 2002), and
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(QTSMs).2

The ATSMs, popularized by Duffie and Kan (1996) and Dai and Singleton (2000), are flexible in

describing the dynamic properties of interest rates such as stochastic volatility, while in the meantime

are tractable with closed-form or near closed-form bond pricing formula where bond yields are affine

functions of the underlying state variables. Among non-affine term structure models, the QTSMs pro-

posed by Ahn, Dittmar, and Gallant (2002) have attracted great interest recently, where the bond yields

are quadratic functions of the underlying state variables. Our model contains both classes of models

as special cases. In particular, in the absence of jumps our model is a hybrid affine-quadratic model

that is examined in Ahn, Dittmar, Gallant, and Gao (2003). This nesting feature is very useful in as-

sessing the importance of incorporating jumps to the models of term structure dynamics. Despite the

extra complexity caused by jumps and stochastic jump intensity, our model remains tractable in that,

following the approach of Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000), we obtain near

closed-form bond pricing formula and conditional characteristic function (CCF) of the state variables.

Both bond pricing formula and CCF involve only ordinary differential equations which can be easily

solved either analytically or numerically. The availability of the near closed-form solution is crucial as

we are able to use the data on the entire yield curve in estimation.

For our empirical analysis, we consider three examples of the general (AQTSMs) jump-diffusion

model. The first example, serving as the benchmark, is a two-factor affine stochastic volatility (SV)

model. It can be regarded as a restricted version of a three-factor maximally flexible affine model of Dai

and Singleton (2000). We have also examined the examples of quadratic models (QTSMs) studied in

Ahn, Dittmar, Gallant (2002) and find similar empirical results. Our second example, the SVJ model,

generalizes the SV model by including a jump component in the short rate process with a constant

Chacko and Das (2002) among others. See Dai and Singleton (2003) for a review of the literature and the references.
2Some early examples of the QTSMs are Longstaff (1989), Beaglehole and Tenney (1992), and Constantinides (1992).

More recent studies include Ahn, Dittmar, and Gallant (2002), Gourieroux and Sufana (2003), and Leippold and Wu (2003).

Not considered in this paper are other non-affine models such as those in Chan, Karolyi, Longstaff, and Sanders (1992), and

Ahn and Gao (1999).
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jump intensity. This specification nests the jump-diffusion model of Das (2002) as a restricted case if

the volatility of the short rate is also set to be constant. In the third example, the SVJT model, the jump

intensity follows a separate stochastic process that is correlated with the processes of the short rate and

stochastic volatility. The model belongs to the affine-quadratic family as the bond yields are linear in

the short rate but quadratic in the state variables driving the stochastic volatility and jump intensity. It

is similar to the affine-quadratic jump-diffusion models considered in Piazzesi (2001), and the main

difference is that the jump intensity in our model is itself a stochastic process.

We propose a new GMM approach for the statistical inference of the AQTSMs. Different from

the existing literature where model estimation is mainly based on the observed short rates, we rely

on information along the entire yield curve (i.e. yields of various maturities) plus information from

the T-bill futures market to identify the risk-neutral process. The approach has several distinguishing

features and advantages. First, we take advantage of the closed-form solutions of the bond pricing

formula derived under the affine-quadratic model framework. The moment conditions based on bond

yields are not only robust but also directly measure the model performance of fitting the entire yield

curve. Second and more importantly, it identifies the latent state variables using the information, e.g.,

the variance of yields, from the Treasury futures market. The key identifying restriction is the dynamic

relation derived under the model specification between the observed state variables and the unobserved

latent state variables. The time series estimates of stochastic volatility and jump intensity help us to

understand the dynamics of underlying state variables, and in particular the determinants of jump arrival

rate. This procedure also ensures that the model fits directly into the risk-neutral variance of the short

rate and the dynamics of short rate volatility. The approach shares with existing studies, such as Pan

(2002), the advantage that with proxies of the latent variables, there is no path simulation involved in

the model estimation. It thus effectively overcomes the difficulty associated with the unobserved latent

state variables.

In our empirical analysis, we use the term structure data and the 3-month T-bill futures data dur-
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ing the period of 1984 through 2002 or the so-called “post-disinflation” period. The yields along the

yield curve have maturities ranging from 3 months to 30 years. Our empirical results suggest that the

stochastic jump intensity significantly improves the model fit to the term structure dynamics. Incor-

porating only stochastic volatility or modeling jumps with constant intensity in the short rate process

proves to be too restrictive for the dynamics of term structure. We identify a jump intensity process

that is negatively correlated with interest rate changes, with the average jump intensity implying 9 to

10 jumps per year. Overall, negative jumps also tend to have a larger size (roughly 17 basis points) than

positive jumps (roughly 15 basis points). In addition, the combination of risk-neutral variance and the

real-world realized variance allows us to further understand the risk premia of stochastic volatility and

random jumps. We document time-varying risk premia that are positively related to the uncertainty of

the risk factors.

Recent studies, such as Ang and Piazzesi (2003), Piazzesi (2001, 2005), and Duffee (2005), have

focused on the relation between macroeconomic variables and term premia. In this paper, we perform

further analysis of the term structure dynamics in relation to economic activities. The time series es-

timates of stochastic volatility and random jumps allow us to directly examine the relations between

term structure dynamics and various macroeconomic variables. We empirically test whether the state

variables of the term structure dynamics are predictive of future economic activities, and whether the

increase of volatility or in particular jumps are due to shocks in macroeconomic variables. At monthly

frequency, while there is evidence that stochastic volatility has certain predictive power of future infla-

tion, we find that jumps are neither triggered by nor predictive of changes in macroeconomic variables.

Once focusing on daily frequency, however, we find interesting patterns for jumps associated with

various informational shocks in the financial market. While many jumps occur during the scheduled

macroeconomic news release dates or FOMC meeting dates, there are a considerable number of jumps

that are associated with unanticipated economic news or geopolitical development. Interestingly, in-

terest rate jumps as a result of macroeconomic shocks are dominantly more negative than positive.
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The findings have important implications for understanding and managing risk factors associated with

random jumps in the bond market.

The rest of the paper is structured as follows. Section 2 presents the affine-quadratic term structure

models in a representative agent economy, with solutions for bond price and conditional characteristic

functions of the state variables. In section 3, we focus on three specific models that are closely related to

those in the existing literature, with the most general model incorporating both stochastic volatility and

jumps of stochastic intensity. These models are further examined in our empirical analysis in Section

4. Section 5 concludes.

2 Affine-Quadratic Jump-Diffusion Models

Extending the affine and quadratic term structure models (ATSMs and QTSMs), we propose a unifying

class of affine-quadratic models (AQTSMs) in the general jump-diffusion framework. The models are

supported in equilibrium by a representative agent economy in the spirit of Cox, Ingersoll, and Ross

(1985a), and Ahn and Thompson (1988) and includes most existing term structure models as special

cases.

Let X(t) =
(

X1(t)
X2(t)

)

be an n × 1 vector of state variables with n1 × 1 and n2 × 1 sub-vectors

X1(t) and X2(t) respectively. Under the probability measure (Ω,F , P ) with an information filtration

(Ft) = {Ft : t ≥ 0}, the state variables follow a jump-diffusion process:

dX = (µX − λµQX
) dt+ ΣXdZ +QXdN, (1)

where Z(t) =
(

Z1(t)
Z2(t)

)

, Z1(t) and Z2(t) are independent n1- and n2-dimensional standard Brownian

motions. N(t) is a Poisson process with arrival intensity λ(t), that is,

Prob(dN = 1) = λdt, (2)

and λ(t) is an affine-quadratic function of the state variables:

λ = ϕ+ φ>X1 + ψ>X2 +X>
2 ΨX2, (3)
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where ϕ ∈ R, φ ∈ R
n1×1, ψ ∈ R

n2×1, and Ψ ∈ R
n2×n2 is a symmetric matrix. The first n1 components

of the jump size QX are non-degenerate, i.e., QX =
(

QX1

0

)

, where QX1
is an i.i.d. n1 × 1 random

vector with mean µQX1
. N and QX are independent of each other and are independent of the Brownian

motions Z. We assume that for any vector k ∈ R
n1×1:

E

[

ek>QX1

]

= δX(k), (4)

where δX(·) is a well defined function and E is the expectation with respect to the distribution of QX1
.

Further, the drift and diffusion terms of the state variables X have the following form:

µX =
( µX1

µX2

)

, (5)

ΣXΣ>
X =

(

Ω11 Ω12

Ω>

12
Ω22

)

, (6)

where

µX1
= κ10 + κ11X1 + κ12X2 + ζ(X2), (7)

µX2
= κ20 + κ22X2, (8)

ζ(X2) =
(

X>
2 ζ1X2, . . . , X

>
2 ζn1

X2

)>
, (9)

(Ω11)ij = (ω10)ij + (ω11)
>
ijX1 + (ω12)

>
ijX2 +X>

2 νijX2, 1 ≤ i, j ≤ n1, (10)

(Ω12)ij = (ω20)ij + (ω22)
>
ijX2, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. (11)

The parameters of the model are defined as: κ10 ∈ R
n1×1, κ20 ∈ R

n2×1, κ11 ∈ R
n1×n1 , κ12 ∈ R

n1×n2 ,

κ22 ∈ R
n2×n2 , ζi’s ∈ R

n2×n2 are symmetric matrices with 1 ≤ i ≤ n1, ω10 ∈ R
n1×n1 , ω20 ∈ R

n1×n2 ,

(ω11)ij ∈ R
n1×1, (ω12)ij ∈ R

n2×1, (ω22)ij ∈ R
n2×1, νij’s ∈ R

n2×n2 are symmetric matrices, and

Ω22 ∈ R
n2×n2 is a symmetric matrix.

The jump-diffusion specification above is very general and nests most existing continuous-time

dynamic models as special cases. For example, when the second group of state variables, X2, are not

present, the model simplifies to the affine jump-diffusion model of Duffie, Pan, and Singleton (2000).

On the other hand, when the first group of state variables, X1, are not present, the model reduces to
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the quadratic specification of Ahn, Dittmar, and Gallant (2002). An important feature of our model is

that the jump intensity λ is driven by its own source of uncertainty and yet potentially correlated with

other state variables. This differs from most existing jump-diffusion term structural models where the

jump intensity is assumed to be either constant (e.g. Das (2002)) or driven by other state variables (e.g.

