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1 Introduction

This paper studies the implications of the zero lower bound for the term structure of interest

rates. The zero bound arises because agents would rather store the currency themselves,

rather than lend it at a loss (Fisher, 1896). Since the values that the nominal interest rate can

take are limited to the interval [0,∞), the bound is imposed here by modeling the one-period
interest rate as a limited-dependent variable. The limited-dependent variable model is a

device that forces agents to explicitly consider the zero lower bound when constructing their

forecasts, even if all observations of the nominal interest rate to date are strictly positive.

Closed-form analytical results are obtained for the case of a two-period bond and normally

distributed disturbances. Numerical results, using a frequency simulator to compute the

forecasts of the nonlinear model, are obtained for longer maturities under more general

distributional assumptions.

The main implications of the non-negativity constraint are the following. First, the zero

lower bound induces a nonlinear and convex relation between the long-term interest rate and

the level and standard deviation of the short-term interest rate. Second, the response of

long-term interest rates to changes in the short-term rate is asymmetric. A decrease in the

short-term rate produces a smaller response (in absolute value) in the long-term rate than

an increase of the same magnitude. Third, the response of long-term rates to changes in the

short-term rate (whether an increase or a decrease) is smaller in the neighborhood of the zero

lower bound, specially for longer maturities. Finally, the yield curve becomes steeper as the

short-term interest rate approaches zero. The reason is that when the short-term interest

rate is close to zero, agents understand that the range of its possible future realization is

larger above than below the current rate. Hence, their forecasts of future short-term interest

rates are above the current rate and, by the Pure Expectations Hypothesis (PEH), the spread

between current long- and short-term rates increases. All these results, coupled with the

observation that when the short-term interest rate is low the scope for further interest rate

cuts is limited by the zero lower bound, imply that the power of monetary policy to affect

long-term interest rates through the term structure is considerably reduced at low interest

rates. Iwata and Wu (2005) construct a nonlinear Vector Autoregression (VAR) where the

nominal interest rate is a limited-dependent variable and show that the effect of monetary

policy on output is also smaller in the neighborhood of the zero lower bound.

The magnitude of these effects diminishes as the short-term interest rate rises above zero

and it is negligible when the short-term rate is at a safe distance from the non-negativity con-

straint. However, in some OECD countries today, nominal interest rates are at historically

low levels. For example, The Economist, 28 June 2003 (p. 97) reports that the three-month
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money market rates in Japan, Switzerland, and the United States are (as of 25 June) 0.01,

0.28 and 0.88 per cent per year, respectively. Thus, the implications of the zero lower bound

outlined above may be empirically relevant for these countries. This paper examines the

implications of the model using Japanese data because its recent experience provides us with

sufficiently long, high frequency series of very low nominal interest rates. Results indicate

that the nonlinear model, which takes into account the effect of the non-negativity constraint

on expectations, delivers smaller forecast errors than a benchmark linear model. This is

basically due to the fact that the nonlinear model more accurately predicts the slope of the

Japanese yield curve at low interest rates. Impulse-response analysis indicates that adjust-

ments to the short-term interest rate lead to asymmetric responses by the long-term rates.

This asymmetry is proportionally more important for longer maturities. Finally, Ordinary

Least Squares (OLS) results are roughly in line with these predictions and deliver quantita-

tive implications that are numerically closer to the ones of the nonlinear model compared to

those of the linear model.

The paper is organized as follows. Section 2 introduces the process for the one-period

rate and derives the implications of the nonlinear model for the two-period rate when shocks

are normally distributed. Section 3 derives the conditional expectations for longer horizons

and under general distributional assumptions. Section 4 examines the empirical predictions

of the model using data from Japan. Section 5 concludes.

2 The Two-Period Bond

This section i) presents a limited-dependent variable model for the one-period nominal in-

terest rate that captures the idea that nominal interest rates are bounded below by zero,

and ii) derives the implications of this non-negativity constraint for a long-term bond with

maturity equal to two periods. Considering this special case first is instructive because,

under certain conditions, it is possible to write a closed-form expression linking the short-

and long-term interest rates and derive analytically the implications of the zero lower bound.

2.1 The Model for the Short-Term Rate

The model for the one-period nominal interest rate is based on Black (1995). Black restates

Fisher’s argument for non-negative nominal interest rates by interpreting currency and inter-

est rates as options. Currency is an option in the sense that were the bond return negative,

agents could hold currency instead.1 In addition, Black proposes a characterization of the

1Keynes (1936, p. 202) contains a similar idea whereby the lower the nominal interest rate, the smaller
the “earnings from illiquidity” that compensate the risk of “loss on capital account.” Keynes maintains
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short-term interest rate that distinguishes between the observed and the “shadow” nominal

interest rates. The observed rate is a call option on the shadow rate, where the latter is

what the interest rate would be in the absence of the currency option. The payoff of this

option is

rt =

(
r∗t , if r∗t > 0,
0, otherwise,

(1)

where rt and r
∗
t are the one-period observed and shadow nominal interest rates, respectively.

