Issues in Inflation Targeting Bank of Canada, 28,29 April, 2005

Factor-Market Structure, Shifting Inflation Targets and the New Keynesian Phillips Curve

Robert Amano Stephen Murchison

Research Department Bank of Canada

Summary of Presentation

- 1. Motivation of Paper
- 2. Description of Model
- 3. Identification of Historical Inflation Target
- 4. Estimation Strategy and Empirical Results
- 5. Conclusion and Discussion of Future Work

- No clear consensus for Canada on the ability of the NKPC to capture the key features of inflation such as its
 - degree of persistence
 - procyclicality (does real marginal cost explain inflation??)

- Khan and Gagnon (2005, 2002) find evidence supporting the NKPC for Canada using
 - Raw GDP price inflation
 - Firm-specific capital generates more realistic average price-contract durations
 - CD and CES-based Marginal Cost (CES is preferable for Canada)
 - Hybrid Calvo price model
 - Variations with overhead labour and open-economy extensions make little difference

- Khan and Gagnon (2005, 2002) find evidence supporting the NKPC for Canada using
 - Raw GDP price inflation
 - Firm-specific capital generates more realistic average price-contract durations
 - CD and CES-based Marginal Cost (CES is preferable for Canada)
 - Hybrid Calvo price model
 - Variations with overhead labour and open-economy extensions make little difference
- Kozicki and Tinsley (2002) find some support for structural pricing models, in particular a Taylor-style setup for Canada
 - CPI prices
 - Estimate an inflation gap based on Moving Endpoints methodology
 - Output gap based on the HP filter

- Guay, Luger and Zhu (2002) reject the NKPC for Canada using a biascorrected continuous updating (CUE) estimator
 - Raw GDP inflation
 - CD-based marginal cost (labour share) with overhead labour and openeconomy extensions
 - Hybrid Calvo model
 - Overhead labour and open-economy extensions make little difference to results

- Guay, Luger and Zhu (2002) reject the NKPC for Canada using a biascorrected continuous updating (CUE) estimator
 - Raw GDP inflation
 - CD-based marginal cost (labour share) with overhead labour and openeconomy extensions
 - Hybrid Calvo model
 - Overhead labour and open-economy extensions make little difference to results
- Nason and Smith (2005) find little evidence of forward-looking behaviour and inflation is essentially unrelated to labour's share of income
 - Raw GDP inflation
 - CD-based marginal cost (labour share)
 - Hybrid Calvo model

What can we conclude from this?

- 1. Accounting for historical changes in the inflation objective is important for Canada, although some intrinsic persistence remains, Kozicki and Tinsley (2002)
- 2. Some evidence to support the use of CES production, Khan and Gagnon (2002)
- 3. The absence of real rigidity appears to result in average contract lengths that are at odds with survey data, Khan and Gagnon (2005, 2002)
- 4. Open-economy extensions make little difference when modeling the GDP deflator, Khan and Gagnon (2005, 2002), Guay, Luger and Zhu (2002)
- 5. No clear conclusion regarding the success of the NKPC for Canada

Our approach

- 1. Model the inflation gap as in Kozicki and Tinsley (2002), but
 - Replace detrended output with marginal cost
 - Replace CPI with CPIX (the operational measure of underlying inflation at the BOC)
- 2. Use CES production and firm-specific capital as in Gagnon and Khan (2005,2002) but
 - Modify the role of imports
- 3. Allow for the possibility that the inflation is partially pre-determined
 - Partial indexation
- 4. Allow for adjustment costs in employment following Sbordone (2002)

