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Montréal (Québec) H3C 3J7, Canada. E-mail: francisco.ruge-murcia@umontreal.ca



1 Introduction

This paper constructs a Limited-Dependent Rational-Expectations (LD-RE) model to ex-

amine the time series implications of the non-negativity constraint on interest rates for the

term structure and monetary policy in Canada. Nominal interest rates are bounded below

by zero because agents would rather hoard the currency themselves rather than lend it at a

loss (Fisher, 1896). Wolman (1999) and McCallum (2000) formalize this idea in terms of fa-

miliar optimization models where money enters the utility function or reduces the time/cost

involved in making transactions. In this case, the interest rate is strictly positive if the

marginal benefit of holding real money balances is strictly positive, and can be zero only if

there is a quantity beyond which additional real money balances provide no extra services.

Hence, the values that the nominal interest rate can take are limited to the interval [0,∞).
This paper models econometrically the lower bound on interest rates by treating the

short-term interest rate as a limited-dependent variable and then derives the time-series im-

plications of this bound for long-term interest rates under the Pure Expectations Hypothesis

(PEH) of the term structure. Limited dependency is a device that forces agents to consider

explicitly the zero lower bound when constructing their forecasts, even if all observations of

the nominal interest rate to date are strictly positive.1 Closed-form analytical results are

obtained for the simpler case of a two-period bond and normally distributed disturbances.

Numerical results, using a frequency simulator to compute the forecasts of the nonlinear

model, are obtained for longer maturities under more general distributional assumptions.

The main implications of the nonnegativity constraint are the following. First, the zero

lower bound induces a nonlinear and convex relation between the long-term interest rate

and the level and standard deviation of the short-term interest rate. Second, the response

of long-term interest rates to changes in the short-term rate is asymmetric. A decrease in

the short-term rate produces a smaller response (in absolute value) in the long-term rate

than an increase of the same magnitude. Third, the response of long-term rates to changes

in the short-term rate (whether an increase or a decrease) is smaller in the neighborhood of

the zero lower bound, specially for longer maturities. All these results, coupled with the

observation that when the short-term interest rate is low, the scope for further interest rate

cuts is limited by the zero lower bound, imply that the power of monetary policy to affect

long-term interest rates through the term structure is considerably reduced at low interest

rates. The magnitude of the effects just described diminishes as the short-term interest rate

1LD-RE models have been employed previously by Shonkwiler and Maddala (1985) and Holt and Johnson
(1989) to study the determination of commodity prices in price-support schemes, by Baxter (1990) to study
adjustable-peg exchange rate regimes, and by Pesaran and Samiei (1992, 1995) and Pesaran and Ruge-Murcia
(1999) to study exchange rates subject to two-sided limits.

[1]



rises above zero and it is negligible when the short-term rate is at a safe distance from the

nonnegativity constraint.

Previous research by Ruge-Murcia (2002) examines Japanese data and finds nonlinear

and asymmetric effects in line with the LD-RE model. In addition, the nonlinear LD-RE

model delivers smaller forecasts errors than a benchmark linear model, both in-sample and

out-of-sample. Since nominal interest rates are at historically low levels in Canada, it is

of practical interest to examine whether the implications of the zero lower bound outlined

above are also empirically relevant for the recent Canadian experience. However, as we will

see below, at current short-term interest rates, the predictions of the LD-RE model coincide

with those of linear forecasting model that ignores the effect of the zero lower bound on

expectations. This observation supports the conclusion that although Canadian interest

rates are low by historical standards, they are sufficiently high above the zero lower bound

that the predictions of the LD-RE model are not verified.

The paper is organized as follows: Section 2 introduces a simple time-series process for the

one-period bond that describes the fact that interest rates are bounded below by zero, derives

the implications of the nonlinear model for a two-period bond when shocks are normally

distributed, and outlines a frequency simulator to compute the conditional expectations of

the nonlinear process in more general cases; Section 3 examines the empirical predictions of

the model using data from Canada; and Section 4 concludes.