2

Under (1), the nominal interest rate may also be interpreted as a limited-dependent

variable censored at zero, with r∗t as the associated latent variable. A model of this form was

first studied in a regression context by Tobin (1958) and is a standard tool in cross-section

econometrics. The use of limited dependent variable models in a time-series framework is

usually more complicated because economic models frequently predict that an expectation is

one of the explanatory variables. Limited-dependent models with rational expectations have

been employed by Shonkwiler and Maddala (1985) and Holt and Johnson (1989) to study

the determination of commodity prices, by Baxter (1990) to study adjustable-peg exchange

rate regimes, and by Pesaran and Samiei (1992, 1995) and Pesaran and Ruge-Murcia (1999)

to study exchange rates subject to two-sided limits.

By the Pure Expectations Hypothesis (PEH) of the term structure of interest rates, the

nominal return of a two-period zero-coupon bond must equal the average expected return of

the sequence of two one-period bonds held over its lifetime

Rt = (1/2)(rt +E(rt+1|It)) + θt, (2)

where Rt is the return of the two-period bond, It is the non-decreasing set of information

available to market participants at time t and it is assumed to include observations of the

variables up to and including period t, E(rt+1|It) is the conditional expectation of the nominal
return of the one-period bond acquired at time t+1, and θt is a serially uncorrelated stochastic

term that includes a liquidity premium and has variance σ2θ .

In order to give empirical content to the theory, assume that r∗t is generated by

r∗t = α+ ψ(L)rt + βxt + ²t, (3)

that this is “the chief obstacle to a fall in the rate of interest to a very low level.” He does not specify
whether this low level is zero, but indicates (p. 207) that once the interest rate has fallen to a “certain level”,
liquidity preference is essentially absolute and agents prefer “cash to holding a debt which yields so low a
rate of interest.” This is Keynes’ liquidity trap where the monetary authority loses control over the interest
rate and monetary policy becomes ineffectual.

2In the continuous-time literature in finance, Cox, Ingersoll, and Ross (1985) propose a model where
the volatility of the short-term interest rate is proportional to the square root of its level. With additional
parameter restrictions, this model can also insure the non-negativity of interest rates. Kariya and Kamizono
(1997) examine the performance of this model using Japanese data and report very limited empirical success.
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where α is a non-negative intercept, L is the lag operator, ψ(L) stands for the polynomial
pP
j=1

ψjL
j, β is a 1×m vector of parameters, xt is an m× 1 vector of explanatory variables,

and ²t is a disturbance term with mean zero and variance σ2² , serially uncorrelated, and

uncorrelated with θt. The unconditional variance of ²t is constant, but its conditional variance

could be time-varying. For example, the conditional variance of ²t could be described by an

ARCH-type model in order to capture the observed volatility changes in short-term interest

rates. Wolman (1999) considers a deterministic version of the system (1)-(3) where r∗t is

the central bank’s desired short-term nominal interest rate and results from a Taylor-type

policy rule.

The explanatory variables in xt could be generated by the stochastic process

xt = AHt−1 +w1,t, (4)

where A is an m × b matrix of coefficients, Ht is a b × 1 vector of predetermined variables
possibly including past values of xt, and w1,t is an m × 1 vector of random disturbances

assumed to be independently and identically distributed (i.i.d.) (0,Ω1/2) and uncorrelated

with θt and ²t.

The construction of the conditional expectation E(rt+1|It) is not trivial because the
process of the short-term nominal interest rate is nonlinear. However, it is possible to find a

closed-form expression for this expectation in the case where shocks are normally distributed.

In addition, it is easiest to see the relation between the short- and long-term interest rates

if one assumes that r∗t depends only on the first lag of rt

r∗t = α+ ψrt−1 + ²t, (5)

where ²t ∼ N(0,σ2² ) and ψ > 0. The assumption ψ > 0 means that the nominal interest

rate is positively autocorrelated, as in the data. The closed-form expression for E(rt+1|It)
is given in the following proposition:

Proposition 1. Assume that the short-term interest rate follows the limited-dependent pro-

cess (1) where r∗t is determined according to (5). Define the variable ct+1 = −E(r∗t+1|It)/σ² =
−(α+ψrt)/σ². Then, the conditional expectation of the short-term nominal interest rate at

time t+ 1 constructed at time t is given by

E(rt+1|It) = (α+ ψrt)(1− Φ(ct+1)) + σ²φ(ct+1), (6)

where Φ(·) and φ(·) denote the cumulative and density functions of a standard normal vari-
able, respectively.

Proof. See Appendix A.
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2.2 Implications

The conditional expectation (6) may be substituted in equation (2) to obtain

Rt = rt/2 + ((α+ ψrt)(1− Φ(ct+1) + σ²φ(ct+1))/2 + θt. (7)

Equation (7) is used to derive the implications of the zero lower bound for the relation

between the long- and the short-term interest rates. First, Rt is increasing and convex in

rt. This can be seen from the first- and second-order derivatives ∂Rt/∂rt = 1/2+ (ψ/2)(1−
Φ(ct+1)) > 0 and ∂2Rt/∂r

2
t = (ψ

2/2σ²)φ(ct+1) > 0. The nonlinearity arises from the effect of

the zero lower bound on the current expectation about the future short-term interest rate.

This effect is similar to the honeymoon effect in continuous- and discrete-time exchange-rate

target-zone models (see Krugman, 1991, and Pesaran and Samiei, 1995, respectively). As

the nominal interest rate rises above zero, ct+1 decreases monotonically, Φ(ct+1) and φ(ct+1)

tend to zero, and the model approaches a linear forecasting model (see below).