Johannes (2004), and Piazzesi (2005)).

Next, following the approach of Cox, Ingersoll, and Ross (1985a), and Ahn and Thompson (1988),

we derive the dynamics of the instantaneous interest rate. Consider an economy in which there is

a competitive market for instantaneous borrowing and lending at the endogenously determined spot

interest rate r(t). For simplicity, we assume that there is a single risky asset, which one can think of as

an equity market index, and a representative utility maximizing investor.3 The return on the risky asset

follows the process:
dS

S
= (µS − λµQS

) dt+ σ>
S dZ +QSdN, (12)

where QS is the jump size with mean µQS
, and independent of N , QX , and Z.4 µS and σS are specified

as following:

µS = α1 + β>
1 X1 + γ>1 X2 +X>

2 Φ1X2, (13)

σ>
S σS = α2 + β>

2 X1 + γ>2 X2 +X>
2 Φ2X2, (14)

ΣXσS =

(

α3 + β>
3 X1 + γ>3 X2 + ξ(X2)

α4 + γ>4 X2

)

, (15)

ξ(X2) =
(

X>
2 ξ1X2, . . . , X

>
2 ξn1

X2

)>
, (16)

where for i = 1 and 2, αi ∈ R, βi ∈ R
n1×1, γi ∈ R

n2×1, Φi ∈ R
n2×n2 are symmetric matrices,

α3 ∈ R
n1×1, α4 ∈ R

n2×1, β3 ∈ R
n1×n1 , γ3 ∈ R

n2×n1 , γ4 ∈ R
n2×n2 , and ξi’s ∈ R

n2×n2 are symmetric

matrices with 1 ≤ i ≤ n1.

The representative investor has initial wealthW and allocates it between the risky asset and the risk-

3The model can be generalized to include multiple assets.
4For brevity, we do not consider the case where QS and QX are correlated in this paper although it can be done in a

straightforward way.
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free security. Let w denote the fraction of wealth invested in the risky asset. For simplicity, we assume

that there is no intermediate consumption and the investor chooses an optimal portfolio to maximize

utility on her wealth at a terminal date T :

max
w

Et [u(WT , T )] , (17)

where Et is the conditional expectation operator and u is the utility function. We consider power utility

function:

u(W ) =
W 1−ρ

1 − ρ
, (18)

where ρ > 1 is a constant. The process of the spot interest rate under the equilibrium of such economy

is given in the following proposition with the proof provided in the Appendix.

Proposition 1: Under the equilibrium of the above economy, the instantaneous interest rate, r(t), is

an affine-quadratic function of the state variables:

r(t) = α + β>X1 + γ>X2 +X>
2 ΦX2, (19)

where α ∈ R, β ∈ R
n1×1, γ ∈ R

n2×1, and Φ ∈ R
n2×n2 a symmetric matrix.5

This result highlights the model as a hybrid of ATSMs and QTSMs where the spot interest rate is

driven by both affine-type (X1) and quadratic-type (X2) factors. In addition, the affine factors X1 con-

tain jumps. Further, we have the following results under the risk-neutral probability measure. Again,

the proof is given in the Appendix.

Proposition 2: Given the jump-diffusion process (1), there is an equivalent risk-neutral probability

measure (Ω,F , P ∗) under which the state variables follow the jump-diffusion process:

dX =
(

µ∗
X − λ∗µ∗

QX

)

dt+ ΣXdZ
∗ +Q∗

XdN
∗, (20)

5Alternatively, we can follow the approach in studies such as Duffie, Pan, and Singleton (2000) for ATSMs, and Ahn,

Dittmar, Gallant (2002) for QTSMs by directly assuming r(t) as an affine-quadratic function of the state variables. To

obtain the result of Proposition 2, we then need to specify a stochastic discount factor as an affine-quadratic jump-diffusion

process. The current approach highlights that the affine-quadratic specification can be obtained in an equilibrium economy.
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Prob(dN ∗ = 1) = λ∗dt, (21)

λ∗ = ϕ∗ + φ∗>X1 + ψ∗>X2 +X>
2 Ψ∗X2, (22)

E[ek>Q∗

X1 ] = δ∗X(k). (23)

µ∗
X1

= κ∗10 + κ∗11X1 + κ∗12X2 + ζ∗(X2), (24)

µ∗
X2

= κ∗20 + κ∗22X2, (25)

ζ(X2)
∗ =

(

X>
2 ζ

∗
1X2, · · · , X>

2 ζ
∗
n1
X2

)>
, (26)

where Q∗
X =

(

Q∗

X1

0

)

and all the parameters under the risk-neutral probability measure (Ω,F , P ∗) are

similarly defined as those under the real probability measure (Ω,F , P ).

The proposition shows that there is a transformation from the objective probability measure to the

risk-neutral probability measure. In the equilibrium of the above representative agent economy, the

dynamics of the model is invariant under the transformation between the two probability measures.

The risk-neutral specification of the model allows us to price bonds in closed-form as shown in the next

proposition.

Proposition 3: Let P (X1, X2, τ) be the price of a zero-coupon bond with maturity τ , as a function of

the state variables. And let θ denote the parameter vector of the model under the risk-neutral probability

measure. Then the bond price is given by:

P (X1, X2, τ ; θ) = eA∗(τ)+B∗(τ)>X1+C∗(τ)>X2+X>

2
D∗(τ)X2 , (27)

where A∗ ∈ R, B∗ ∈ R
n1×1, C∗ ∈ R

n2×1, and D∗ ∈ R
n2×n2 is a symmetric matrix. A∗, B∗, C∗, and

D∗ are solutions to the ODEs given in the Appendix.

Note that the bond yield is an affine-quadratic function of the state variables. It is also useful

for estimation purpose to derive the characteristic function of the state variables. The conditional

characteristic function (CCF) is defined as:

f(s,X(t), τ ; θ) = Et

[

eis>X(t+τ)
]

,
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with the initial condition:

f(s,X(t), 0; θ) = eis>X(t),

where i =
√
−1, s = ( s1

s2
), s1 ∈ R

n1 and s2 ∈ R
n2 . We prove in Appendix the next proposition, which

will be used in identifying the latent state variables in our empirical analysis.

Proposition 4: The CCF of X(t) under the risk-neutral probability measure is given as follows:

f(s,X(t), τ ; θ) = ei[A∗(s,τ)+B∗(s,τ)>X1+C∗(s,τ)>X2+X>

2
D∗(s,τ)X2], (28)

where A∗ ∈ R, B∗ ∈ R
n1×1, C∗ ∈ R

n2×1, and D∗ ∈ R
n2×n2 is a symmetric matrix. A∗, B∗, C∗, and

D∗ are solutions to the ODEs given in the Appendix.

3 Examples

In this section, we present three special cases of the general AQTSMs, which we will examine empir-

ically later. The benchmark model is a stochastic volatility model in the class of affine term structural

models. The second model extends the first one by incorporating a jump component with constant

jump intensity. The third model is a non-trivial example of the AQTSMs. It has both stochastic volatil-

ity and random jumps with stochastic intensity. All three examples are specified under the risk-neutral

probability measure. The bond price and CCF formulae are given in the Appendix.

3.1 Affine SV Model

Within the family of affine term structure models where the state variables X2 = ∅ and X1 contains

no jumps, we consider a 2-factor stochastic volatility model. The state variables are the instantaneous

interest rate r and its volatility v, which have the following dynamics:

dr = (µ∗
r + κ∗rrr + κ∗rvv) dt+

√
vdZ∗

r , (29)

dv = (µ∗
v + κ∗vrr + κ∗vvv) dt+ σv

√
vdZ∗

v , (30)
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where dZ∗
r and dZ∗

v are Brownian motions with correlation coefficient ρ. In the most general form,

we allow the interest rate and volatility to enter the drift terms of both variables. Note that this model

can be regarded as a restricted version of the three-factor maximally flexible model A1(3) of Dai and

Singleton (2000).

3.2 Affine SVJ Model with Constant Jump Intensity

Extending the above affine SV model, we incorporate jumps with constant jump intensity in the instan-

taneous interest rate process:

dr = (µ∗
r + κ∗rrr + κ∗rvv − λ∗µ∗

Qr
)dt+

√
vdZ∗

r +Q∗
rdN

∗, (31)

dv = (µ∗
v + κ∗vrr + κ∗vvv) dt+ σv

√
vdZ∗

v , (32)

Prob(dN ∗ = 1) = λ∗dt, (33)

δ∗(k) = E
[

ekQ∗
r
]

= peµ∗

+
k + (1 − p)eµ∗

−
k, (34)

µ∗
Qr

= pµ∗
+ + (1 − p)µ∗

−, (35)

where dZ∗
r and dZ∗

v are specified similarly as in the previous case, and the jump intensity, λ∗, is a

constant. We assume that the jump size, Q∗
r , follows a Bernoulli distribution with probability p to take

a positive value µ∗
+ > 0 and probability 1 − p to take a negative value µ∗

− < 0. One major advantage

of this specification of the jump distribution is that it allows asymmetric jumps in the instantaneous

interest rate. Both of the conditional positive and negative jump sizes µ∗
+ and µ∗

− are assumed to be

constant, instead of following a distribution with infinite support. Given the finite jump size and rare

occurrence of jumps, this specification also alleviates the concern of negative interest rates.6

6In all three models in this section, the instantaneous interest rate r can take negative values. This is an unattractive

feature but seems a necessary compromise in order to maintain tractability under the general jump-diffusion framework.