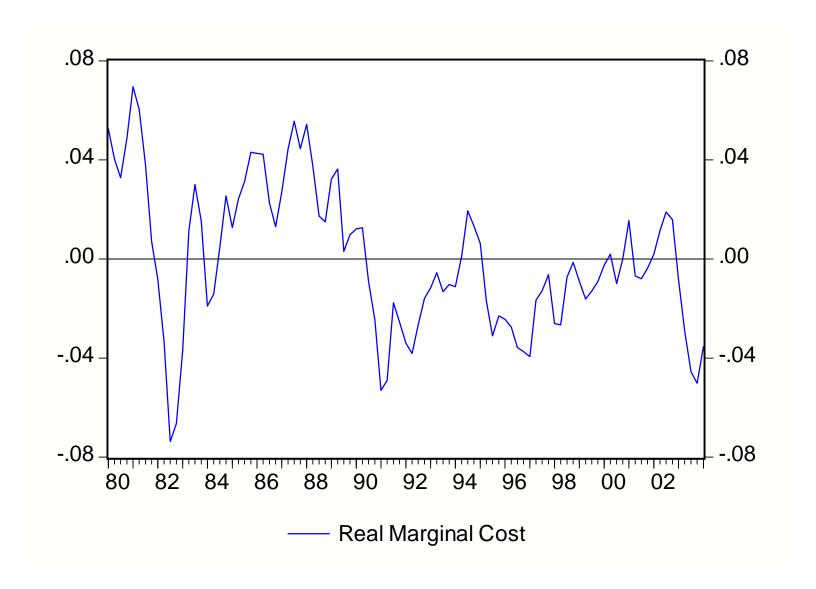
Assume a continuum of monopolistically-competitive firms, indexed by $i, i \in [0,1]$, that each produce a differentiated final good using a CES production technology in labour, L_{it} , capital, K_{it} , and imported inputs, M_{it}

$$Z_{it} = \left(\delta_1^{\frac{1}{\sigma}} \left(A_t L_{it}\right)^{\frac{\sigma-1}{\sigma}} + \delta_2^{\frac{1}{\sigma}} \left(K_{it}\right)^{\frac{\sigma-1}{\sigma}} + \left(1 - \delta_1 - \delta_2\right)^{\frac{1}{\sigma}} \left(M_{it}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} - \Omega_{i,t},$$

with

$$\Omega_{i,t} = \frac{Z_t \chi}{2} \left(\frac{L_{it}}{L_{i,t-1}} - 1 \right)^2,$$

$$\widehat{\lambda}_{i,t} = \Theta\left(\widehat{s}_{_t} - \frac{\chi}{s_L} \left(\Delta^2 \mathbf{E}_t \widehat{L}_{i,t+1}\right)\right) + \Lambda \widehat{z}_{k,i,t} + (1 - \Theta) \, \widehat{p}_{m,t},$$


which includes the unobserved expectation of future employment

$$\Delta \widehat{L}_{t+1} = \rho_1 \Delta \widehat{L}_t + \rho_2 \Delta \widehat{L}_{t-1} + u_t,$$

which yields

$$\widehat{\lambda}_{i,t} = \Theta\left(\widehat{s}_{i,t} - \frac{(\rho_1 - 1)\chi}{s_L}\left(\Delta\widehat{L}_{i,t} + \frac{\rho_2}{\rho_1 - 1}\Delta\widehat{L}_{i,t-1}\right)\right) + \Lambda\widehat{z}_{k,i,t} + (1 - \Theta)\widehat{p}_{m,t}.$$

if
$$\sigma = 1$$
 and $\chi = 0$, we obtain $\hat{\lambda}_{i,t} = \hat{s}_{i,t}$

Pricing model is

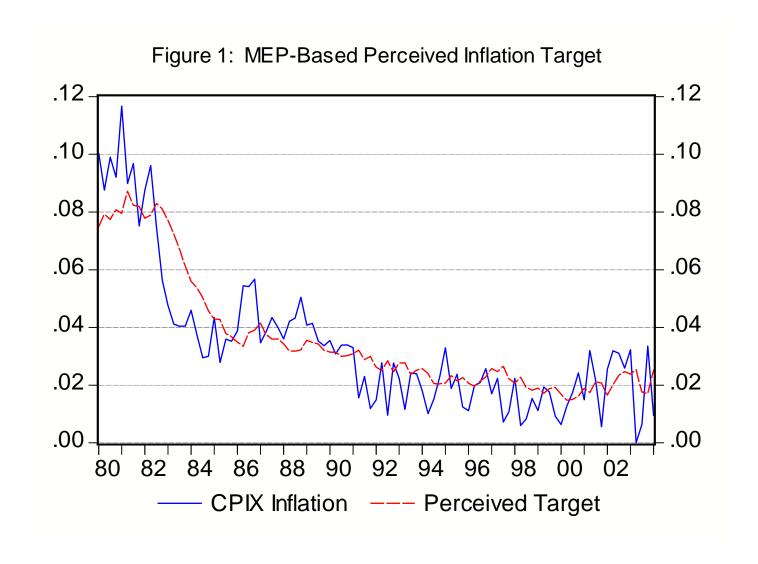
$$\widehat{\pi}_{t} = \frac{\gamma}{1 + \beta \gamma} \widehat{\pi}_{t-1} + \frac{\beta}{1 + \beta \gamma} \widehat{\pi}_{t+1} + \phi \widehat{\lambda}_{t},$$