Second, even if the current short-term interest rate is zero, the long-term rate is strictly

positive. To see this, note that when rt = 0, the future short-term rate can only take values

equal to or larger than the current rate. Thus, the conditional expectation of rt+1 must be

strictly positive. It follows that Rt must be strictly positive as well.

Third, given the current short-term interest rate, Rt is increasing and convex in the

conditional standard deviation of rt. As before, this can be seen from the derivatives

∂Rt/∂σ² = φ(ct+1)/2 > 0 and ∂
2Rt/∂σ

2
² = c

2
t+1φ(ct+1)/2σ² > 0. Under Black’s interpretation

of interest rates as options, this is precisely the result that option pricing theory would

predict.

Finally, a decrease in the short-term rate produces a smaller response (in absolute value)

in the long-term rate than an increase of the same magnitude. That is, |Rt(rt − ∆rt) −
Rt(rt)| < |Rt(rt + ∆rt) − Rt(rt)|, where ∆rt is the change in the short-term interest rate.

In order to verify this claim, use ∂Rt/∂rt > 0 and the definition of absolute value to write

Rt(rt+∆rt)−Rt(rt) > −(Rt(rt−∆rt)−Rt(rt)). Rearranging this expression yields (Rt(rt+
∆rt) +Rt(rt−∆rt))/2 > Rt(rt), that is satisfied because the function Rt(rt) is convex in its

argument.

It is useful to compare the predictions of the nonlinear model with the ones of a benchmark

linear forecasting model. The counterpart of the process (1)-(5) when one ignores the zero

lower bound on interest rates is rt = α+ ψrt−1 + ²t. In this case, E(rt+1|It) = α+ ψrt, and

Rt = rt/2 + (α+ ψrt)/2 + θt. (8)

Note that Rt is linear in rt. Because ∂Rt/∂rt = (1+ψ)/2 is constant and independent of the

short-term rate, changes in rt produce changes in Rt that are symmetric, proportional, and
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history-independent. Also, the long-term rate is independent of the conditional standard

deviation of the short-term rate. Finally, since (1 + ψ)/2 > 1/2 + (ψ/2)(1 − Φ(ct+1)),

where the left-hand-side (right-hand-side) is ∂Rt/∂rt under the linear (nonlinear) model,

the marginal effect on Rt of a change in rt is smaller in the neighborhood of the zero lower

bound.

Up to the extent that monetary policy affects long-term interest rates through the term

structure, these results imply that its power is considerably reduced at low interest rates.

First, when the short-term interest rate is low, the scope for further interest rate cuts is

limited by the zero lower bound. Second, decreases in short-term interest rates have smaller

effects than increases on long-term rates (in absolute value). Finally, adjustments to the

short-term interest rate (whether decreases or increases) have a smaller effect on long-term

rates. Section 4 uses stochastic simulation to show that these conclusions hold in the general

case and are empirically relevant for the case of Japan.

3 The Multi-Period Bond

Consider now the more general case where the long-term bond has maturity of n periods.

The PEH predicts that the return of the n-period, pure-discount bond must equal the average

expected return of the sequence of n one-period bonds held over its lifetime. That is,

Rt = (1/n)(rt +E(rt+1|It) + · · ·+E(rt+n−1|It)) + θt, (9)

where Rt is now the nominal return of the n-period bond. The remaining notation is as

previously defined.

Proposition 2 derives the conditional expectations of the short-term interest rate when

rt is subject to the non-negativity constraint. This proposition generalizes Proposition 1 in

that it makes no assumptions regarding the distribution of the shocks, allows a multivariate

process for r∗t , and considers horizons s ≥ 1.
Proposition 2. Assume that the short-term interest rate follows the limited-dependent

process (1) where r∗t is determined according to (3). Assume that the explanatory variables

xt follow the process (4). Define the composite error term

us,t+s = ²t+s +
s−1X
k=1

ψs−kµk,t+k + βws,t+s, (10)

where µk,t+k = rt+k−E(rt+k|It) and ws,t+s = xt+s−E(xt+s|It), with cumulative distribution
and density functions denoted by Fs(·) and fs(·), respectively. Define the variable

ct+s = −E(r∗t+s|It) = −
⎛⎝α+ min{p,s−1}X

k=1

ψkE(rt+s−k|It) +
pX
j=s

ψjL
jrt+s + βE(xt+s|It)

⎞⎠ . (11)
[6]



Then, the conditional expectation of the short-term nominal interest rate at time t+ s con-

structed at time t is given by

E(rt+s|It) = (E(r∗t+s|It) +E(us,t+s|It, us,t+s > ct+s))(1− Fs(ct+s)). (12)

Proof. See Appendix B.

Note that for horizons s > 1, the conditional expectations E(rt+s|It) cannot be expressed
in closed-form. The reason is that us,t+s includes interest-rate forecast errors that, due to

the limited-dependent nature of rt, do not follow a standard distribution. In particular,

the density of the forecast errors is non-normal and asymmetric, even if shocks are normally

distributed. The asymmetry is due to the fact that forecast errors are bounded below by

−E(rt+s|It). This asymmetry disappears as the current short-term rate rises away from

zero and the effect of the non-negativity constraint disappears. Since E(rt+s|It) cannot
be computed analytically, this paper develops a Monte-Carlo procedure to compute this

expectation numerically. The procedure extends the frequency simulators by Lerman and

Manski (1981) and McFadden (1989) to dynamic nonlinear rational-expectations models.