Our empirical analysis, however, indicates that the probability of r to be negative is very small based on parameter estimates

of these models.
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3.3 Affine-Quadratic SVJT Model with Stochastic Jump Intensity

In this example, the jump intensity, λ∗, is no longer constant and follows a stochastic process that is

correlated with the interest rate and volatility processes:

dr =
(

µ∗
r + κ∗rrr + κ∗rv

√
v + κ∗rλ

√
λ∗ + ζ∗vvv

+2ζ∗vλ

√
vλ∗ + ζ∗λλλ

∗ − λ∗µ∗
Qr

)

dt+
√
vdZ∗

r +Q∗
rdN

∗, (36)

d
√
v =

(

µ∗
v + κ∗vv

√
v + κ∗vλ

√
λ∗
)

dt+ σvdZ
∗
v , (37)

d
√
λ∗ =

(

µ∗
λ + κ∗λv

√
v + κ∗λλ

√
λ∗
)

dt+ σλdZ
∗
λ, (38)

Prob(dN ∗ = 1) = λ∗dt, (39)

δ∗(k) = E
[

ekQ∗
r
]

= peµ∗

+
k + (1 − p)eµ∗

−
k, (40)

µ∗
Qr

= pµ∗
+ + (1 − p)µ∗

−, (41)

where dZ∗
r , dZ∗

v , and dZ∗
λ are Brownian motions with constant correlation matrix:

Σ =









1 ρrv ρrλ

ρrv 1 ρvλ

ρrλ ρvλ 1









.

The jump component, Q∗
r , again follows a Bernoulli distribution as in the SVJ model, allowing asym-

metry between positive and negative jumps. The stochastic volatility process is specified differently

from those of the two earlier examples as the standard deviation
√
v now follows a Gaussian process

while previously the variance v follows a square root process. Similarly, λ∗ is the square of a Gaussian

process
√
λ∗.7 The drift term in the interest rate process is linear in r and quadratic in

√
v and

√
λ∗.

Note that if there are no jumps, then the SVJT model becomes a 2-factor quadratic model of Ahn,

Dittmar, and Gallant (2002).

7Note that in the current specification,
√
v and

√
λ∗ can be negative but v and λ∗ are always non-negative because they

are squares of their corresponding square-roots. Technically speaking, this is different from directly restricting v and λ∗ to

be non-negative processes. The main difference is the boundary properties at v = 0 and λ∗ = 0. For the exact effect of

such restrictions, please refer to the results in Ball and Roma (1994).
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4 Empirical Analysis

4.1 GMM Estimation of the Affine-Quadratic Models

It is well known that the statistical inference of continuous-time jump-diffusion models with latent

state variables presents a great challenge, at least for the following two reasons. First, the transition

density of the continuous-time jump-diffusion process is, with the exception of a few special cases,

generally unknown or unavailable in closed-form so that the conventional likelihood-based inference

is inapplicable. Second, any inference procedure has to deal with the unobserved variables, which

typically involves integrating out the latent variables in the likelihood function (see, e.g., Jacquier,

Polson, and Rossi (1994)). Since the high-dimensional integral in the likelihood function mostly can

not be reduced to one (or substantially lower) dimensional integrals, the numerical integration has

to resort to path simulation of the discretized continuous-time process and is thus computationally

intensive. In the option pricing literature, the risk-neutral process is often implied from the observed

market option prices or quotes through the fit of option pricing formula. The option pricing model

is then evaluated based on in-sample fitting and/or out-of-sample forecasting performance. In general,

such a procedure is feasible since there is a large panel of observed option prices or quotes in the market

with different strike prices and maturities. For multivariate interest rate term structure models such as

the ones proposed in this paper, the implied procedure is infeasible due to the fact that there are too

many unobserved state variables and model parameters, compared to a limited number of bond yield

observations along the yield curve. In this paper, we propose a generalized method of moments (GMM)

approach for the estimation of the AQTSMs.

The distinguishing features of the proposed GMM approach are as follows. First, we take advan-

tage of the closed-form solution of the bond pricing formula derived under the affine-quadratic model

framework. The corresponding bond yields allow us to construct robust moment restrictions in model

estimation and at the same time to use information from the entire yield curve (i.e. yields of different

maturities). Second and more importantly, we identify the latent state variables using the information
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in the futures market of Treasury bills. The intraday observations of T-bill yields in the futures market

contain important information of the term structure, such as the level of volatility and unusual large

changes or jumps in the short rate. The key identifying restriction is the dynamic relation derived di-

rectly under the model specification between the observed state variables and the unobserved latent

state variables. These dynamic relations enable us to imply the latent state variables using various mo-

ments of T-bill yields in the futures market. The approach is similar to the implied state generalized

method of moments (IS-GMM) proposed by Pan (2002) where the implied volatility from option prices

is used for model estimation. The advantage of the approach is that with proxies or estimates of the

latent variables, there is no path simulation involved in the estimation. It thus effectively overcomes the

difficulty associated with the unobserved latent state variables.

Specifically, the dynamic relations used in the identification of the latent variables, namely stochas-

tic volatility and random jumps, are based on various moments of the short rate. The intuition of the

identifying procedure is as follows. Since the changes of yields in the immediate future reflect the

current level of instantaneous variance and stochastic jump intensity, observations of yields naturally

contain information of the state variables. Such information can thus be used for the identification and

estimation of these state variables. Formally, under the affine-quadratic model framework with the CCF

given in Proposition 4, the following relation between the cumulants of the spot interest rate and the

state variables can be derived:

Proposition 5: Given the CCF of the state variables f(s, r(t + τ), X1(t + τ), X2(t + τ)|r(t) =

r,X1(t) = X1, X2(t) = X2) = ei[A∗(s,τ)+B∗
r (s,τ)r+B∗

1
(s,τ)>X1+C∗(s,τ)>X2+X>

2
D∗(s,τ)X2] with the initial

conditions A∗(s, 0) = 0, B∗
r (s, 0) = sr, B

∗
1(s, 0) = s1, C

∗(s, 0) = s2, D∗(s, 0) = 0, where s =

(sr, s1, s2), we have the following relation:

K(l)(r(t+ τ)|Ft) =
∂lA∗

∂sl
r

|s=0 +
∂lB∗

r

∂sl
r

|s=0r +
∂lB∗>

1

∂sl
r

|s=0X1 +
∂lC∗>

∂sl
r

|s=0X2 +X>
2

∂lD∗

∂sl
r

|s=0X2, (42)

where l = 1, 2, · · · , L, and K (l)(r(t + τ)|Ft) denotes the l-th order cumulant of r(t + τ) conditional

on Ft under the P ∗-measure.
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The above proposition is a direct application of Proposition 4 with interest rate r(t) specified explic-

itly as an affine-type state variable in our general affine-quadratic jump-diffusion model. The rest of the

variables in (X1, X2) are unobserved or latent state variables of dimension n1 − 1 and n2. They can be

identified from a set of moment conditions of r(t+ τ), i.e. {K (l)(r(t+ τ)|Ft)}L
l=1, given the parameter

values. For instance, for the SV model, the risk-neutral variance of the short rate can be calculated

from the intraday observations of the T-bill futures. Through the relation in (42) with l = 2, the spot

variance (Vt) can be backed out from the risk-neutral variance as a function of the model parameters.

The only conditions required on A∗, B∗
r , B∗

1 , C∗, and D∗ are that there exist solutions to a system of

affine-quadratic equations given by (42). The model parameters are in the end estimated via the itera-

tive GMM procedure. That is, combining the above identification restrictions of the state variables with

moment conditions, the GMM procedure results in consistent estimates of the model parameters. With

the final estimates of model parameters, the time series estimates of latent variables are also obtained.

For the asymptotic properties of parameter estimates under the standard GMM procedure please refer

to Hansen (1982), and for the details of the implied state generalized method of moments (IS-GMM)

please refer to Pan (2002).

4.2 The Data

The data used in our empirical analysis consist of daily US T-bill, T-note and T-bond yields with

maturities 3-, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, and 30-year from January 3, 1984 to February 15, 2002.

This period belongs to the so-called “post-disinflation” period (see Duffee (2005)). Note that 2002

was the year the long term bond with 30-year maturity was discontinued. We use the 3-month T-bill

yields as proxy of the short rate. Information in the futures market contains the intraday 3-month T-

bill quotes with a maturity cycle of March, June, September, and December. Figure 1 plots the time

series of the daily 3-month Treasury yields and the daily changes in panels A and B, respectively. The

time series plot reflects the wide range of observations of the 3-month T-bill yields over the sampling
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period, and the first difference reflects some large changes of the 3-month T-bill yields from day to

day. Descriptive statistics of the data are reported in Table 1. The average yields of different maturities

suggest that the yield curve is overall upward sloping, and the standard deviations of the daily yield

changes suggest that the yield curve is more volatile over the short end than the long end. Both skewness

and kurtosis statistics indicate that interest rates are non-normally distributed. As in Aı̈t-Sahalia (1996),

we also report the first five orders of autocorrelations of the monthly interest rates as well as monthly

interest rate changes in Table 1. The autocorrelation coefficients are in general very high, reflecting

high persistence of interest rate over time.

Table 2 reports the principal components of daily interest rate changes. The principal compo-

nent analysis reports similar results as in Litterman and Scheinkman (1991) and other existing studies.

Namely, there are mainly three factors driving the dynamics of yield curve, the level, the slope and the

curvature. In particular, the short rate explains more than 80% of the total variation of the yield curve

dynamics, suggesting the importance of modeling the short rate process. The first three factors explain

almost 96% variation of the yield curve.

4.3 Estimation Results of Alternative Models

The models specified in Section 3 are estimated following the GMM procedure proposed in Section 4.1.

Dai and Singleton (2000), in their study of the ATSMs, point out that highly parameterized models may

overfit the data, and they suggest using some restricted models to reduce the high degree of freedom.

We follow their suggestion and restrict κ∗
vr = 0 for the SV and SVJ models. For the three-factor SVJT

model, we impose more restrictions for parsimonious model specifications, namely κ∗
rv = κ∗rλ = κ∗vλ =

κ∗λv = ζ∗vλ = ζ∗λλ = 0. The moment conditions include the daily changes of yields with nine different

maturities, including the 3-month T-bill yields.8 The lagged yields are used as the instrumental variable.

8Note that both the moment conditions based on bond yields and the identifying restrictions for latent variables involve

numerical solutions to ODEs. In this paper, we employ a procedure based on the implicit backward-difference methods (for

details, please refer to, e.g., Aiken (1985)). The effectiveness and accuracy of the numerical procedure is verified for the

CIR model using the closed-form bond pricing formula, and the affine SV model using the Monte Carlo simulations.
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This results in a total of 18 moment conditions. These moment conditions capture the dynamics of

the entire yield curve. Using the daily changes of yields, instead of daily yields, has the following

advantages. First, the yields are known to be highly persistent over time, especially the yields with

short maturities. Daily changes of yields, on the other hand, are much less persistent and thus provide

more robust moment conditions. Second, the yields of different maturities along the yield curve are

also highly correlated with each other. Third, the conditional information set of the above moment

conditions involves the latent variables identified from the information in the futures market. The

latent variable estimates thus inevitably contain measurement errors. Taking the difference of yields

can remove the systematic component of such error and improve the robustness of estimation results.

