

Centre Interuniversitaire sur le Risque, les Politiques Économiques et l'Emploi

Learning and the Welfare Implications of Changing Inflation Targets

Safe Haven

Learning and the Welfare Implications of Changing Inflation Targets

Inflation targeting implemented by several central banks around the world

- Inflation targeting implemented by several central banks around the world
- Largely deemed a success

- Inflation targeting implemented by several central banks around the world
- Largely deemed a success
- Nevertheless, should periodically consider some modifications to the policy

What are the welfare benefits of lowering the inflation target of monetary authorities from 2% to 0%?

Start with economy at steady state with $\pi^T = 2\%$ per annum

- Start with economy at steady state with $\pi^T = 2\%$ per annum
- At time *t*, announcement that π^T is now zero.

- Start with economy at steady state with $\pi^T = 2\%$ per annum
- At time t, announcement that π^T is now zero.
- Solve for the transition towards the new steady state

- Start with economy at steady state with $\pi^T = 2\%$ per annum
- At time t, announcement that π^T is now zero.
- Solve for the transition towards the new steady state
- Draw welfare implications

The Tool: New Keynesian Model

Main Tool of Modern Applied Monetary Analysis

The Tool: New Keynesian Model

- Main Tool of Modern Applied Monetary Analysis
- Shown to match reasonably well evidence about the effect of shocks on the economy

The Tool: New Keynesian Model

- Main Tool of Modern Applied Monetary Analysis
- Shown to match reasonably well evidence about the effect of shocks on the economy
- Dynamic Optimization and General Equilibrium under constraint of:
 - Nominal rigidities (price and/or wages)
 - Various adjustment costs
 - Interest rate targeting rule for monetary policy

Differences in indirect utility difficult to interpret: present welfare results on 'consumption equivalent' basis.

- Differences in indirect utility difficult to interpret: present welfare results on 'consumption equivalent' basis.
- What increase in consumption would make agents living in higher-inflation environment just as well as if living with lower inflation?

- Differences in indirect utility difficult to interpret: present welfare results on 'consumption equivalent' basis.
- What increase in consumption would make agents living in higher-inflation environment just as well as if living with lower inflation?
- Comparison between two steady states: find μ such that

$$u\left[(1+\mu)c_1^H, (1+\mu)c_2^H, n^H\right] = u[c_1^L, c_2^L, n^L].$$

- Differences in indirect utility difficult to interpret: present welfare results on 'consumption equivalent' basis.
- What increase in consumption would make agents living in higher-inflation environment just as well as if living with lower inflation?
- Comparison between two steady states: find μ such that

$$u\left[(1+\mu)c_1^H, (1+\mu)c_2^H, n^H\right] = u[c_1^L, c_2^L, n^L].$$

Accounting for transition towards new, low-inflation steady state:

$$u\left[(1+\mu)c_1^H, (1+\mu)c_2^H, n^H\right] = \sum_{t=0}^{\infty} \beta^t u[c_{1t}^L, c_{2t}^L, n_t^L].$$

Taking the transition into account

- Additional capital accumulation
 - The new, low-inflation steady state is characterized by reduced distortion on market activities and thus higher stock of capital
 - This additional capital must be accumulated, at the cost of reduced consumption and leisure

Taking the transition into account

- Additional capital accumulation
 - The new, low-inflation steady state is characterized by reduced distortion on market activities and thus higher stock of capital
 - This additional capital must be accumulated, at the cost of reduced consumption and leisure
- Credibility of the shift
 - The inflation target shift may not be immediately be credible and incorporated fully into private agents' expectations: this may delay convergence towards new steady state
 - Implement this idea by assuming private agents update beliefs about the inflation target using Bayesian learning
 - Calibrate such learning effects to match facts about recent disinflation episodes

When comparing two steady states, welfare benefits of lowering inflation from 2% to 0 are significant: in benchmark model, equivalent to around 0,26% in consumption terms.

- When comparing two steady states, welfare benefits of lowering inflation from 2% to 0 are significant: in benchmark model, equivalent to around 0,26% in consumption terms.
- Accounting for transition towards the new, low-inflation steady-state greatly reduces the computed benefits, by a factor of around 65%.