It constructs estimates of Fs(ct+s) and E(us,t+s|It, us,t+s > ct+s) by simulating paths of the
short-term nominal interest rate subject to the non-negativity constraint and computing the

relative frequency with which the zero lower bound is hit and the sample average of the

realizations of the nominal rate above the bound. Appendix C contains a more detailed

description of this procedure.

Due to the lack of closed-form solution to describe E(rt+s|It), it is not possible to derive
general analytical results. However, it is clear that E(rt+s|It) is a nonlinear function of cur-
rent and past realizations of the short-term interest rate. This follows from the observation

that E(us,t+s|It, us,t+s > ct+s) and Fs(ct+s) are nonlinear functions of ct+s, that, in turn, is a
function of current and past realizations of rt. Moreover, since the long-term interest rate

depends on the average forecast of future short-term rates, Rt is also a nonlinear function

of current and lagged short-term interest rates. The next section examines empirically the

implications of this nonlinear relationship using Japanese data and shows that the results

derived in Section 2.2 hold more generally.

4 Interest Rates in Japan

This section examines empirically the model of the term structure using Japanese data.

Taking as given the estimated process of the short-term interest rate, this section derives the

implied long-term interest rate under the PEH, computes the response of the long rate to
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a change in the short rate, and compares the forecasting power of the linear and nonlinear

models.

The dataset consists of 304 weekly (Thursday) observations of the one-, three-, six-,

and twelve-month nominal interest rates on zero-coupon Treasury Bills for Japan. The

data source is Datastream and the sample period is 6 July 1995 to 26 April 2001. The

sample starts in 6 July 1995 for two reasons. First, the sequential test by Bai and Perron

(1998) identifies a structural break in the one-month nominal interest rate on 29 June 1995.

Andrew’s (1993) supF statistic is 18.01, which is well above the 5 per cent critical level of

8.58. The 95 per cent confidence interval for the break date is 22 June to 6 July 1995.

Second, contemporaneous accounts indicate that a more expansionist monetary policy was

undertaken by the Bank of Japan, starting in the third quarter of 1995 (see, for example,

The Economist, 16 September 1995, p. 86). The sample ends on 26 April 2001 because this

was the latest available observation when the data was collected.

During this period, Japanese interest rates were remarkably close to the zero lower bound.

The data set features observations as low as 0.03 for the one-month interest rate on 20 May

1999 and 0.06 for the twelve-month interest rate on 29 October 1998. The medians for

the one-, three-, six-, and twelve-month interest rates are only 0.38, 0.44, 0.44, and 0.47,

respectively.

4.1 The Short-Term Rate

For the analysis that follows, the short-term rate is the one-month interest rate. The

process of r∗t is described in terms of past realizations of rt with lag length determined using

sequential Likelihood Ratio (LR) tests.3 The conditional variance of ²t is modeled as a

GARCH(1,1). That is, ²t =
√
htvt, where vt is i.i.d.N(0, 1) and ht = ζ+ δ²2t−1+%ht−1. The

estimated process is

rt =

(
r∗t , if r∗t > 0,
0, otherwise,

with
r∗t = 0.0185 + 0.598rt−1 + 0.127rt−2 + 0.214rt−3 + ²t,

(0.0106) (0.079) (0.077) (0.055)

and

ht = 0.004 + 0.539²2t−1 + 0.223h2t−1.
(0.0008) (0.111) (0.079)

3In principle, the model can accommodate a multivariate representation of r∗t . However, many series, like
money and output growth, are unavailable on a weekly basis. Using a univariate process for the short-term
interest rate makes the model more parsimonious and allows one to concentrate on a well-defined statistical
object, namely the bivariate process (rt, Rt), for the purpose of econometric inference.
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A standard misspecification test for ARCH-type models is the Ljung-Box Q-statistic

applied to the squared standardized residuals. If the ARCH model is correctly specified,

then the squared residuals corrected for heteroskedasticity should be serially uncorrelated.

Under the null hypothesis of no autocorrelation, the Q-statistic is chi-square distributed

with degrees of freedom equal to the number of autocorrelations. The Q-statistics for up to

five autocorrelations are 0.004, 0.62, 0.63, 0.72, and 0.74, respectively. Since all statistics

are below the 5 per cent critical value of their appropriate distribution, the null hypothesis

cannot be rejected. Hence, it would appear that a GARCH(1,1) model adequately captures

the conditional heteroskedasticity in the Japanese one-month interest rate.

4.2 Predicted Long-Term Rates

This section examines the conditional expectations of the short rate and the predicted long

rates under the linear and nonlinear models. First, the top three panels in Figure 1 plot

the conditional expectations of the future short-term rate three-, six-, and twelve-months

ahead for different values of the current short rate. In all panels, the linear (nonlinear)

model is represented by the dotted (continuous) line. The conditional expectations of rt are

computed using the frequency simulator in Appendix C and the conditional variance of ²t is

set to its unconditional mean.