Finally, the use of daily changes of yields as moment conditions also directly measures the model fit to

the yield curve with lagged yield as conditioning information.

Although the model is not estimated using a conventional likelihood method, the dynamic structure

of the model is explicitly incorporated in the estimation procedure. The latent state variables are iden-

tified from the 3-month T-bill yields in the futures market using the dynamic relations derived directly

from the model. Specifically, for the SV model, we use the conditional variance calculated from intra-

day changes of yields in the futures market to identity the stochastic volatility. For the SVJ and SVJT

models, we use the conditional variance and kurtosis calculated from intraday changes of yields in the

futures market to identity the stochastic volatility and jump intensity. The only difference between the

SVJ model and SVJT model is that the jump intensity λ∗ is a constant in SVJ, but time varying in

SVJT. It is known that, compared to stochastic volatility, jumps have a distinctively impact on higher

order moments of interest rate changes (such as skewness and kurtosis). Our simulations of the sam-

pling paths suggest that, compared to skewness, kurtosis is a more robust moment. The use of kurtosis

thus helps to disentangle jumps from stochastic volatility in the T-bill futures yields. We restrict both

stochastic volatility and jump intensity to be non-negative in our estimation.

The futures data we use are the 15-minute 3-month T-bill futures quotes. We choose the futures
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contract with the shortest maturity among the March, June, September, and December cycle but with

more than one week remaining to maturity. For the long maturity and very short maturity contracts,

there may be liquidity and market microstructure concerns. The choice of sampling frequency follows

Andersen, Bollerslev, Diebold, and Labys (2003). This is to further avoid market microstructure effect

associated with high frequency data. The main concern of the high frequency data is the serial corre-

lations induced by the market microstructure noise. Various studies have examined the impact of the

market microstructure noise on the estimation of return variance, see, e.g., Aı̈t-Sahalia, Mykland and

Zhang (2005). The issue of market microstructure noise is in general less severe for future prices than

for spot prices, such as stock prices and stock indexes. It is known, for example, that stock returns

tend to have negative serial correlations due to bid-ask bounce, whereas stock index returns tend to

have positive serial correlations due to the infrequent trading of the stocks in the index. Sampled at

15-minute frequency, the changes of the 3-month T-bill future yields used in our analysis have, respec-

tively, a first order autocorrelation of -5.79% and second order autocorrelation of 2.58%. Higher orders

of autocorrelation are in general diminishing and negligible. To ensure the robustness of our analysis,

we also follow Hansen and Lunde (2004) and Zhou (1996) to correct for the first order autocorrelation

in the variance estimation, the results are not materially affected.

The estimation results of alternative models are reported in Table 3.9 All parameter estimates are

based on daily annualized bond yields. Since the estimates of stochastic volatility and jump intensity

rely on the model parameter values, in each iteration of the GMM optimization procedure the parameter

values, the volatility and jump intensity estimates are updated accordingly. The updating procedure is

very similar to the implied state generalized method of moments (IS-GMM) proposed in Pan (2002).

The results of all three models suggest that the daily interest rate process is highly persistent with very

low mean reversion. On the other hand, the stochastic variance process implied from the term structure

9To gauge the extent of negative interest rates, we simulate the sampling pathes of the SVJT model based on the param-

eter estimates. Using a Euler scheme with 100 intervals per day and starting value r0 = 5.6% (the sample mean), we find

that out of 10,000 sampling paths over a 1-year period, there are 61 of them reaching negative values.
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dynamics for the SV model has a high mean reverting parameter and a very high volatility of volatility.

That is, the variance process is less persistent and very volatile. The Hansen J-test, with a p-value of

0.02%, suggests that the bond yields of the SV model fit poorly to the yield curve.

The SVJ model also has a poor fit to the yield curve, as suggested by the p-value of 0.19% for

the Hansen J-test. However, it does suggest a significant jump component in the interest rate process.

The jump frequency is statistically significant and the daily jump frequency or the arrival rate of jumps

implies approximately, on average, 9 to 10 jumps per year. This high jump frequency is most likely

driven by the large changes of short rates in the 80’s. The results also suggest that whenever a jump

occurs, there is a slightly higher chance (but statistically insignificant) of negative jump than positive

jump (1 − p = 51.01%). In addition, there is on average a larger size for negative jumps than for

positive jumps, with µ∗
+ = 0.1536% or roughly 15 basis points and µ∗

− = −0.1694% or roughly 17

basis points. With the addition of the jump term, the variance process implied from the term structure

for the SVJ model becomes more persistent and less volatile. There is a significant but low level of

negative correlation between stochastic volatility and interest rate changes.

The SVJT model represents a significant improvement in model fit to the yield curve. The Hansen

J-test has a p-value of 2.64% and much higher than those of the SV and SVJ models. It should be

noted that other than the additional jump intensity process in the SVJT model, both the variance pro-

cess and jump intensity process are specified for their square roots. This also likely helps to improve

model specification. It is clear that the volatility (square root of variance) process implied from the

term structure dynamics for the SVJT model is well behaved with relatively low conditional volatility

(volatility of volatility) over time. The jump intensity process, however, is very volatile with a high

volatility parameter. There is also a strong mean reversion in the jump intensity process. Similar to

the SVJ model, we identify an on average larger size for negative jumps (µ∗
− = −0.1689%) than for

positive jumps (µ∗
+ = 0.1518%). Both stochastic volatility process and the jump intensity process are

negatively correlated with the changes of short rate. There is a non-negligible correlation between the

19



jump intensity and interest rate changes at −4.331%. A direct interpretation of these results is that when

interest rate is moving downward, there is a higher chance of large changes (or jumps). In addition, a

negative jump tends to be of a larger magnitude than a positive jump.

4.4 Risk Premia of Stochastic Volatility and Random Jumps

A by-product of the estimation approach proposed in Section 4.1 is that the time series estimates of

unobserved latent state variables are also obtained as a result of model estimation. In this section, we

investigate the risk premia associated with the stochastic volatility and jump volatility. We focus on the

SVJT model as it has a reasonable fit to the term structure dynamics. For the SVJT model, although

both stochastic volatility and jump intensity are estimated from the futures market, the risk premium of

each individual factor can not be measured. We thus measure the total risk premium of both risk factors

as follows:

RPt = EP ∗

t [

∫ t+τ

t

Vudu] + EP ∗

t [

∫ t+τ

t

JVudu] −
∑

t≤ti−1<ti≤t+τ

(rti − rti−1
)2 (43)

whereEP ∗

t [
∫ t+τ

t
Vudu] and EP ∗

t [
∫ t+τ

t
JVudu] denote the risk-neutral stochastic variance and jump vari-

ance, respectively, and the last term is the variance of the short rate in the real world measure which is

calculated from daily observations of the 3-month T-bill yields. We focus on monthly realized variance

since we only have daily observations of short term interest rate. With daily interest rates, the monthly

variance calculation is reliable with reasonable accuracy.

The monthly volatility series are plotted in Figure 2, with the total volatility (stochastic volatility

plus the jump volatility) under both risk-neutral and real world measures in Panel A, and the stochastic

volatility and jump volatility in Panels B and C, respectively. The time series plot in Panel A shows that

the real world realized volatility is mostly lower than its risk-neutral counterpart. This is an indication

that there is an overall positive risk premium for the risk factors. For the SVJT model, the difference

between the total risk-neutral variance and the realized variance, or the risk premium in (44), is equal

to 6.8×10−5 with a t-value of 5.32. More importantly, the risk premium is clearly time varying. To
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further understand the effect of stochastic variance and random jump on the risk premium, we perform

the following regression:

RPt = α + β1SteDev(EP ∗

t [

∫ t+τ

t

Vudu]) + β2SteDev(EP ∗

t [

∫ t+τ

t

JVudu]) + εt, (44)

The above regression tests whether the risk premium is correlated with the uncertainty of the risk

factors, as measure by the standard deviations of risk neutral stochastic volatility and jump volatility.

The regression results can be interpreted as the loadings or decomposition of total risk premium into the

uncertainty associated with each individual factor. The regression has significantly positive estimates

for both β1 and β2, with β̂1 = 0.556 (8.058), β̂2 = 0.499 (8.133) and an adjusted R2 = 0.832. The

numbers in the brackets next to the parameter estimates are the Newey-West (1987) t-statistics with 2

lags. The results suggest that the total risk premium is positively correlated with the standard deviation

of both factors, but relatively more sensitive to the uncertainty of stochastic volatility.

4.5 Stochastic Volatility, Jumps, and Macroeconomic Variables

Recent works of Ang and Piazzesi (2003), Piazzesi (2001, 2005), and Duffee (2005) consider the joint

dynamics of bond yields and macroeconomic variables. They find that the macroeconomic variables

have strong power in explaining the variations in bond yields. In particular, Ang and Piazzesi (2003)

find that macroeconomic variables primarily explain movements at the short end and middle end of

the yield curve while unobservable factors still account for most of the movements at the long end

of the yield curve. Note that the interest rate models used in Ang and Piazzesi (2003) are of the

affine structure with no jumps, while Duffee (2005) integrates out latent variables of the term structure

model in his analysis. Our model extends the affine structure and incorporates jumps of stochastic

intensity in the short rate. More importantly, the time series estimates of the latent variables, namely

the stochastic volatility and random jumps, allow us to directly investigate the relation between term

structure dynamics and the information in macroeconomic variables.

We follow Ang and Piazzesi (2003) and choose two groups of macroeconomic variables. The first
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group consists of inflation measures: the consumer price index (CPI) and producer price index (PPI)10,

and the second group contains variables that capture real activity: the index of Help Wanted Advertising

in Newspapers (HELP), unemployment rate (UE), the growth rate of employment (EMPLOY), and the

growth rate of industrial production (IP). All growth rates (including inflation) are measured as the

difference in logs of the index in months t and t− 1.11 The monthly time series data of macro variables

are obtained from the Bureau of Labor Statistics of U.S. Department of Labor for the sample period of

January, 1984 to February, 2002.