Results

- When comparing two steady states, welfare benefits of lowering inflation from 2% to 0 are significant: in benchmark model, equivalent to around 0,26% in consumption terms.
- Accounting for transition towards the new, low-inflation steady-state greatly reduces the computed benefits, by a factor of around 65%.
- Even when learning is rapid, welfare benefits significantly reduced (by one half) relative to comparison between steady states;

Results

- When comparing two steady states, welfare benefits of lowering inflation from 2% to 0 are significant: in benchmark model, equivalent to around 0,26% in consumption terms.
- Accounting for transition towards the new, low-inflation steady-state greatly reduces the computed benefits, by a factor of around 65%.
- Even when learning is rapid, welfare benefits significantly reduced (by one half) relative to comparison between steady states;
- Results appear robust to parametrization of model; likely to be robust to alternative modeling choices

Results

- When comparing two steady states, welfare benefits of lowering inflation from 2% to 0 are significant: in benchmark model, equivalent to around 0,26% in consumption terms.
- Accounting for transition towards the new, low-inflation steady-state greatly reduces the computed benefits, by a factor of around 65%.
- Even when learning is rapid, welfare benefits significantly reduced (by one half) relative to comparison between steady states;
- Results appear robust to parametrization of model; likely to be robust to alternative modeling choices
- key message: welfare benefits of lowering inflation are significantly lower (at least by half) than they appear from comparisons between steady states

- Literature
- The model

- The model
- Learning about monetary policy

- The model
- Learning about monetary policy
- Experiment and results

- The model
- Learning about monetary policy
- Experiment and results
- Discussion and possible extensions

Bailey (1956): welfare benefits of lower inflation computed as the area under the money demand curve

- Bailey (1956): welfare benefits of lower inflation computed as the area under the money demand curve
- Cooley and Hansen (1989,1991), Gomme (1993), Dotsey and Ireland (1996), Wu and Zhang (1998, 2000): quantitative monetary models but often limited to steady-state comparisons

- Bailey (1956): welfare benefits of lower inflation computed as the area under the money demand curve
- Cooley and Hansen (1989,1991), Gomme (1993), Dotsey and Ireland (1996), Wu and Zhang (1998, 2000): quantitative monetary models but often limited to steady-state comparisons
- Present paper
 - The New Keynesian model is the tool of analysis
 - Computations take the transition into account
 - Learning behaviour is incorporated (Erceg and Levin, 2003, Andolfatto and Gomme, 2003, Shorfheide, 2005)

Infinitely lived, representative household maximizing lifetime utility under cash-in-advance constraint

- Infinitely lived, representative household maximizing lifetime utility under cash-in-advance constraint
- Continuum of final good producers operating in perfect competition

- Infinitely lived, representative household maximizing lifetime utility under cash-in-advance constraint
- Continuum of final good producers operating in perfect competition
- Continuum of intermediate-good producers operating in monopolistic competition, 'sticky' changes in nominal prices (à la Calvo, 1983)

- Infinitely lived, representative household maximizing lifetime utility under cash-in-advance constraint
- Continuum of final good producers operating in perfect competition
- Continuum of intermediate-good producers operating in monopolistic competition, 'sticky' changes in nominal prices (à la Calvo, 1983)
- Monetary Policy Rule followed by monetary authorities (with incomplete information and learning)

- Infinitely lived, representative household maximizing lifetime utility under cash-in-advance constraint
- Continuum of final good producers operating in perfect competition
- Continuum of intermediate-good producers operating in monopolistic competition, 'sticky' changes in nominal prices (à la Calvo, 1983)
- Monetary Policy Rule followed by monetary authorities (with incomplete information and learning)
- Closed Economy, superneutrality, homogenous impact of monetary policy

Optimization problem:

$$\max_{c_{1t}, c_{2t}, M_{t+1}, h_t, k_{t+1}, B_t} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{1t}, c_{2t}, h_t),$$

with respect to

$$c_{1t} + \frac{B_{t+1}}{P_t} \le \frac{M_t + X_t + R_{t-1}B_t}{P_t}$$

$$\frac{M_{t+1}}{P_t} + c_{2t} + i_t \leq (1 - \tau_k) r_t k_t + (1 - \tau_n) \frac{W_t}{P_t} n_t + D_t + \Gamma_t + \delta \tau_k k_t + \left[\frac{M_t^c + X_t + R_{t-1} B_t - B_{t+1}}{P_t} - c_{1t}\right]$$