For the nonlinear model that takes into account the effect of the zero lower bound, the

conditional expectations “bend” upward at low nominal interest rates and, consequently,

they are nonlinear and convex in the current short-term interest rate. This effect is similar

to the honeymoon effect in exchange-rate target-zone models. At low nominal interest rates,

the range of possible future realizations of rt is larger above than below the current rate as a

result of the non-negativity constraint. Hence, the conditional forecast of future short-term

rates is above the current rate. This effect increases as rt approaches the zero lower bound

and it is more pronounced as the horizon increases. For the linear model, the conditional

expectations are linear in the current short-term interest rate. For interest rates well above

the non-negativity constraint, the forecasts from both models coincide, but for rates close to

zero, the forecasts from the nonlinear model are higher than those from the linear model at

all horizons.

Second, the bottom three panels of Figure 1 plot the three-, six-, and twelve-month

interest rates predicted by both models. Since under the PEH long-term interest rates

are an average of forecasted future short-term rates, the properties the long-term rates

follow from those of the conditional expectations of the short-term rates. For the nonlinear

model, long-term interest rates are nonlinear and convex in the current short-term rate. For
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the linear model, the long-term rates are linear functions of the current short-term rate.

When the short-term rate is well above the non-negativity constraint, the long-term rates

predicted by both models are identical, but when rt is close to zero, the nonlinear model

predicts substantially higher long-term interest rates than the linear model. This means

that the nonlinear model predicts a steeper yield curve than the linear model at low short-

term interest rates. We will see below that this prediction accords well with Japanese data

and explains the superior forecasting performance of the nonlinear model.4

4.3 Impulse-Response Analysis

This section examines the response of the long-term interest rate associated with a change

in the short-term interest rate. Figure 2 plots the responses of the three-, six-, and twelve-

month interest rates to an increase and to a decrease of 25 basis points in the short-term

rate under the linear (dotted line) and nonlinear (continuous line) models. In constructing

these responses, the level and the conditional variance of the one-month interest rate are

fixed to their unconditional means.

Note that under the linear forecasting model, the response of the long-term rate to an

increase in the short-term rate is exactly the mirror image of the response to a decrease. In

general, for linear models of the term structure, an innovation to the short-term rate yields

movements in the long-term rate that are symmetric, proportional, and history-independent.

That is, the impulse-response associated with a shock of size 1 (standard deviation) would

be the mirror image of the response to a shock of size -1, one-half the response of shock size

2, and independent of the moment the shock is assumed to take place.

Under the nonlinear model, the response of the long-term rate to an innovation in the

short-term rate is asymmetric. The change in the long-term rate when the one-month rate

increases by 25 basis points is larger (in absolute value) than its change when the one-month

rate decreases by 25 basis points. When the one-month rate increases (decreases) by 25 basis

points, the three-, six-, and twelve-month rates increase (decrease) by 12, 9, and 5.6 (11, 7.8,

and 4.7) basis points, respectively. Note that this asymmetric effect is proportionally larger

for longer maturities. This result reflects the more general proposition that in nonlinear

systems, impulse responses can vary with the size and sign of the shock and the initial

conditions (see Koop, Pesaran, and Potter, 1996). This result is due to the fact that, when

interest rates are close to zero, agents understand that future values of the short-term rate

4The working paper version of this article (Ruge-Murcia, 2002) examines the relation between the level
of the long-term rate and the conditional standard deviation of the short-term rate. Results indicate that
the relation is nonlinear and convex as predicted by the theory, but that the empirical magnitude of the
volatility effects described in Black (1995) are negligible.
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are limited below, but not above, the current rate. Thus, the effect of a decrease in the

short-term rate on the long-term rate is smaller than that of an increase.

In both models, the effect of a change in the short-term rate on the long-term rate

decreases with the horizon, but it is more severe for the nonlinear model. For example, an

interest rate cut by 25 basis points in the one-month rate produces an immediate reduction

in the three-, six, and twelve-month interest rates of 12.6, 10 and 6.9 points, respectively,

under the linear model, but of 11, 7.8, and 4.7, respectively, under the nonlinear model.

This means that changes in the short-term rate induce smaller changes in the long-term rate

in the neighborhood of the zero lower bound. Consequently, the power of monetary policy

to affect long-term rates through the term structure is smaller at low nominal interest rates.

A simple way to examine the model predictions is to perform an OLS regression of

the change in the long-term interest rate on a constant, and positive and negative changes

(separately) of the short-term interest rate. The coefficients of the explanatory variables

are reported in Panel A of Table 1. These coefficients can be thought of as reduced-form

estimates of ∂Rt/∂rt under the PEH of the term structure. Notice that both increases and

decreases of the short-term rate produce statistically significant changes in the three- and six-

month interest rates. However, while increases of the short-term rate produce a statistically

significant change in the twelve-month interest rate, decreases produce a quantitatively small

and statistically insignificant response. This is in line with the prediction of the nonlinear

model that the asymmetric response is more important for longer maturities.5

Note that the coefficients in Panel A measure the effect of a change by 1 basis point

in the short-term rate on the long-term rate. Hence, in order to compare the magnitude

of the responses predicted by OLS and by the impulse-response analysis, it is necessary to

multiply the former by 25; these are the numbers reported in Panel B of Table 1. The initial

effects predicted by the impulse-response analysis for both the linear and nonlinear models

are included in the 95 per cent confidence interval of the effects predicted by OLS, but those

of the nonlinear model are quantitatively closer.