As in Ang and Piazzesi (2003), we extract the first principal component from the inflation group

and the first principal component from the real activity group, and call them “inflation” or IN and “real

activity” or RA, respectively. The variations accounted by the principal components in the inflation

group and real activity group are, respectively, 0.842, 0.158, and 0.654, 0.327, 0.017, 0.001. This

suggests that it is reasonable to use the first principal component in our analysis. The correlation

between the two first principal components is low at 4.05%.

We focus on two empirical questions in our analysis. One is whether the state variables that drive the

dynamics of term structure have predictive power of economic activities, and the other is whether the

change of volatility or in particular jumps are due to shocks in macroeconomic variables. To answer

the above questions, we estimate standard VAR models for the macroeconomic variables as well as

stochastic volatility and jump volatility, except that the contemporaneous macroeconomic variables are

also included in the stochastic volatility and jump volatility equations. This is to capture the response of

stochastic volatility and jump volatility to the current information in the macroeconomic variables. We

include lags up to three months or a quarter in our analysis. Note that the estimates of both stochastic

volatility and jump intensity are obtained under the risk-neutral measure, and thus directly related to

the term structure dynamics. The results reported in Table 4 suggest that while the stochastic volatility

10Ang and Piazzesi (2003) also use spot market commodity prices (PCOM).
11Ang and Piazzesi (2003) define growth rate as the difference in logs of index in months t and t− 12. Our focus is the

relation between stochastic volatility/random jumps and monthly changes in macroeconomic variables.
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is predictive of next month’s inflation with a coefficient significant at the 10% critical level, it is not

predictive of real activity. Interestingly, random jump is not predictive of either inflation or real activity.

The results also indicate a significant coefficient for the contemporaneous inflation in the SV equation.

That is, an increase in inflation tends to drive up the volatility in the short rate. A jump in the short rate

also tends to drive up the level of volatility. The results for the jump volatility equation suggest that

other than the autoregressive structure, no variables are predictive of random jumps.12 In other words,

jumps are not triggered by the informational shocks in macroeconomic variables.

The plots of impulse response functions in Figure 3 provide further information on the relation

between the latent variables and macroeconomic variables. The figure plots impulse response of the

inflation (IN) and real activity (RA) to shocks in stochastic volatility (SV) and jump volatility (JV),

as well as the impulse responses of stochastic volatility (SV) and jump volatility (JV) to shocks in

inflation (IN) and real activity (RA). The lags are up to 12 months. It is clear that volatility shock

has a positive initial effect on inflation and the impact dies off gradually. In comparison, jumps have

no substantial effect on inflation. Neither the shock in stochastic volatility nor that in jump volatility

has a significant impact on the real activity. Turning to the response of stochastic volatility and jump

volatility to shocks in macroeconomic variables, a shock in inflation has a contemporaneous positive

effect on the stochastic volatility but no clear effect on jumps. Informational shocks in the real activity

do not have clear effect on either stochastic volatility or jumps. That is, overall the term structure

dynamics is more related to inflation at the monthly frequency.

The finding that random jumps are neither predictive of nor triggered by the information in macroe-

conomic variables may not be surprising. This is because we focus on monthly frequency in our anal-

ysis, at which the macroeconomic variables are observed. On the one hand, the aggregation of daily

information over a month period can reduce the impact of random noises, on the other hand it also

12Note also that the jump volatility is the least predictable process with an adjusted R2 = 0.071. Since there are more

time periods with no jumps than those with jumps in our sample, the autoregressive structure of the jump volatility process

should be interpreted as more of the predictability of no jumps rather than jumps.
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smoothes out day-to-day informational shocks in the market place. Johannes (2004) identifies jump in-

tensity and size at daily frequency, and performs anecdotal analysis of the macro or geopolitical events

associated with jumps. He finds that interest rate jumps often reflect the market reaction to surprising

economic news or geopolitical development. Our results show that such dynamic link between jumps

and economic news disappears when information is measured at monthly frequency.

4.6 What Causes the Jumps in Interest Rate?

The results in the above section and those in Johannes (2004) suggest that to understand what drives

jumps in short rate or term structure dynamics, we need to examine a finer information set at a higher

frequency than monthly. In this section, we relate jumps at a daily frequency to the release of macroe-

conomic news and other information. In particular, we are interested in how often jumps in short rate or

term structure dynamics are associated with scheduled macroeconomic news release. Again, we focus

on the two groups of macro variables related to inflation and real activities. We collect the historical

announcement dates for CPI, PPI, industrial production, and employment. The dates of PPI and indus-

trial production cover the entire time period of our sample, while those of CPI and employment only

go back to the beginning of 1994. We also collect the historical meeting dates of Federal Open Market

Committee (FOMC). As reported in Table 5, there are 218 announcement dates for PPI and industrial

production during the period of January 1984 to February 2002, and 97 announcement dates for CPI

and employment during the period of January 1994 to February 2002. There are 145 scheduled FOMC

meetings during the period of January 1984 to February 2002. In addition to the scheduled meetings,

there are also 3 unscheduled FOMC meetings during this period.

Similar to Johannes (2004), we base on the jump intensity estimates to identify the days with jumps.

In particular, we focus on the days with jump intensity estimate of the SVJT model higher than its

sample mean. This results in 105 days with jumps. Note that the jump intensity estimates are obtained

under the risk-neutral measure. Since we focus on days with jump intensity above the sample mean,
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it is likely that these are also the days with jump intensity estimates above its sample mean under the

objective measure. A couple of patterns are noted. First, there is a higher frequency of jumps toward

the beginning of the sample period during the 80’s than in the second half of the sample period. For

example, after 1994 there are only 26 jumps. Second, there tends to be clustering of jumps in short

rate. In particular, jumps can happen in consecutive days.

Panel A of Table 5 reports the number of jumps on the scheduled announcement or FOMC meeting

days. Out of the 729 unique announcement or meeting days, there are 32 unique days with jumps.

Note that we are not attempting to isolate whether there is any confounding news or information that

causes the jump. Instead, we simply document the patterns of jumps associated with the scheduled

news release or meeting dates. Still, a couple of interesting observations are noted. First, taking away

the 9 common jumps between PPI and industrial production, jump seems to be more likely associated

with PPI information than with other information. This is consistent with the results in previous section

that inflation tends to have more impact on the dynamics of interest rate. Second, among all jumps

associated with news announcement dates, there are dominantly more negative ones than positive ones,

where the sign of jumps is based on the skewness of intraday T-bill future yield changes. The only

exception is the FOMC meeting dates where the shocks appear to be symmetric. To take into account of

the pre-announcement anticipation or post-announcement reaction, we also count the number of jumps

one day before or after the scheduled announcement or FOMC meeting dates. Out of the 20 unique

jumps on the day before announcement or meeting dates, 5 overlap with those on the announcement

dates of other news. The shocks appear to be less asymmetric for the pre-announcement anticipation.

There are also total 15 unique jumps on the day after announcement or meeting dates. The asymmetry

of shocks surfaces again for the post-announcement effect.

Overall, there are total 56 unique jumps associated with scheduled news announcements or FOMC

meetings, including one day lead or lag. This is roughly half of the jumps identified in our sample

period. The other half could be associated with the release of other macroeconomic news that is not
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included in our study. There is also clear evidence that a significant portion of the jumps may well

not be associated with scheduled news release at all. Instead, they are driven by some unanticipated

economic news or geopolitical development, as documented in Johannes (2004). Panel B of Table

5 provides a sample list of such events during the period of January 1998 to February 2002. These

observations suggest that the uncertainty of timing is also an important component of jump risk. The

findings on jumps associated with daily informational shocks has important implications for measuring

and managing jump risk in the bond market.

5 Conclusion

We propose a unifying class of affine-quadratic term structure models (AQTSMs) in a jump-diffusion

framework, which extends most existing term structure models. The model incorporate random jumps

of stochastic intensity in the short rate process. We propose a GMM approach for the estimation of

the affine-quadratic term structure models that uses information from the entire yield curve and the

treasury futures market. We identify a jump intensity process that is negatively correlated with interest

rate changes. Negative jumps have, on average, larger size than positive jumps.

The time series estimates of latent state variables, namely stochastic volatility and jump intensity,

allow us to investigate their relation with other economic variables. Our empirical results suggest that

while stochastic volatility is related to inflation at monthly frequency, jumps are neither predictive of

nor triggered by informational shocks in macroeconomic variables. Once focusing on daily frequency,

however, we document interesting patterns for jumps associated with various events in the financial

market. We find that jumps associated with informational shocks in macroeconomic news are dom-

inantly more negative than positive. In addition, while a majority of jumps are related to scheduled

news announcement dates, there is a large number of jumps driven by unanticipated economic news or

geopolitical development. The findings have important implications for understanding and managing

jump risk in the bond market.
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Appendix
This appendix provides technical details of our results. In particular, we derive the equilibrium interest
rate, and the ODEs that determine the bond price and conditional characteristic function formulae for
the general model and the special cases.