 $k_{t+1} = (1 - \delta)k_t + i_t - F(i_t, i_{t-1}),$ (CEE, 2005)

Monetary Distortion

Cash-in-advance constraint: any income earned today can only be transformed into consumption tomorrow

Monetary Distortion

- Cash-in-advance constraint: any income earned today can only be transformed into consumption tomorrow
- Meanwhile, inflation reduces the purchasing power of that income

Monetary Distortion

- Cash-in-advance constraint: any income earned today can only be transformed into consumption tomorrow
- Meanwhile, inflation reduces the purchasing power of that income
- Result: households substitute out of market goods (consumption) and into non-market goods (leisure)

Representative Final Good Producer

Profit maximization

$$\max_{\{y_{jt}\}} \left[P_t Y_t - \int_0^1 p_{jt} y_{jt} \, \mathrm{d}j \right], \text{ with respect to}$$
$$Y_t = \left(\int_0^1 y_{jt}^{\frac{\theta-1}{\theta}} \, \mathrm{d}j \right)^{\frac{\theta}{\theta-1}}, \ \theta > 1.$$

Representative Final Good Producer

Profit maximization

$$\max_{\{y_{jt}\}} \left[P_t Y_t - \int_0^1 p_{jt} y_{jt} \, \mathrm{d}j \right], \text{ with respect to}$$
$$Y_t = \left(\int_0^1 y_{jt}^{\frac{\theta-1}{\theta}} \, \mathrm{d}j \right)^{\frac{\theta}{\theta-1}}, \ \theta > 1.$$

First-order condition:

$$y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\theta} Y_t.$$

Representative Final Good Producer

Profit maximization

$$\max_{\{y_{jt}\}} \left[P_t Y_t - \int_0^1 p_{jt} y_{jt} \, \mathrm{d}j \right], \text{ with respect to}$$

$$Y_t = \left(\int_0^1 y_{jt}^{\frac{\theta-1}{\theta}} \,\mathrm{d}j\right)^{\theta-1}, \ \theta > 1.$$

First-order condition:

$$y_{jt} = \left(\frac{p_{jt}}{P_t}\right)^{-\theta} Y_t.$$

 $\blacksquare \text{ No Profit Condition} \rightarrow$

$$P_t = \left(\int_0^1 p_{jt}^{1-\theta} \,\mathrm{d}j\right)^{\frac{1}{1-\theta}}$$

Intermediate Good Producers

• ϕ : prob. of not receiving price-reoptimization signal (Calvo, 1983)

Intermediate Good Producers

- ϕ : prob. of not receiving price-reoptimization signal (Calvo, 1983)
- Firms not reoptimizing index their price to π_{t-1} , last period's rate of aggregate price inflation (CEE, 2005)

Intermediate Good Producers

- ϕ : prob. of not receiving price-reoptimization signal (Calvo, 1983)
- Firms not reoptimizing index their price to π_{t-1} , last period's rate of aggregate price inflation (CEE, 2005)
- Profit Maximization:

$$\max_{\{\tilde{p}_{jt}\}} E_0 \left[\sum_{k=0}^{\infty} (\beta \phi)^k \lambda_{t+k} \cdot \left(\frac{\widetilde{p}_{jt+k} y_{jt+k}}{P_{t+k}} - TC_{t+k} \right) \right], \text{ with respect to}$$
$$k_{jt+k}^{\alpha} h_{jt+k}^{1-\alpha} \ge y_{jt+k} = \left(\frac{\widetilde{p}_{jt+k}}{P_{t+k}} \right)^{-\theta} Y_{t+k};$$
$$\widetilde{p}_{jt+k} = \prod_{s=0}^{k-1} \pi_{t+s} \widetilde{p}_{jt}.$$

'New Keynesian' Phillips curve

First order condition for price decisions lead to following, optimization-based Phillips curve:

$$\widehat{\pi}_t = \frac{\beta}{1+\beta}\widehat{\pi}_{t+1} + \frac{1}{(1+\beta)}\widehat{\pi}_{t-1} + \frac{(1-\phi)(1-\beta\phi)}{\phi(1+\beta)}\widehat{mc}_t;$$

'New Keynesian' Phillips curve

First order condition for price decisions lead to following, optimization-based Phillips curve:

$$\widehat{\pi}_t = \frac{\beta}{1+\beta}\widehat{\pi}_{t+1} + \frac{1}{(1+\beta)}\widehat{\pi}_{t-1} + \frac{(1-\phi)(1-\beta\phi)}{\phi(1+\beta)}\widehat{mc}_t;$$