The results from the impulse-response analysis imply that the real effects of easing mon-

etary policy may be smaller when interest rates are close to zero. VAR evidence consistent

with this prediction is reported by Iwata and Wu (2005) for the case of Japan. In particu-

lar, these authors find that the zero bound reduces the effect of monetary policy shocks on

output and limits the central bank’s ability to purse counter-cyclical policy.

5This prediction of the model is for a given short-term rate. However, when one includes the current
short-term rate as a control in the regression, results are essentially the same as reported.
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4.4 Comparing the Linear and Nonlinear Forecasting Models

One strategy to compare empirically the relative merits of the linear and nonlinear models

is to compute forecast error statistics. To that effect, the in-sample and the one-step-ahead

out-of-sample Root Mean Squared Error (RMSE) for both models are constructed. The out-

of-sample measures are computed for the last 50 observations in the sample by recursively

estimating the model and constructing the forecasts. The linear model constructs the

long-term interest rate using linear forecasts of the one-month interest rate. The nonlinear

models take into account the effect of the zero lower bound on expectations, but differ on their

treatment of the conditional standard deviation of ²t. The nonlinear model I computes the

forecasts of the one-month interest rates using the GARCH(1,1) estimates of the conditional

standard deviation of ²t. The nonlinear model II fixes the conditional standard deviation of

²t to its unconditional mean. All statistics are reported in Table 2.

In some cases, the linear model has smaller in-sample RMSE’s than the nonlinear models

for the three- and six-month rates. However, the nonlinear models have smaller in-sample

RMSE’s for the twelve-month rate, and superior out-of-sample performances for all maturi-

ties in all cases. The reason for this result is the following. The nonlinear model recognizes

that at very low short-term interest rates, future short-term rates are more likely to increase

than to decrease further. This is a direct consequence of the zero lower bound on interest

rates. As seen in Figure 1, this effect is larger as the horizon increases. Hence, the non-

linear model predicts a steep yield curve. In contrast, the linear model underpredicts the

long-term rate and implies a flatter yield curve than found in the data. Finally note that, in

all cases, the nonlinear model I is inferior to model II. Hence, the nonlinear model which is

the more parsimonious and which abstains from incorporating the volatility effect described

by Black (1995) appears to better predict the Japanese long-term interest rates.

The gain of using the nonlinear models is quantitatively small but might be economically

important when pricing bonds and other debt instruments. In order to examine whether it

might be profitable to make trades on the basis of the nonlinear model, consider a fictional

weekly auction of Japanese Treasury Bills. Sealed bids are made by agents for contracts that

deliver 1 Yen at maturity. There are three risk-neutral agents in the auction. The first agent

uses the PEH and a linear forecasting model to construct her bid. The second agent uses

the PEH and a nonlinear forecasting model that takes into account the zero-lower bound.

In order to make this an out-of-sample exercise, these two agents are assumed to only have

access to past observations of the variables, with current variables being determined at the

end of the auction. These agents use an AR(3) process with GARCH(1,1) disturbances to

model the one-month interest rate and incorporate new observations to their data set as they
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become available. The third agent has perfect foresight and submits bids that correspond

exactly to what the interest rate will be at the end of the auction. Contracts are allocated

from the highest bid down, but only price bids higher than the one made by the fictional

perfect-foresight agent are allowed. Otherwise, the implied interest rate would differ from

the one observed in the data.

Table 3 reports the average annual return of portfolios composed entirely of bonds of one

maturity. Notice that, in all cases, the nonlinear forecasting model delivers higher returns

than the linear model. The reason is that the linear model underpredicts the nominal

interest rate or, equivalently, overpredicts the contract price. The agent using the linear

forecasting model bids a higher price, buys less contracts (for a given wealth), and obtains a

lower return than the other two market participants. In order to put the difference between

forecasting models in perspective, assume that the wealth invested by each agent is 10000

Yen. Then, Table 3 means that, on average, and at the maturity date, the agent using

the nonlinear forecasting model has 0.06, 0.9, 3.9, and 12.4 more Yen in her pocket than

the agent using the linear model, depending on whether she invests in one-, three-, six-, or

twelve-month Treasury Bills. Since the nonlinear model dominates the linear one for all

maturities, a portfolio that consists of nonzero holdings of more than one bond type would

also have a higher return when constructed using a forecasting model that takes into account

the zero lower bound.

5 Conclusions

The recent Japanese experience provides us with a natural experiment to study a number

of important issues in macroeconomics. In particular, given concerns about deflation in

a number of central banks, Japan allows us to study the implications of the zero lower

bound for the term structure and monetary policy. To that end, this paper constructs

a dynamic, limited-dependent variable model that imposes this non-negativity constraint.

The limited-dependent variable model is a device that forces agents to explicitly incorporate

the zero lower bound in their forecasts, even if all observations of the nominal interest rate

to date are strictly positive. The term-structure model is general in that it nests linear

models as the short-term interest rate rises above zero. However, in the neighborhood of

the zero lower bound, the predictions of the nonlinear model differ sharply from those of

a benchmark linear model. These predictions imply that the power of monetary policy to

affect long-term interest rates through the term structure is reduced at low interest rates.

The empirical analysis of recent Japanese data indicates that although the nonlinear and

asymmetric effects predicted by the model are quantitatively small, the nonlinear model
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provides a better fit of the Japanese term structure than a linear model that ignores the

effect of the zero lower bound on expectations.
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A Proof of Proposition 1

Define the standardized normal variable ξt = ²t/σ² and use the definition of ct+1 to write the

process of the short-term interest rate at time t+ 1 as

rt+1 =

(
E(r∗t+1|It) + ²t+1, if ξt+1 > ct+1,
0, otherwise.