with

$$\phi = \eta \cdot \frac{(1 - \theta)(1 - \beta \theta)}{(1 + \beta \gamma)\theta};$$

- With a rental market for capital, a firms marginal cost is invariant to its relative price
- With a fixed or quasi-fixed capital stock, a firm's marginal cost increases in its output (constant technology)
- Firms must consider the effect on both their revenues and costs of a price change
- Reduces the sensitivity of price to margeinal cost

3 Identification of the Historical Inflation Target


Approach 1 - Moving Endpoints Method (Kozicki and Tinsley (1998, 2002))

$$\begin{bmatrix} \pi_t \\ \lambda_t \\ R_t \end{bmatrix} = \sum_{i=1}^j \mathbf{A}_i \begin{bmatrix} \pi_{t-i} \\ \lambda_{t-i} \\ R_{t-i} \end{bmatrix} + \left(\mathbf{I} - \sum_{i=1}^j \mathbf{A}_i \right) \begin{bmatrix} \overline{\pi}_t \\ \overline{\lambda} \\ \overline{r} + \overline{\pi}_t \end{bmatrix} + \mathbf{u}_t.$$

and

$$\overline{\pi}_t = \overline{\pi}_{t-1} + \nu_t,$$

- Estimate the unobserved perceived target using the Kalman filter
- 1975Q1 to 2004Q1, drop first 5 years of data
- J=2

3 Identification of the Historical Inflation Target

Approach 2 - Staff Projection Method

• Exploit the information contained in historical Staff projections of inflation to identify a time-varying target

Assumptions:

1. Bank of Canada behaviour can be well-captured by a linear policy rule of the form

$$R_{t} = \zeta_{t} R_{t-1} + \mathbf{E}_{t-1} \left(1 - \zeta_{t} \right) \left(\overline{r} + \pi_{t} + \omega_{1,t} \left(\pi_{t} - \overline{\pi}_{t} \right) + \omega_{2,t} \widetilde{y}_{t} + \omega_{3,t} \Delta z_{t} \right) + \varepsilon_{t},$$

with possible time variation in the parameters.

- 2. The Staff have access to time (t-1) information only at time (t).
- 3. Staff forecasts of inflation can well approximated by a small-dimension VAR model.

$$\mathbf{X}_t = \sum_{i=1}^p \mathbf{A}_{i,t} \mathbf{X}_{t-i} + \mathbf{u}_t$$

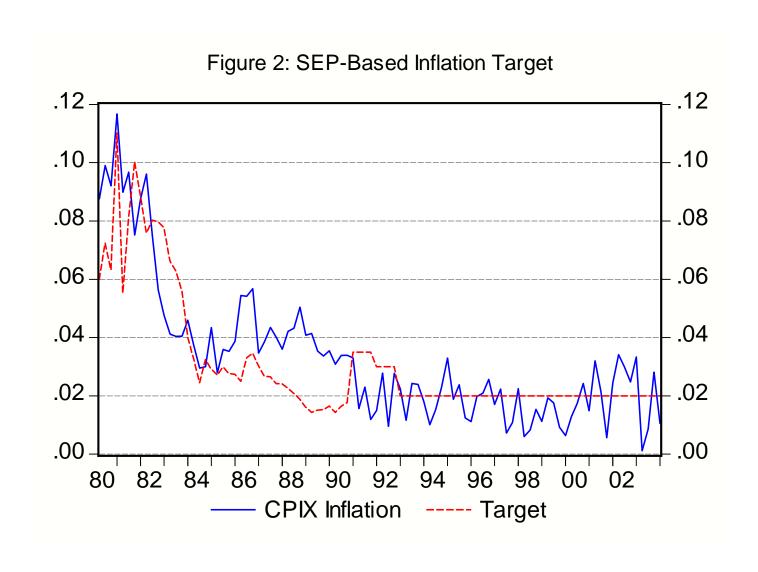
$$\mathbf{X}_t' = \{1, \pi_t, \widetilde{y}_t, \Delta z_t\}$$