2 The LD-RE Model of the Term Structure

This section presents a time-series model for the one-period nominal interest rate that cap-

tures the idea that nominal interest rates are bounded below by zero, and then derives the

implications of the zero lower bound for longer-term maturities using the Pure Expectations

Hypothesis (PEH) of the term structure.2

The model for the one-period nominal interest rate is based on Fisher Black’s interpre-

tation of currency and interest rates as options (Black, 1995). Black argues that currency

is an option in the sense that were the bond return negative, agents could hold currency

instead. This means that the observed nominal interest rate, rt, may be interpreted as an

option on r∗t with a strike price of zero, where r
∗
t is what the interest rate would be in the

absence of the currency option. The latter is the “shadow” interest rate and may be positive

or negative. The observed and shadow interest rates are related by

rt = max(r
∗
t , 0), (1)

2This Section draws on my previous article, Ruge-Murcia (2002).
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where rt and r
∗
t are the one-period observed and shadow nominal interest rates, respectively.

Equation (1) can be written as

rt =

½
r∗t , if r∗t > 0,
0, otherwise,

(2)

that corresponds to the familiar formulation of a limited-dependent variable censored at zero,

with r∗t the associated latent variable.
3

By the Pure Expectations Hypothesis (PEH) of the term structure of interest rates, the

nominal return on a n-period zero-coupon bond must equal the average expected return on

the sequence of n one-period bonds held over its lifetime,

R
(n)
t = (1/n) [rt +E(rt+1|It) + · · ·+E(rt+n−1|It)] + θt, (3)

where R
(n)
t is the nominal return on the n-period bond, It is the nondecreasing set of infor-

mation available to market participants at time t and is assumed to include observations of

the variables up to and including period t, E(rt+s|It) is the conditional expectation of the
nominal return on the one-period bond acquired at time t+s for s = 1, . . . , n−1, and θt is a

serially uncorrelated stochastic term that includes a liquidity premium and has variance σ2θ .

In order to give empirical content to the theory, let us specify the following process for

the shadow nominal interest rate:

r∗t = α+ ψ(L)rt + βxt + ²t, (4)

where α is a constant intercept, L is the lag operator, ψ(L) represents the polynomial
pP
j=1

ψjL
j, β is a 1 ×m vector of parameters, xt is a m × 1 vector of explanatory variables,

and ²t is a disturbance term with zero mean and variance σ2² , serially uncorrelated, and

uncorrelated with θt. Wolman (1999) considers a deterministic version of (2)-(4) where r
∗
t

is the central bank’s desired short-term nominal interest rate and arises from a Taylor-type

policy rule.

The explanatory variables in xt may be generated by the linear stochastic process

xt = AHt−1 +w1,t, (5)

where A is a m × b matrix of coefficients, Ht is a b × 1 vector of predetermined variables
possibly including past values of xt, and w1,t is a m × 1 vector of random disturbances

3There are at least two models in the literature that also address explicitly the non-negativity constraint
on nominal interest rates. Cox, Ingersoll, and Ross (1985) construct a continuous-time model where the
volatility of the short-term interest rate is proportional to the square root of its level. Other authors specify
the process of the short-term interest rate in logarithms. In this case, the log function imposes directly the
non-negativity constraint.
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assumed independently and identically distributed (i.i.d.) (0,Ω1/2) and uncorrelated with θt

and ²t.

The following Proposition derives the conditional expectations of the short-term interest

rate when rt is subject to the nonnegativity constraint

Proposition 1. Assume that the short-term interest rate follows the limited-dependent

process (2) where r∗t is determined according to (4). Assume that the explanatory variables,

xt, follow the process (5). Define the composite error term

us,t+s = ²t+s +
s−1X
k=1

ψs−kµk,t+k + βws,t+s, (6)

where µk,t+k = rt+k−E(rt+k|It) and ws,t+s = xt+s−E(xt+s|It), with cumulative distribution
and density functions denoted by Fs(·) and fs(·), respectively. Define the variable

ct+s = −E(r∗t+s|It), (7)

where

E(r∗t+s|It) = α+

min{p,s−1}X
k=1

ψkE(rt+s−k|It) +
pX
j=s

ψjL
jrt+s + βE(xt+s|It). (8)

Then, the conditional expectation of the short-term nominal interest rate at time t+ s con-

structed at time t is given by

E(rt+s|It) =
£
E(r∗t+s|It) +E(us,t+s|It, us,t+s > ct+s)

¤
[1− Fs(ct+s)] . (9)

Proof. Use the definitions of us,t+s and ct+s to write the process of the short-term rate at

time t+ s as

rt+s =

½
E(r∗t+s|It) + us,t+s, if us,t+s > ct+s,
0, otherwise.