Note that ct+1 is known at time t. The conditional expectation of rt+1 is the weighted average

E(rt+1|It) = E(rt+1|It, ξt+1 > ct+1) Pr(ξt+1 > ct+1)
+E(rt+1|It, ξt+1 ≤ ct+1) Pr(ξt+1 ≤ ct+1).

Since the forecast E(r∗t+1|It) = α+ ψrt is also known at time t,

E(rt+1|It, ξt+1 > ct+1) = α+ ψrt +E(²t+1|It, ξt+1 > ct+1).

Write E(²t+1|It, ξt+1 > ct+1) = σ²φ(ct+1)/(1−Φ(ct+1)), where 1−Φ(ct+1) stands for Pr(ξt+1 >
ct+1). Note that E(rt+1|It, ξt+1 ≤ ct+1) = 0. With these intermediate results

E(rt+1|It) = (α+ ψrt)(1− Φ(ct+1)) + σ²φ(ct+1),

as claimed.¶

B Proof of Proposition 2

Use the definitions of us,t+s and ct+s to write the process of the short-term interest rate at

time t+ s as

rt+s =

(
E(r∗t+s|It) + us,t+s, if us,t+s > ct+s,
0, otherwise.

The conditional expectation of rt+s is the weighted average

E(rt+s|It) = E(rt+s|It, us,t+s > ct+s) Pr(us,t+s > ct+s),
+E(rt+s|It, us,t+s ≤ ct+s) Pr(us,t+s ≤ ct+s).

Since the forecast E(r∗t+s|It) is known at time t,

E(rt+s|It, us,t+s > ct+s) = E(r∗t+s|It) +E(us,t+s|It, us,t+s > ct+s).

Note that E(rt+s|It, us,t+s ≤ ct+s) = 0. With these intermediate results and using Pr(us,t+s >
ct+s) = 1−Fs(ct+s), the conditional expectation of the short-term interest rate at time t+ s
is

E(rt+s|It) = (E(r∗t+s|It) +E(us,t+s|It, us,t+s > ct+s))(1− Fs(ct+s)),

as claimed.¶
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C Computation of the Conditional Expectations

The procedure involves the following steps:

Step 1: Having found analytically or numerically, the one-step-ahead conditional expectation

of the nominal interest rate, E(rt+1|It), use the definition of (11) for s = 2 to obtain ct+2.
Step 2: Simulate M observations of the short-term interest rate at time t+ 1 using (1) and

(3). The non-negativity constraint may be numerically enforced by substituting negative

realization of rt+1 with zeroes. Compute the M realizations of the forecast error, µ1,t+1 =

rt+1 −E(rt+1|It).
Step 3: Draw M realizations of ²t+2 and wt+2, and combine them with the µ0s according to

(10) to obtain M realizations of u2,t+2.

Step 4: Construct an estimate of F2(ct+2) as the proportion of observations of u2,t+2 that are

larger than ct+2 :

Fs(ct+s) = (1/M)
MX
j=1

=(u2,t+2 > ct+2),

where =(·) is an indicator function which takes the value 1 when its argument is true and
0 otherwise. Construct an estimate of E(u2,t+2|It, u2,t+2 > ct+2) by taking the arithmetic
average of observations of u2,t+2 that fall above ct+2 :

E(us,t+s|It, us,t+s > ct+s) = (1/M)
MX
j=1

us,t+s=(u2,t+2 > ct+2).

Step 5: Applying relation (12) for s = 2 delivers E(rt+2|It). Using E(rt+2|It), the procedure
can then be repeated recursively for s = 3, 4, . . . , n− 1.
Notice that subsequent iterations make use of the conditional expectations computed

previously. When computing E(rt+3|It), one requires E(rt+1|It) and E(rt+2|It) to construct
ct+3, and so on. The one-step-ahead forecast, E(rt+1|It), required to start the recursion,
can be found analytically in the special case where ²t is normally distributed, or numerically

using the same procedure above. (In the latter case, the recursion would start with rt,

rather than with E(rt+1|It).) In the case where ²t is conditionally heteroskedastic, the draw
of future realizations of ²t needs to take into account the fact that its conditional variance

changes over time. See Baillie and Bollerslev (1992) for the construction of forecasts of the

conditional variance of many common parametric models.
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Table 1. Results of OLS Regression

Variable Maturity
3 Months 6 Months 12 Months

A. OLS Coefficients
Intercept 0.001 −0.005 −0.005

(0.006) (0.005) (0.006)
Positive 0.342∗ 0.338∗ 0.201∗

(0.099) (0.152) (0.092)
Negative −0.420∗ −0.258∗ −0.141

(0.056) (0.078) (0.092)

B. Predicted Response to a Change of 25
Basis Points in the Short-Term Rate

Positive 8.55 8.45 5.03
(2.48) (3.80) (2.30)

Negative −10.5 −6.45 −3.53
(1.40) (1.95) (2.30)

Notes: This table reports the results (in basis points) of the projection of ∆Rt on a constant,