Augmented with the interest rate rule, the structural VAR is given as

$$\mathbf{E}_{t-1}\mathbf{B}_{0,t}\mathbf{X}_t = \sum_{i=1}^p \mathbf{B}_{i,t}\mathbf{X}_{t-i}$$

with

$$\mathbf{B}_{0,t} = \begin{bmatrix} \mathbf{I}_{4\times4} & \mathbf{0}_{4\times1} \\ \xi_{1,t} & \xi_{2,t} & \xi_{3,t} & \xi_{4,t} & 1 \end{bmatrix}; \quad \mathbf{B}_{1,t} = \begin{bmatrix} \mathbf{A}_1 \\ 0 & 0 & 0 & 0 & \zeta_t \end{bmatrix}.$$
$$\mathbf{X}'_t = \{1, \pi_t, \widetilde{y}_t, \Delta z_t, R_t\}$$


- To identify the target in period (s):
 - 1. Estimate the reduced form VAR on data up to and including (s-1) with
 - 2. Form the vector

$$\mathbf{Q}_{s-1} = \mathbf{E}_{s-1} \begin{bmatrix} \pi_{s+4} - \pi_{s+4}^* \\ \pi_{s+6} - \pi_{s+6}^* \\ \pi_{s+8} - \pi_{s+8}^* \\ \pi_{s+20} - \pi_{s+20}^* \end{bmatrix},$$

3. Choose the constant in the interest rate equation to minimize the quadratic

$$Q'_{s-1}WQ_{s-1}$$

- 4. Compute the parameters of the rule, including the target from
- 5. Repeat for (s+1), (s+2),

3 Identification of the Historical Inflation Target

Table 1: Summary Statistics for Main Variables of Interest

Variable	1980Q1-2004Q1			1993Q1-2004Q1		
	Std. Dev.	Persistence		Std. Dev.	Persistence	
	p.p.	ρ	AR(1)	p.p.	ρ	AR(1)
Raw CPIX	2.4	0.93*	0.87*	0.8	0.14	0.14
MEP Gap	1.3	0.69*	0.45*	0.9	0.02	0.02
SEP Gap	1.5	0.63*	0.63*	0.8	0.14	0.14
Marginal Cost	3.0	0.79*	0.86*	1.7	0.92*	0.78*

- Inflation persistence and volatility have fallen significantly since 1993
- Only the volatility of real marginal cost has declined since 1993

• Following Coenen and Levin (2004), and based on Smith (1993), we choose the structural parameters to match the parameters of a bivariate VAR

$$\min_{\left\{\gamma,\phi\right\}}\ \left(\mathbf{\Gamma}-\mathbf{\Gamma}\left(\gamma,\phi\right)\right)'\mathbf{W}\left(\mathbf{\Gamma}-\mathbf{\Gamma}\left(\gamma,\phi\right)\right).$$

- \bullet The structural model admits a VAR(1) representation
- The data prefer a VAR(2)

Table 2: Calibrated Parameters

Table 2. Calibrated Larameters				
Parameter	Value			
σ	0.5			
β	0.99			
ϵ	11			
χ	6.0			
s_L	0.46			
s_K	0.37			
Functions of Calibrated Parameters	Value			
μ	1.1			
η	0.045			
Θ	0.84			
Λ	0.66			

• Inflation will be about 20 times less sensitive to real marginal cost relative to the rental-market-for-capital setup