A.1 Change of Probability Measure and Interest Rate Process in Equilibrium
The representative investor’s wealth, W , follows the process:

dW

W
= (µW − λµQW

) dt+ σWdZ +QWdN, (A.1)

where

µW = wµS + (1 − w)r, (A.2)
σW = wσS, (A.3)
QW = wQS. (A.4)

Define the value function of the investor:

J(Wt, Xt, t) ≡ max
w

Et [u(WT , T )] , (A.5)

which depends only on W , X , and t since they are the state variables. Following Merton(1973) and us-
ing subscripts to denote the partial derivative of J , a solution to the optimization problem (17) satisfies
the Bellman equation:

0 = max
w

[Jt + L(J)] , (A.6)

with

L(J) = (µW − λµQW
)WJW + (µX − λµQX

) JX +
1

2
σ>

WσWW
2JWW

+
1

2
tr
(

ΣXΣ>
XJXX>

)

+ σ>
W Σ>

XWJWX + λE [∆J ] , (A.7)

where ∆J ≡ J(W (1 + QW ), X + QX , t) − J(W,X, t) denotes jump in the value function. The first
order condition to (A.6) and the fact that in equilibrium the representative investor needs to hold all her
wealth in the stock (w∗ = 1) imply that:

r = µS + σ>
S σSW

JWW

JW

+ σ>
S Σ>

X

JWX

JW

+ λE

[

∆JW

JW

QS

]

, (A.8)

where ∆JW = JW (W (1 +QS), X +QX , t) − JW (W,X, t). We guess a solution to (A.6):

J(W,X, t) = g(X, t)
W 1−ρ

1 − ρ
, (A.9)

where g is a function of X and t with the boundary condition:

g(X,T ) = 1. (A.10)
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From (A.6) and the equilibrium condition w∗ = 1, we have:

0 = gt +

[

(1 − ρ)(µS − λµQS
) − 1

2
ρ(1 − ρ)σ>

S σS

]

g + [µX − λµQX
+ (1 − ρ)ΣXσS]> gX

+
1

2
tr
(

ΣXΣ>
XgXX>

)

+ λ
(

E
[

(1 +QS)1−ρ
]

E [g(X +QX , t)] − g
)

, (A.11)

where we have used the fact that QS is independent of QX . We guess a solution of g:

g(X, τ) = ea(τ)+b(τ)>X1+c(τ)>X2+X>

2
d(τ)X2 , (A.12)

where τ ≡ T − t, a ∈ R, b ∈ R
n1×1, c ∈ R

n2×1, and d ∈ R
n2×n2 is a symmetric matrix with initial

values a(0) = 0, b(0) = 0n1×1, c(0) = 0n2×1, d(0) = 0n2×n2
respectively.

Note that (A.11) is a Riccati type partial differential equation with coefficients linear in X1 and
quadratic in X2. Defining χ ≡ E [(1 +QS)1−ρ], substituting (A.12) into (A.11), collecting terms of
similar powers in X1 and X2, and setting the coefficients to zero, we derive the following ODEs that
are satisfied by a, b, c, and d:13

da

dτ
= (1 − ρ)

(

α1 − ϕµQS
− 1

2
ρα2

)

+
(

κ>10 − ϕµ>
QX1

+ (1 − ρ)α>
3

)

b

+
(

κ>20 + (1 − ρ)α>
4

)

c+
1

2
b>ω10b+ b>ω20c+

1

2
c>Ω22c

+tr(Ω22d) + ϕ (χδX(b) − 1) , (A.13)
db

dτ
= (1 − ρ)

(

β1 − φµQS
− 1

2
ρβ2

)

+
(

κ>11 − φµ>
QX1

+ (1 − ρ)β3

)

b

+
1

2

∑

i,j

bibj(ω11)ij + φ (χδX(b) − 1) , (A.14)

dc

dτ
= (1 − ρ)

(

γ1 − ψµQS
− 1

2
ργ2

)

+
(

κ>12 − ψµ>
QX1

+ (1 − ρ)γ3

)

b

+
(

κ>22 + (1 − ρ)γ4

)

c+ 2d (κ20 + (1 − ρ)α4) + 2dω>
20b+ 2dΩ22c

+
1

2

∑

i,j

bibj(ω12)ij +
∑

i,j

bicj(ω22)ij + ψ (χδX(b) − 1) , (A.15)

dd

dτ
= (1 − ρ)

(

Φ1 − ΨµQS
− 1

2
ρΨ2

)

+
∑

i

bi (ζi + (1 − ρ)ζi) − Ψµ>
QX1

b

+
(

dκ22 + κ>22d
)

+ (1 − ρ)
(

dγ>4 + γ4d
)

+ 2dΩ22d

+
1

2

∑

i,j

bibjνij +
∑

i,j

bi
(

dj(ω22)
>
ij + (ω22)ijd

>
j

)

+ Ψ (χδX(b) − 1) , (A.16)

where we have defined b ≡ (b1, . . . , bn1
)>, c ≡ (c1, . . . , cn2

)>, and d ≡ (d1, . . . , dn2
). Now Equa-

tion (19) is obtained by combining (A.8), (A.9), (A.12), (13), (14), and (15). And this proves Proposi-
tion 1.

13A similar and more detailed proof is presented for bond pricing.
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We next show that under the risk-neutral measure the dynamics of the state variables are given by
(20)-(26). An argument similar to Cox, Ingersoll, and Ross (1985a) shows that the price of any security,
F (W,X, t), satisfies the PDE:

rF = Ft +

(

r − λE

[

JW (W (1 +QS), X +QX , t)

JW

QS

])

WFW

+

(

µX − λµQX
+ ΣXσSW

JWW

JW

+ ΣXΣ>
X

JWX

JW

)>

FX

+
1

2
σ>

S σSW
2FWW + σ>

S Σ>
XFWX +

1

2
tr
(

ΣXΣ>
XFXX>

)

+λE

[

JW (W (1 +QS), X +QX , t)

JW

∆F

]

, (A.17)

where ∆F = (F (W (1 +QS), X +QX , t)− F (W,X, t)). Using (A.9) and (A.12), the above equation
is simplified to:

rF = Ft +
(

r − λE
[

(1 +QS)1−ρeb>QX1QS

])

WFW

+
[

µX − λµQX
− ρΣXσS + ΣXΣ>

X

(

b
c+2dX2

)]>
FX

+
1

2
σ>

S σSW
2FWW + σ>

S Σ>
XFWX +

1

2
tr
(

ΣXΣ>
XFXX>

)

+λE
[

(1 +QS)1−ρeb>QX1∆F
]

. (A.18)

Observe that this equation can also be obtained if the state variables follow (20)-(26) and we define:

µ∗
X ≡ µX − ρΣXσS + ΣXΣ>

X

(

b
c+2dX2

)

, (A.19)
λ∗ ≡ λχδX(b), (A.20)

δ∗X(k) ≡ δX(b+ k)

δX(b)
, (A.21)

h∗(q) ≡ eb>q

δX(b)
h(q), (A.22)

where h and h∗ are the probability density functions of QX1
and Q∗

X1
respectively. Hence we have

proved Proposition 2.

A.2 Bond Price and Conditional Characteristic Function
In this subsection, we first derive the bond price formula and then derive formula for the character-
istic function under the risk-neutral probability measure. In the absence of arbitrage the bond price
P (X1, X2, τ) satisfies the partial differential equation (PDE):

0 = Pt − rP +
[

κ∗10 + κ∗11X1 + κ∗12X2 + ζ∗(X2) − λ∗µ∗
QX1

]>
PX1

+ (κ∗20 + κ∗22X2)
>
PX2

+
1

2
tr
[

Ω11PX1X>

1
+ 2Ω>

12PX1X>

2
+ Ω22PX2X>

2

]

+λ∗E
[

P (X1 +Q∗
X1
, X2, τ) − P (X1, X2, τ)

]

, (A.23)
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with the initial condition P (X1, X2, 0) = 1. We guess a solution of P that has the form P =

eA(τ)+B(τ)>X1+C(τ)>X2+X>

2
D(τ)X2 with initial values A(0) = 0, B(0) = 0n1×1, C(0) = 0n2×1, D(0) =

0n2×n2
. The partial derivatives of P are:

Pt = −P
(

dA

dτ
+
dB

dτ

>
X1 +

dC

dτ

>
X2 +X>

2

dD

dτ
X2

)

, (A.24)

PX1
= PB, (A.25)

PX2
= P (C + 2DX2) , (A.26)

PX1X>

1
= PBB>, (A.27)

PX2X>

2
= P

[

(C + 2DX2) (C + 2DX2)
> + 2D

]

, (A.28)

PX1X>

2
= PB (C + 2DX2)

>
. (A.29)

Substitute these into the PDE to derive:

0 = −dA
dτ

− dB

dτ

>
X1 −

dC

dτ

>
X2 −X>

2

dD

dτ
X2 −

(

α+ β>X1 + γ>X2 +X>
2 ΦX2

)

+
[

κ∗10 + κ∗11X1 + κ∗12X2 + ζ∗(X2) −
(

ϕ∗ + φ∗>X1 + ψ∗>X2 +X>
2 Ψ∗X2

)

µ∗QX1

]>
B

+ (κ∗20 + κ∗22X2)
> (C + 2DX2)

+
1

2
tr
{

Ω11BB
> + 2Ω>

12B (C + 2DX2)
> + Ω22

[

(C + 2DX2) (C + 2DX2)
> + 2D

]}

+
(

ϕ∗ + φ∗>X1 + ψ∗>X2 +X>
2 Ψ∗X2

)

(δ∗X(B) − 1) . (A.30)

We collect the terms with the same powers of the state variables, and define B ≡ (B1, . . . , Bn1
)>,

C ≡ (C1, . . . , Cn2
)>, and D ≡ (D1, . . . , Dn2

). Since the PDE holds for any values of X1 and X2,
these coefficients must be zero. And that leads to the following ODEs:

dA

dτ
= −α +

(

κ∗>10 − ϕ∗µ∗>
QX1

)

B + κ∗>20 C +
1

2
B>ω10B

+B>ω20C +
1

2
C>Ω22C + tr(Ω22D) + ϕ∗ (δ∗X(B) − 1) , (A.31)

dB

dτ
= −β +

(

κ∗>11 − φ∗µ∗>
QX1

)

B +
1

2

∑

i,j

BiBj(ω11)ij + φ∗ (δ∗X(B) − 1) , (A.32)

dC

dτ
= −γ +

(

κ∗>12 − ψ∗µ∗>
QX1

)

B + κ∗>22 C + 2Dκ∗20 + 2Dω>
20B + 2DΩ22C

+
1

2

∑

i,j

BiBj(ω12)ij +
∑

i,j

BiCj(ω22)ij + ψ∗ (δ∗X(B) − 1) , (A.33)

dD

dτ
= −Φ +

∑

i

Biζ
∗
i − Ψ∗µ∗>

QX1

B +
(

Dκ∗22 + κ∗>22 D
)

+ 2DΩ22D

+
1

2

∑

i,j

BiBjνij +
∑

i,j

Bi

(

Dj(ω22)
>
ij + (ω22)ijD

>
j

)

+ Ψ∗ (δ∗X(B) − 1) . (A.34)

This concludes the proof of Proposition 3.