Alternatives forms/extensions: 'indexation' parameter (Smets and Wouters, 2003), similar structure for wage indexation (Erceg et al, 2000)

Interest rate targeting rule:

$$i_{t} = (1 - \rho)[r^{ss} + \pi^{T} + \lambda_{\pi}(\pi_{t} - \pi^{T}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + u_{t}$$

Interest rate targeting rule:

$$i_{t} = (1 - \rho)[r^{ss} + \pi^{T} + \lambda_{\pi}(\pi_{t} - \pi^{T}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + u_{t}$$

• u_t : transitory monetary policy shock

Interest rate targeting rule:

$$i_{t} = (1 - \rho)[r^{ss} + \pi^{T} + \lambda_{\pi}(\pi_{t} - \pi^{T}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + u_{t}$$

- *u_t*: transitory monetary policy shock
- π^T : inflation target of monetary authority.

Interest rate targeting rule:

$$i_{t} = (1 - \rho)[r^{ss} + \pi^{T} + \lambda_{\pi}(\pi_{t} - \pi^{T}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + u_{t}$$

- *u_t*: transitory monetary policy shock
- π^T : inflation target of monetary authority.
- At time t, π^T is reduced from π^H to π^L . After the shift, the rule is $i_t = (1 - \rho)[r^{ss} + \pi^L + \lambda_\pi(\pi_t - \pi^L) + \lambda_y \hat{y}_t] + \rho i_{t-1} + u_t$

Take the point of view of a private agent who initially views $\pi^T = \pi^H$

- Take the point of view of a private agent who initially views $\pi^T = \pi^H$
- In this perspective, the shift adds additional component to monetary policy shocks:

$$i_{t} = (1-\rho)[r^{ss} + \pi^{H} + \lambda_{\pi}(\pi_{t} - \pi^{H}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + \underbrace{(1-\rho)(1-\lambda_{\pi})(\pi^{L} - \pi^{H}) + u_{t}}_{u_{t}^{*}}$$

- Take the point of view of a private agent who initially views $\pi^T = \pi^H$
- In this perspective, the shift adds additional component to monetary policy shocks:

$$i_{t} = (1-\rho)[r^{ss} + \pi^{H} + \lambda_{\pi}(\pi_{t} - \pi^{H}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + \underbrace{(1-\rho)(1-\lambda_{\pi})(\pi^{L} - \pi^{H}) + u_{t}}_{u_{t}^{*}}$$

Signal extraction problem is similar to learning about the mean of u_t^* . Starting from an initial level m_0 , beliefs about this mean evolve according to

$$m_{t+k} = \frac{v}{v+k}m_0 + \frac{k}{v+k}\overline{u_t^*}$$

- Take the point of view of a private agent who initially views $\pi^T = \pi^H$
- In this perspective, the shift adds additional component to monetary policy shocks:

$$i_{t} = (1-\rho)[r^{ss} + \pi^{H} + \lambda_{\pi}(\pi_{t} - \pi^{H}) + \lambda_{y}\widehat{y}_{t}] + \rho i_{t-1} + \underbrace{(1-\rho)(1-\lambda_{\pi})(\pi^{L} - \pi^{H}) + u_{t}}_{u_{t}^{*}}$$

Signal extraction problem is similar to learning about the mean of u_t^* . Starting from an initial level m_0 , beliefs about this mean evolve according to

$$m_{t+k} = \frac{v}{v+k}m_0 + \frac{k}{v+k}\overline{u_t^*}$$

parameter v: confidence in initial belief; governs 'learning speed'.