=(∆rt > 0)∆rt, and =(∆rt < 0)∆rt, where =(·) is an indicator function which takes the
value 1 when its argument is true and 0 otherwise. Standard errors are robust to serial

correlation and heteroskedasticity.
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Table 2. Root Mean Squared Error of Linear and Nonlinear Forecasting Models

Maturity Model
Nonlinear Nonlinear

Linear I II

A. In-Sample
3 Months 12.848 12.948 12.729
6 Months 15.267 15.307 15.111
12 Months 26.066 24.947 24.857

B. Out-of-Sample
3 Months 13.289 13.208 12.986
6 Months 14.234 13.604 13.172
12 Months 15.949 13.853 13.457

Notes: This table reports the RMSE in basis points. The linear model forecasts the one-

month interest rate linearly. The nonlinear model I takes into account the effect of the zero

lower bound and the conditional standard deviation of ²t. The nonlinear model II takes into

account the effect of the zero lower bound but fixes the conditional standard deviation of ²t

to its unconditional mean.
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Table 3. Average Annualized Return on Bond Portfolio

from 18 May 2000 to 26 April 2001

Composition of Model
Bond Portfolio Perfect Nonlinear

Foresight Linear II

1-Month Bonds Only 0.881 0.683 0.690
3-Month Bonds Only 0.887 0.644 0.679
6-Month Bonds Only 0.888 0.596 0.674
12-Month Bonds Only 0.984 0.590 0.714

Note: This table reports returns in percentage points.

[19]



References

[1] Andrews, D., 1993, Tests for Parameter Instability and Structural Change with Un-

known Change Point, Econometrica 61, 821-856.

[2] Bai, J. and P. Perron, 1998, Estimating and Testing Linear Models with Multiple Struc-

tural Changes, Econometrica 66, 47-78.

[3] Baillie, R. T. and T. Bollerslev, 1992, Prediction in Dynamic Models with Time-

Dependent Conditional Variances, Journal of Econometrics 52, 91-113.

[4] Black, F., 1995, Interest Rates as Options, Journal of Finance 50, 1371-1376.

[5] Baxter, M., 1990, Estimating Rational Expectations Models with Censored Variables:

Mexico’s Adjustable Peg Regime of 1973-1982, University of Rochester, Mimeo.

[6] Cox, J. C., J. E. Ingersoll and S. A. Ross, 1985, A Theory of the Term Structure of

Interest Rates, Econometrica 53, 385-407.

[7] Fisher, I., 1896, Appreciation and Interest (August M. Kelley Bookseller, New York).

[8] Holt, M. T. and S. R. Johnson, 1989, Bounded Price Variation and Rational Expecta-

tions in an Endogenous Switching Model of the US Corn Market, Review of Economics

and Statistics 71, 605-613.

[9] Iwata, S. and S. Wu, 2005, Estimating Monetary Policy Effects When Interest Rates

are Bounded at Zero, University of Kansas, Mimeo.

[10] Kariya, T. and K. Kamizono, 1997, Testing the Validity of the Cox-Ingersoll-Ross Type

Model for Japanese Interest Rates, Economic Review 48, 195-206.

[11] Keynes, J. M., 1936, The General Theory of Employment, Interest and Money (Macmil-

lan Press, London).

[12] Koop, G., M. H. Pesaran and S. M. Potter, 1996, Impulse Response Analysis in Non-

linear Multivariate Models, Journal of Econometrics 74, 119-147.

[13] Krugman, P., 1991, Target Zones and Exchange Rate Dynamics, Quarterly Journal of

Economics 106, 669-682.

[14] Lerman, S. and C. Manski, 1981, On the Use of Simulated Frequencies to Approximate

Choice Probabilities, in: C. Manski and D. McFadden, eds., Structural Analysis of

Discrete Data with Econometric Applications (MIT Press, Cambridge).

[20]



[15] McFadden, D., 1989, A Method of Simulated Moments for Estimation of Discrete Re-

sponse Models without Numerical Integration, Econometrica 57, 995-1026.

[16] Pesaran, M. H. and H. Samiei, 1992, Estimating Limited-Dependent Rational Expecta-

tions Models: With an Application to Exchange Rate Determination in a Target Zone,

Journal of Econometrics 53, 141-163.

[17] Pesaran, M. H. and H. Samiei, 1995, Limited-Dependent Rational Expectations Models

with Future Expectations, Journal of Economic Dynamics and Control 19, 1325-1353.

[18] Pesaran, M. H. and F. J. Ruge-Murcia, 1999, Analysis of Exchange Rate Target Zones

Using a Limited-Dependent Rational Expectations Model with Jumps, Journal of Busi-

ness and Economic Statistics 17, 50-66.

[19] Ruge-Murcia, F. J., 2002, Some Implications of the Zero Lower Bound on Interest Rates

for the Term Structure and Monetary Policy, University of Montreal, CRDE Working

Paper 06-2002.

[20] Shonkwiler, J. and G. Maddala, 1985, Modeling Expectations of Bounded Prices: An

Application to the Market for Corn, Review of Economics and Statistics 38, 634-641.

[21] Tobin, J., 1958, Estimation of Relationships for Limited Dependent Variables, Econo-

metrica 26, 24-36.

[22] Wolman, A. L., 1999, Staggered Price Setting and Zero Bound on Nominal Interest

Rates, Federal Reserve Bank of Richmond Quarterly Review 84, 1-24.

[21]