33



To derive the characteristic function f(s,X, τ), observe that f is a martingale and hence it satisfies
a PDE similar to (A.23):

0 = ft +
(

κ∗10 + κ∗11X1 + κ∗12X2 + ζ∗(X2) − λ∗µ∗
QX1

)>
fX1

+ (κ∗20 + κ∗22X2)
>
fX2

+
1

2
tr
[

Ω11fX1X>

1
+ 2Ω>

12fX1X>

2
+ Ω22fX2X>

2

]

+λ∗E
[

f(s,X1 +Q∗
X1
, X2, τ) − f(s,X1, X2, τ)

]

, (A.35)

with the initial condition f(s,X, 0) = eis>X . We again guess a solution of the functional form f =

ei[A∗(s,τ)+B∗(s,τ)>X1+C∗(s,τ)>X2+X>

2
D∗(s,τ)X2] with the initial conditions A∗(s, 0) = 0, B∗(s, 0) = s1,

C∗(s, 0) = s2, D∗(s, 0) = 0. Then A∗, B∗, C∗, and D∗ solve the following ODEs:

dA∗

dτ
=

(

κ∗>10 − ϕ∗µ∗>
QX1

)

B∗ + κ∗>20 C
∗ +

1

2
B∗>ω10B

∗

+B∗>ω20C
∗ +

1

2
C∗>Ω22C

∗ + tr(Ω22D
∗) + ϕ∗ (δ∗X(B∗) − 1) , (A.36)

dB∗

dτ
=

(

κ∗>11 − φ∗µ∗>
QX1

)

B∗ +
1

2

∑

i,j

B∗
iB

∗
j (ω11)ij + φ∗ (δ∗X(B∗) − 1) , (A.37)

dC∗

dτ
=

(

κ∗>12 − ψ∗µ∗>
QX1

)

B∗ + κ∗>22 C
∗ + 2D∗κ∗20 + 2D∗ω>

20B
∗ + 2D∗Ω22C

∗

+
1

2

∑

i,j

B∗
iB

∗
j (ω12)ij +

∑

i,j

B∗
iC

∗
j (ω22)ij + ψ∗ (δ∗X(B∗) − 1) , (A.38)

dD∗

dτ
=

∑

i

B∗
i ζ

∗
i − Ψ∗µ∗>

QX1

B∗ +
(

D∗κ∗22 + κ∗>22 D
∗)+ 2D∗Ω22D

∗ +
1

2

∑

i,j

B∗
iB

∗
j νij

+
∑

i,j

B∗
i

(

D∗
j (ω22)

>
ij + (ω22)ijD

∗
j
>
)

+ Ψ∗ (δ∗X(B∗) − 1) , (A.39)

where B∗ ≡
(

B∗
1 , . . . , B

∗
n1

)>, C∗ ≡
(

C∗
1 , . . . , C

∗
n2

)>, and D∗ ≡
(

D∗
1, . . . , D

∗
n2

)

. This proves Proposi-
tion 4.

A.3 SV Model
The bond prices in affine models have the form P = eA+B>X , where X = ( r

v ), and A and B =
(

Br

Bv

)

satisfy the ODEs:

dA

dτ
= Π∗>B, (A.40)

dB

dτ
=

(

−1

0

)

+ Λ∗>B +

(

0
1
2
B>Γ∗B

)

, (A.41)

with initial values A(0) = 0, B(0) = ( 0
0 ), and Π∗ ≡

(

µ∗
r

µ∗
v

)

, Λ∗ ≡
(

κ∗
rr κ∗

rv

κ∗
vr κ∗

vv

)

, and Γ∗ ≡
(

1 ρσv

ρσv σ2
v

)

.
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Using the notation s = ( sr
sv ), the CCF has the form f(s) = ei(A∗+B∗>X) where A∗ and B∗ =

(

B∗
r

B∗
v

)

satisfy the ODEs:

dA∗

dτ
= Π∗>B∗, (A.42)

dB∗

dτ
= Λ∗>B∗ +

(

0
1
2
B∗>Γ∗B∗

)

, (A.43)

with initial values A∗(0) = 0 and B∗(0) = ( sr
sv ).

A.4 SVJ Model
Again we can write the bond price as P = eA+B>X , where X = ( r

v ), and A and B =
(

Br

Bv

)

satisfy the
ODEs:

dA

dτ
= Π∗>B + λ∗

(

peµ∗

+
Br + (1 − p)eµ∗

−
Br − 1

)

, (A.44)

dB

dτ
=

(

−1

0

)

+ Λ∗>B +

(

0
1
2
B>Γ∗B

)

, (A.45)

with initial values A(0) = 0, B(0) = ( 0
0 ), and Π∗, Λ∗, and Γ∗ defined as in the previous example.

Using the notation s = ( sr
sv ), the CCF has the form f = ei(A∗+B∗>X) where A∗ and B∗ =

(

B∗
r

B∗
v

)

satisfy the ODEs:

dA∗

dτ
= Π∗>B∗ + λ∗

(

peµ∗

+
Br + (1 − p)eµ∗

−
Br − 1

)

, (A.46)

dB∗

dτ
= Λ∗>B∗ +

(

0
1
2
B∗>Γ∗B∗

)

, (A.47)

with initial values A∗(0) = 0 and B∗(0) = ( sr
sv ).

A.5 SVJT Model

For this model, X1 = r and X2 =
( √

v√
λ∗

)

. Writing the bond price as P = eA+B>X1+C>X2+X>

2
DX2 ,

then A, B, C =
(

Cv

Cλ

)

, and D =
(

Dvv Dvλ

Dvλ Dλλ

)

satisfy the ODEs:

dA

dτ
= µ∗

rB + Π∗>C +
1

2
C>Γ∗C + tr (Γ∗D) , (A.48)

dB

dτ
= −1 + κ∗rrB, (A.49)

dC

dτ
= BΞ∗ + 2DΠ∗ +

(

Λ∗> +BΥ∗ + 2DΓ∗)C, (A.50)

dD

dτ
= Θ∗ +Bζ∗ +

(

Λ∗> +BΥ∗)D +D
(

Λ∗ +BΥ∗>)+ 2DΓ∗D, (A.51)
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with initial values A(0) = 0, B(0) = 0, C(0) = ( 0
0 ), and D(0) = ( 0 0

0 0 ), and ζ∗ ≡
(

ζ∗vv ζ∗
vλ

ζ∗
vλ

ζ∗
λλ

)

, Π∗ ≡
(

µ∗
v

µ∗

λ

)

, Ξ∗ ≡
(

κ∗
rv

κ∗

rλ

)

, Λ∗ ≡
(

κ∗
vv κ∗

vλ

κ∗

λv
κ∗

λλ

)

, Θ∗ ≡
(

1

2
B2 0

0 −µ∗

Qr
B+pe

µ∗
+

Br+(1−p)e
µ∗
−

Br−1

)

, Υ∗ ≡ ( ρrvσv ρrλσλ

0 0 ),

and Γ∗ ≡
(

σ2
v ρvλσvσλ

ρvλσvσλ σ2
λ

)

.

Using the notation s =
(

sr
sv
sλ

)

, the CCF has the form

f = ei(A∗+B∗>X1+C∗>X2+X>

2
D∗X2),

where A∗, B∗, C∗ =
(

C∗
v

C∗

λ

)

, and D∗ =
(

D∗
vv D∗

vλ

D∗

vλ
D∗

λλ

)

satisfy the ODEs:

dA∗

dτ
= µ∗

rB
∗ + Π∗>C∗ +

1

2
C∗>Γ∗C∗ + tr (Γ∗D∗) , (A.52)

dB∗

dτ
= κ∗rrB

∗, (A.53)

dC∗

dτ
= BΞ∗ + 2D∗Π∗ +

(

Λ∗> +B∗Υ∗ + 2D∗Γ∗)C∗, (A.54)

dD∗

dτ
= Θ∗ +B∗ζ∗ +

(

Λ∗> +B∗Υ∗)D∗ +D∗ (Λ∗ +B∗Υ∗→p) + 2D∗Γ∗D∗, (A.55)

with initial values A∗(0) = 0, B∗(0) = sr, C∗(0) = ( sv
sλ

), and D∗(0) = ( 0 0
0 0 ).
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Table 1
Summary Statistics of Interest Rates

Autocorrelations of Monthly Series

Mean∗ StDev Skew Kurt Min Max ρ1 ρ2 ρ3 ρ4 ρ5

Panel A: Summary statistics of daily interest rates

R3M 5.597 1.780 0.406 0.029 1.55 10.67 0.98 0.96 0.94 0.92 0.89

R6M 5.708 1.789 0.429 0.182 1.59 10.77 0.98 0.96 0.94 0.91 0.89

R1Y 6.190 1.980 0.585 0.429 1.93 12.34 0.98 0.96 0.93 0.91 0.88

R2Y 6.635 1.989 0.772 0.678 2.32 13.17 0.98 0.95 0.93 0.90 0.87

R3Y 6.834 1.990 0.877 0.775 2.70 13.49 0.98 0.95 0.92 0.89 0.86

R5Y 7.120 1.956 1.031 0.991 3.47 13.84 0.97 0.95 0.92 0.89 0.85

R7Y 7.341 1.938 1.060 0.970 3.95 13.95 0.97 0.95 0.92 0.89 0.85

R10Y 7.435 1.932 1.026 0.872 4.16 13.99 0.97 0.95 0.92 0.89 0.85

R30Y 7.672 1.817 1.044 0.931 4.70 13.94 0.97 0.95 0.92 0.89 0.86

Panel B: Summary statistics of daily interest rate changes

∆R3M -1.609 0.059 -0.569 11.53 -0.54 0.48 0.12 0.04 0.00 0.07 0.05

∆R6M -1.626 0.057 -0.967 13.39 -0.78 0.31 0.08 0.04 0.04 0.04 0.06

∆R1Y -1.746 0.063 -0.751 10.57 -0.83 0.36 0.08 0.03 0.02 0.05 0.04

∆R2Y -1.743 0.068 -0.530 8.11 -0.84 0.36 0.09 0.03 0.02 0.03 0.04

∆R3Y -1.677 0.069 -0.347 6.34 -0.79 0.40 0.08 0.04 0.03 0.01 0.03

∆R5Y -1.615 0.069 -0.247 5.38 -0.77 0.41 0.06 -0.08 0.03 -0.00 0.03

∆R7Y -1.574 0.069 -0.179 5.27 -0.77 0.42 0.04 -0.02 0.03 -0.00 0.02

∆R10Y -1.545 0.067 -0.188 5.46 -0.75 0.39 0.02 -0.02 0.03 -0.01 0.03

∆R30Y -1.448 0.059 -0.433 7.58 -0.76 0.32 -0.04 -0.02 0.03 -0.00 0.02

Panels A reports the summary statistics of the daily interest rates with maturities of 3-month, 6-month,

1-year, 2-year, 3-year, 5-year, 7-year, 10-year and 30-year from January 3, 1984 to February 15, 2002.