 $LB\ Q-stat$

 $H_0: NKPC = VAR$

Table 3: Estimation Results - Preferred Model					
Variable	SMM (1980Q1-2004Q1)				
	MEP I	nf. Gap	SEP Inf. Gap		
NKPC	VAR(1)	VAR(2)	VAR(1)	VAR(2)	
γ	0.37 [0.1 0.65]		0.37 [0.23 0.7]		
Av. Duration	2.8 quarters [2.0 4.0]		2.6 quarters [1.8 3.5]		
$\overline{R}^2 \ LB \ Q-stat$	0.36 2.18	0.36 2.18	0.54 1.99	0.54 1.99	
VAR(2)					
\overline{R}^2	0.35	0.38	0.53	0.52	

2.18

1.00

2.04

0.051

1.99

1.00

2.00

0.3

Figure 5: Cross Correlations: VAR(2) with SEP-Based Inf. Gap

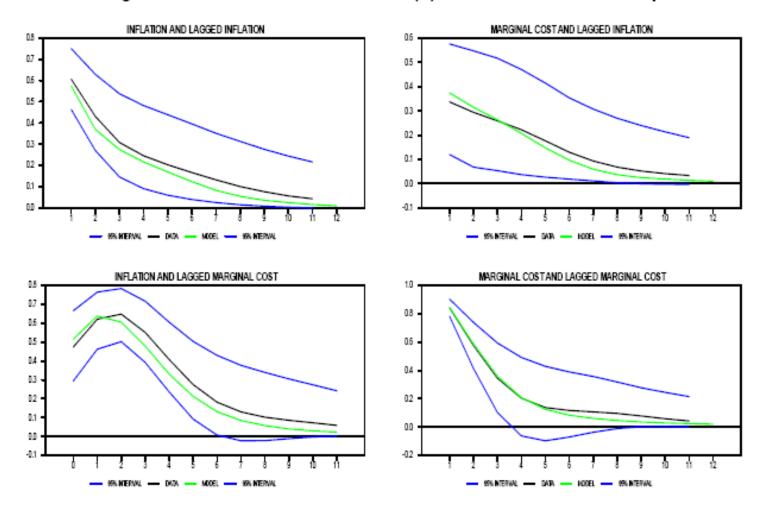


Table 4: Estimation Results - Variations on the Preferred Model

Variable	Raw CPIX Inflation		SEP Inf. Gap		
NKPC	$\eta = 1, \gamma = 0$	$\eta = 1$	$\eta = 1$	$\eta < 1$	$\widehat{\lambda}_t = \widehat{s}_t$
γ	0	0.97	0.37	0.37	0.53
Av. Duration	8.9 quar.	16.1	10.8	2.6	∞
\overline{R}^2	0.06	0.80	0.54	0.54	0.38
$LB\ Q-stat$	0.00	0.00	0.4	0.4	0.28
VAR(2)					
\overline{R}^2	0.83	0.83	0.52	0.52	0.52
NKPC = VAR	0.00	0.00	0.3	0.3	0.00

Table 5: Forecast Results (1985Q1 - 2004Q1)

(
Model	Forecast RMSE Tests			
	MEP Inf. Gap	SEP Inf. Gap		
NKPC	0.23	0.21		
YGAP Phil. Curve	0.26	0.25		
AR(2)	0.25	0.24		
Diebold-Mariano Test	Prob. Value under null of equal RMSE (σ)			
$\sigma_{NKPC} < \sigma_{YGAP}$	0.00	0.00		
$\sigma_{NKPC} > \sigma_{YGAP}$	1.00	1.00		
$\sigma_{NKPC} < \sigma_{AR(2)}$	0.01	0.02		
$\sigma_{NKPC} > \sigma_{AR(2)}$	0.99	0.98		

5 Conclusions and Directions for Future Work

- Estimated model implies an average frequency of price re-optimization that we view as reasonable
- Model captures the dynamics of inflation very well relative to a VAR from 1980 to 2004, provided partial indexation is permitted
- Marginal cost based on CES production with adjustment costs on labour is more successful at explaining inflation over this period
- Performs better out-of-sample relative to two common benchmarks

5 Conclusions and Directions for Future Work

- Apply SEP-based approach to other countries
- Modify the interpretation of partial indexation to yield a measure of nominal contract duration
- Better understand the source(s) of the decline in inflation persistence since the adoption of explicit targeting