Then, the conditional expectation of rt+s is the weighted average

E(rt+s|It) = E(rt+s|It, us,t+s > ct+s) Pr(us,t+s > ct+s),
+E(rt+s|It, us,t+s ≤ ct+s) Pr(us,t+s ≤ ct+s).

(10)

Note that E(rt+s|It, us,t+s ≤ ct+s) = 0. Since the forecast E(r∗t+s|It) is known at time t,
E(rt+s|It, us,t+s > ct+s) = E(r∗t+s|It)+E(us,t+s|It, us,t+s > ct+s). Plugging these intermediate
results into (10), and using Pr(us,t+s > ct+s) = 1− Fs(ct+s), the conditional expectation of
the short-term rate at time t+ s is

E(rt+s|It) =
£
E(r∗t+s|It) +E(us,t+s|It, us,t+s > ct+s)

¤
[1− Fs(ct+s)] ,

as claimed. ¥
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Although equation (9) is a mathematical description of E(rt+s|It) when rt is subject to
the nonnegativity constraint, the expression is not operational because it is not clear how

to compute E(us,t+s|It, us,t+s > ct+s) and Fs(ct+s) in the general case. Note in (6) that for
horizons s > 1, us,t+s includes interest-rate forecast errors. Due to the nonlinear nature

of rt, these forecast errors do not follow a standard distribution. Unreported simulations

indicate that at low interest rates, the density of the forecast errors depends on the level

of the short-term interest rate, the forecast horizon, and the model parameters. Thus, in

general, it is not possible to write analytically the probability density function of us,t+s, or

closed-form expressions for the terms E(us,t+s|It, us,t+s > ct+s) and Fs(ct+s). In turn, this
means that E(rt+s|It) does not have a closed-form and it is not possible to derive general

analytical results.

In order to address this difficulty, this paper follows a two-pronged approach. First, the

paper focus on the special case of a two-period bond with normally distributed shocks. For

this case, it is possible to write a closed-form expression linking the short- and long-term

interest rates and derive analytically the implications of the zero lower bound. Second, the

paper uses the simulation procedure proposed in Ruge-Murcia (2002) to compute numerically

the conditional forecasts E(rt+s|It) and examine empirically the Canadian term structure.

2.1 A Special Case

Consider the special case where the long-term bond is a two-period bond. The term-structure

relation (3) for the case n = 2 is

R
(2)
t = (1/2) [rt +E(rt+1|It)] + θt, (11)

where R
(2)
t denotes the two-period bond return and the rest of the notation is as previously

defined. In addition, specialize (4) to

r∗t = α+ ψrt−1 + ²t, (12)

where α is a nonnegative intercept, ψ > 0, and the disturbance term, ²t, is assumed to be

serially uncorrelated and normally distributed with zero mean and variance σ2² .

Although this specification is restrictive, it delivers the following closed-form expression

for the conditional expectation, E(rt+1|It).

Proposition 2. Assume that the short-term interest rate follows the limited-dependent pro-

cess (2) where r∗t is determined according to (12). Define the variable ct+1 = −E(r∗t+1|It)/σ² =
−(α+ψrt)/σ². Then, the conditional expectation of the short-term nominal interest rate at
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time t+ 1 constructed at time t is given by

E(rt+1|It) = (α+ ψrt)(1− Φ(ct+1)) + σ²φ(ct+1), (13)

where Φ(·) and φ(·) denote the cumulative and density functions of a standard normal vari-
able, respectively.

Proof. Define the standardized normal variable ξt = ²t/σ² and use the definition of ct+1 to

write the process of the short-term rate at time t+ 1 as

rt+1 =

½
E(r∗t+1|It) + ²t+1, if ξt+1 > ct+1,
0, otherwise.

Write the conditional expectation of rt+1 as the weighted average

E(rt+1|It) = E(rt+1|It, ξt+1 > ct+1) Pr(ξt+1 > ct+1)
+E(rt+1|It, ξt+1 ≤ ct+1) Pr(ξt+1 ≤ ct+1).