Panel B reports the summary statistics of the daily interest rate changes. The mean for the daily change of

interest rate has a magnitude of 10−4. The autocorrelations are calculated from the monthly interest rate data.
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Table 2
Principal Components of Daily Interest Rate Changes

Factor Factor Loadings Variation (%)

1 2.41 3.02 3.91 4.40 4.56 4.57 4.48 4.25 3.55 0.822

2 -2.82 -1.99 -1.15 -0.27 0.16 0.65 1.10 1.20 1.33 0.106

3 1.27 -0.04 -0.81 -0.92 -0.66 -0.14 0.39 0.61 1.00 0.030

4 0.72 -1.10 -0.38 0.37 0.48 0.29 0.02 -0.08 -0.52 0.015

5 -0.11 0.65 -0.95 0.04 0.26 0.31 0.11 0.02 -0.39 0.010

6 0.01 0.02 -0.33 0.66 0.06 -0.37 -0.31 -0.20 0.55 0.007

7 -0.00 -0.00 -0.02 0.45 -0.59 -0.14 0.31 0.27 -0.31 0.005

8 0.00 -0.01 -0.00 0.09 -0.38 0.63 -0.24 -0.22 0.14 0.004

9 0.00 -0.00 -0.00 -0.01 -0.02 -0.02 0.46 -0.48 0.07 0.003

This table reports the principal components of daily interest rate changes. The rows represent 9

principal components while the first 9 columns represent the loadings of principal components on the

9 factors (changes in yields). The last column represents the percentage of total variation of the yield

curve explained by each of the individual principal components.
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Table 3
Estimation Results of Alternative Term Structure Models

SV SVJ SVJT

Panel A: GMM estimation results

µ∗
r 3.258 10−5 (4.157 10−5) 3.412 10−5 (4.258 10−5) 3.344 10−5 (4.346 10−5)

κ∗rr -8.459 10−4 (8.401 10−4) -5.591 10−4 (8.688 10−4) -4.993 10−4 (8.897 10−4)

κ∗rv or ζ∗vv -4.770 10−3 (2.164 10−3) -3.143 10−3 (3.882 10−3) -2.816 10−2 (5.067 10−2)

ζ∗λλ -6.163 10−5 (1.005 10−4)

µ∗
v 4.233 10−4 (4.578 10−5) 2.492 10−4 (5.239 10−5) 1.761 10−3 (3.769 10−4)

κ∗vv -1.201 10−1 (6.037 10−2) -8.422 10−2 (4.225 10−2) -3.306 10−2 (2.513 10−2)

σv 5.645 10−2 (3.706 10−3) 3.199 10−2 (1.434 10−3) 6.445 10−3 (2.090 10−4)

ρrv -5.923 10−3 (2.107 10−3) -3.645 10−4 (1.308 10−4) -3.133 10−3 (1.432 10−3)

µ∗
λ 1.631 10−2 (3.421 10−3)

κ∗λλ -2.077 10−1 (9.325 10−2)

σλ 1.389 10−1 (9.271 10−3)

ρrλ -4.331 10−2 (2.198 10−2)

λ∗ 3.807 10−2 (9.052 10−3)

p 4.899 10−1 (1.761 10−1) 4.932 10−1 (1.619 10−1)

µ∗
+ 1.536 10−3 (6.159 10−4) 1.518 10−3 (5.431 10−4)

µ∗
− -1.694 10−3 (8.314 10−4) -1.689 10−3 (6.655 10−4)

Panel B: GM M test of overidentifying restrictions

χ2 34.99 22.76 9.23

d.o.f. 11 7 3

p-value 0.02% 0.19% 2.64%

This table reports the GMM estimation results for the three alternative term structure models, namely

the SV, SVJ and SVJT models. The moment conditions used for the GMM estimation are the daily

changes of yields of different maturities, with the lagged yields as instrumental variable. Standard errors

are reported in parenthesis next to the parameter estimates. The blank cell indicates that the parameter is

restricted to be zero. The Hansen J-test statistic is also reported for each model together with the degree

of freedom and the p-value.
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Table 4
Term Structure Dynamics and Macroeconomic Variables

Inflation (IN) Real activity (RA) Volatility (SV) Jump Volatility (JV)

Constant 1.838∗ (0.721) 0.849 (0.746) 4.811∗ (1.477) 1.314 (0.710)

IN0 0.188∗∗ (0.101) 0.028 (0.105)

IN−1 0.357∗ (0.069) 0.008 (0.072) -0.040 (0.109) -0.023 (0.113)

IN−2 -0.106 (0.073) -0.313∗ (0.075) 0.116 (0.113) 0.082 (0.117)

IN−3 0.149∗ (0.070) 0.119 (0.072) 0.031 (0.112) -0.018 (0.116)

RA0 -0.028 (0.130) 0.020 (0.124)

RA−1 0.074 (0.058) 0.154∗ (0.061) -0.025 (0.112) -0.004 (0.107)

RA−2 0.118∗ (0.057) 0.223∗ (0.059) -0.115 (0.112) 0.054 (0.107)

RA−3 -0.014 (0.058) 0.474∗ (0.060) 0.005 (0.132) 0.009 (0.126)

SV−1 0.070∗∗ (0.038) -0.006 (0.047) -0.108 (0.095) -0.090 (0.091)

SV−2 -0.038 (0.036) -0.078 (0.049) -0.082 (0.088) 0.005 (0.084)

SV−3 -0.010 (0.035) 0.019 (0.048) 0.186∗∗ (0.088) 0.087 (0.084)

JV−1 -0.029 (0.051) 0.003 (0.052) 0.318∗ (0.100) 0.172∗∗ (0.095)

JV−2 -0.019 (0.052) 0.033 (0.054) 0.080 (0.097) -0.004 (0.093)

JV−3 0.017 (0.052) -0.007 (0.054) 0.033 (0.097) 0.290∗ (0.094)

Adj. R2 0.120 0.297 0.197 0.071

This table reports the VAR estimation results for the two groups of macroeconomic variables,

namely inflation (IN) and real activity (RA), stochastic volatility (SV), and jump volatility (JV).

The results are based on monthly observations from January, 1984 to February, 2002. Standard er-

rors are reported in parenthesis next to the parameter estimates. The ∗ and ∗∗ indicate the coefficient

significantly different from 0 at the 5% and 10% critical levels, respectively.
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Table 5
News that Drives the Jumps in Interest Rate
Panel A: Jumps associated with scheduled news announcements or FOMC meetings

Jan 1984 – Feb 2002 Jan 1994 – Feb 2002

PPI Industrial Production FOMC CPI Employment

Total Announcements1 218 218 145 97 97

Jumps on the day2 17 13 8 2 4
Positive 5 3 4 0 1
Negative 12 10 4 2 3

Jumps the day before3 10 8 5 0 1
Positive 5 2 2 0 0
Negative 5 6 3 0 1

Jumps the day after4 3 5 7 2 0
Positive 0 2 2 0 0
Negative 3 3 5 2 0

Panel B: A sample of jumps associated with unscheduled events (Jan 1998 – Feb 2002)
Date Event

10/08/1998 Federal Reserve Chairman Alan Greenspan warns the economy is slowing.

10/28/1998 US reports $70 billion budget surplus for fiscal ’98, dwarfing May estimate.

12/29/1999 Possibly a millennium effect.

12/05/2000 Election 2000: state court denies Al Gore’s challenge to Florida’s vote tally.

01/03/2001 Unscheduled FOMC meeting (cut overnight rate by 50 bps).

04/18/20015 Unscheduled FOMC meeting (cut Fed Funds rate by 50 bps).

09/13/20015 Post September 11, 2001, bond market reopens in attack aftermath.

1: There are total 729 unique announcement or meeting dates. For example, IP and PPI share 44

dates, employment and PPI share 2 dates, there are 9 FOMC meetings dates overlap with IP dates,

and 2 FOMC meetings dates overlap with PPI dates.
2: There are total 32 unique jumps on the announcement or meeting dates. For example, IP and PPI

share 9 dates, and IP and CPI share 1 date.
3: There are total 20 unique jumps on the day before announcement or meeting dates, of which 5

overlap with those on the announcement dates of other news.
4: There are total 15 unique jumps on the day after announcement or meeting dates, of which 4

overlap with those on the announcement dates of other news, and 2 overlap with those the day before

the announcement of other news. This results in total unique 56 jumps associated with scheduled

news announcements or FOMC meetings, including one day lead or lag.
5: These dates are also one day before the announcement of other news. However, there are no jumps

on the news announcement dates.
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Panel A. Daily U.S. 3−month T−bill Rates (Jan. 1984 −− Feb. 2002)
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Panel B. Daily Change of U.S. 3−month T−bill Rates (Jan. 1984 −− Feb. 2002)

Figure 1
Daily and daily changes of US 3-month T-bill yields
This figure plots the time series of the daily 3-month Treasury bill yields and the daily changes in

panels A and B respectively. The sample period is from January 3, 1984 to February 15, 2002.
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Panel B: Monthly stochastic volatility under the SVJT model
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Panel C: Monthly jump volatility under the SVJT model

Figure 2
Monthly Stochastic Volatility and Jump Volatility
This figure plots the time series of the monthly total volatility (stochastic volatility plus jump

volatility) of the SVJT model in Panel A, and the stochastic volatility and jump volatility in Panels

B and C, respectively. Panel A also plots the monthly realized volatility calculated from the daily

3-month T-bill yields.
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Figure 3
Impulse Response Functions
This figure plots the impulse responses of the inflation (IN) and real activity (RA) to shocks in

stochastic volatility (SV) and jump volatility (JV), as well as the impulse responses of stochastic

volatility (SV) and jump volatility (JV) to shocks in inflation (IN) and real activity (RA). The lags

are up to 12 months.
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