 → calibrated to match features of disinflation episodes (Erceg and Levin, 2003)

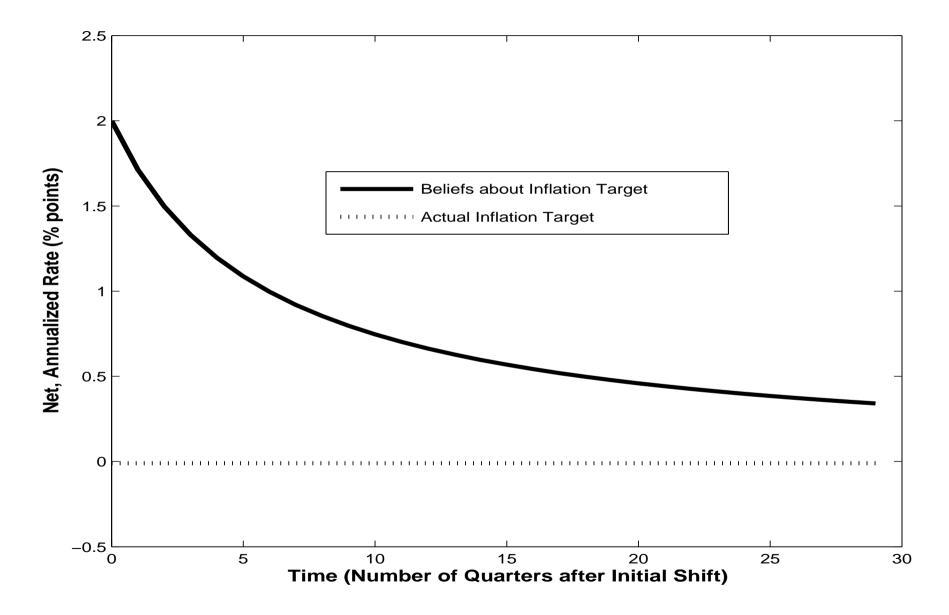
Households, final-good producer, intermediate-good producers optimize

- Households, final-good producer, intermediate-good producers optimize
- Monetary policy rule respected

- Households, final-good producer, intermediate-good producers optimize
- Monetary policy rule respected
- Markets clear (labour, money, final goods, bonds)

Model period is one quarter

- Model period is one quarter
- Preferences and technology: standard. This leads to $\beta = 0.989$, $\delta = 0.022$, $\alpha = 0.4$, $\phi = 0.6$, $\theta = 6$.



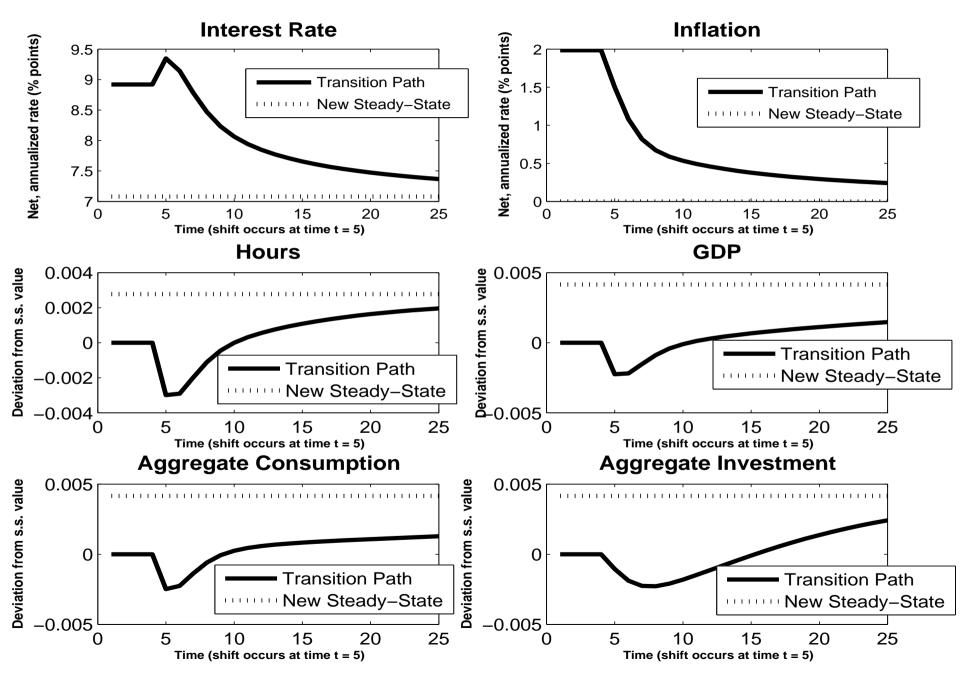
- Model period is one quarter
- Preferences and technology: standard. This leads to $\beta = 0.989$, $\delta = 0.022$, $\alpha = 0.4$, $\phi = 0.6$, $\theta = 6$.
- Monetary Policy: empirical estimates. This leads to $\lambda_{\pi} = 2.0$, $\lambda_{y} = 0.25$, $\rho = 0.5$.

- Model period is one quarter
- Preferences and technology: standard. This leads to $\beta = 0.989$, $\delta = 0.022$, $\alpha = 0.4$, $\phi = 0.6$, $\theta = 6$.
- Monetary Policy: empirical estimates. This leads to $\lambda_{\pi} = 2.0$, $\lambda_{y} = 0.25$, $\rho = 0.5$.
- Confidence in prior about inflation target: Empirical estimates (Erceg and Levin, 2003) about closing gap between expected and actual inflation. This leads to v = 4 so that half the gap is closed within four quarters.

Learning Mechanism in Practice

Start from non-stochastic steady state with $\pi^T = 2$ percent per annum

- Start from non-stochastic steady state with $\pi^T = 2$ percent per annum
- Announcement that target is now $\pi^T = 0$



- Start from non-stochastic steady state with $\pi^T = 2$ percent per annum
- Announcement that target is now $\pi^T = 0$
- Solve for transition towards new, low-inflation steady state with first-order linear approximation method (King and Watson, 2002); no other shocks

Experiment

- Start from non-stochastic steady state with $\pi^T = 2$ percent per annum
- Announcement that target is now $\pi^T = 0$
- Solve for transition towards new, low-inflation steady state with first-order linear approximation method (King and Watson, 2002); no other shocks
- Draw welfare implications (keep 5000 periods)

Responses of the Economy

Benchmark Results

Table 1. Welfare Benefits of Reducing Inflation from Two Percent to Zero

	Steady-State Comparison	Complete Information Transition	Bayesian Transition
Consumption Equivalent μ	0.26%	0.13%	0.09%
 as a fraction of steady- state comparison 		0.499	0.353

Sensitivity Analysis

Specification	Steady-State Comparison	Complete Information Transition	Bayesian Transition		
Benchmark Case	0.26%	49.9%	35.3%		
Panel A: Modifications to the Monetary Policy Rule					
Higher inflation response ($\lambda_{\pi} = 2.5$)	0.26%	49.7%	33.4%		
Lower inflation response ($\lambda_{\pi} = 1.5$)	0.26%	50.4%	38.3%		
Higher smoothing ($\rho = 0.75$)	0.26%	47.2%	30.7%		
No smoothing ($\rho = 0.0$)	0.26%	51.2%	41.3%		
Higher output response ($\lambda_y = 0.5$)	0.26%	49.8%	35.7%		
No output response ($\lambda_y = 0$)	0.26%	50.6%	37.9%		
Higher confidence ($v_1 = 8$)	0.26%	49.9%	27.2%		

Sensitivity Analysis: II

Specification	Steady-State Comparison	Complete Information Transition	Bayesian Transition		
Benchmark Case	0.26%	49.9%	35.3%		
Panel B: Alternative Modeling Choices					
Investment and wage income in cash-in-advance constraint	0.54%	33.2%	23.5%		
Habit formation in consumption	0.47%	21.3%	17.7%		
Partial wage indexation	0.47%	19.0%	15.0%		

The paper computes the welfare implications of lowering the inflation target from 2% to 0%, using a standard version of the New Keynesian Model

- The paper computes the welfare implications of lowering the inflation target from 2% to 0%, using a standard version of the New Keynesian Model
- It reports that although the welfare benefits of the shift appear significant in comparisons between two-steady states, the benefits are greatly reduced, at least by half and up to 85%, when the transition towards the new, low inflation steady state is taken into account

- The paper computes the welfare implications of lowering the inflation target from 2% to 0%, using a standard version of the New Keynesian Model
- It reports that although the welfare benefits of the shift appear significant in comparisons between two-steady states, the benefits are greatly reduced, at least by half and up to 85%, when the transition towards the new, low inflation steady state is taken into account
- This conclusion is likely to be robust to several modeling choices; in cases where only the comparison between steady states is available, prudent to significantly discount computed welfare benefits

Elements of open-economy analysis

- Elements of open-economy analysis
- Growth effects from lower inflation

- Elements of open-economy analysis
- Growth effects from lower inflation
- Combine with model that includes second-order effects of monetary policy on economy (stochastic transition to new steady state)

Books by Carl Hiassen

- Sick Puppy
 - Skinny Dip
 - Basket Case
 - Lucky You
 - Stormy Weather