Note that E(rt+1|It, ξt+1 ≤ ct+1) = 0. Since the forecast E(r∗t+1|It) = α + ψrt is known at

time t,

E(rt+1|It, ξt+1 > ct+1) = α+ ψrt +E(²t+1|It, ξt+1 > ct+1).

Use results for censored normal variables (for example, Maddala,1983 p. 366) to write

E(²t+1|It, ξt+1 > ct+1) = σ²φ(ct+1)/(1−Φ(ct+1)), where 1−Φ(ct+1) stands for Pr(ξt+1 > ct+1).
With these intermediate results

E(rt+1|It) = (α+ ψrt)(1− Φ(ct+1)) + σ²φ(ct+1),

as claimed. ¥

Equipped with this closed-form for E(rt+1|It), we can proceed to examine the implications
the zero lower bound for the term structure. Substitute (13) into (11) to obtain

R
(2)
t = (1/2)rt + (1/2)[(α+ ψrt)(1− Φ(ct+1)) + σ²φ(ct+1)] + θt. (14)

First, note that the return on the two-period bond is related nonlinearly to the one-period

return. More precisely, the long-term interest rate is convex in rt for any ψ 6= 0. The easiest
way to see this is to take the first and second derivatives of R

(2)
t with respect to rt

∂R
(2)
t /∂rt = 1/2 + (ψ/2)(1− Φ(ct+1)),

∂2R
(2)
t /∂r

2
t = (ψ2/2σ²)φ(ct+1) > 0.

Note that ∂2R
(2)
t /∂r

2
t is nonzero only as a result of the second term in the right-hand side of

(14). Since this term stands for (1/2)E(rt+1|It), it is clear that this nonlinear effect is due
solely to the effect of the zero lower bound on expectations.

[6]



Second, because the relation between R
(2)
t and rt is nonlinear, changes in rt produce

asymmetric movements in the long-term rate. In particular, provided ψ > 0, a decrease in

the short-term rate produces a smaller response (in absolute value) in the long-term rate

than an increase of the same magnitude. That is,

|R(2)t (rt −∆)−R(2)t (rt)| < |R
(2)
t (rt −∆)−R(2)t (rt)|,

where∆ is the change in the short-term interest rate. To verify this claim, use ∂R
(2)
t /∂rt > 0

(that is satisfied for ψ > 0), and the definition of absolute value to write −(R(2)t (rt −∆)−
R
(2)
t (rt)) < R

(2)
t (rt +∆)−R(2)t (rt). Rearranging delivers (R

(2)
t (rt +∆) +R

(2)
t (rt −∆))/2 >

R
(2)
t (rt), that holds because the function R

(2)
t (rt) is convex in its argument.

Third, given the current short-term interest rate, the nonlinear model predicts that the

long-term rate is an increasing and convex function of the conditional standard deviation of

rt. To see this, take the first and second derivative of R
(2)
t with respect to σ² to obtain

∂R
(2)
t /∂σ² = φ(ct+1)/2 > 0,

∂2R
(2)
t /∂σ

2
² = c2t+1φ(ct+1)/2σ² > 0.

Under Black’s interpretation of interest rates as options, this is the result that option pricing

theory would predict.

Fourth, the response of long-term rates to changes in the short-term rate (whether an

increase or a decrease) is smaller in the neighborhood of the zero lower bound than the one

predicted by the standard linear model. For the linear model that ignores the zero lower

bound on interest rates, the counterpart of the process in (2) and (12) is rt = α+ψrt−1+ ²t.

It easy to prove that in this case , E(rt+1|It) = (α+ψrt), R
(2)
t = (1/2)rt+(1/2)(α+ψrt)+θt,

and the derivative of R
(2)
t with respect to rt is ∂R

(2)
t /∂rt = (1 + ψ)/2. Recall that for the

nonlinear model ∂R
(2)
t /∂rt = 1/2 + (ψ/2)(1 − Φ(ct+1)). Hence, this fourth implication is

based on the observation that

1/2 + (ψ/2)(1− Φ(ct+1)) ≤ (1 + ψ)/2.

Thus, at low interest rates the impact of adjustments to the short-term rate on the long-term

rate is dampened by the effect of the nonnegativity constraint.

Notice that the effects just described disappear as the short-term interest rises well above

zero. Then, ct+1 decreases and Φ(ct+1)→ 0. In this case, the standard linear model may be

a good approximation of the time-series behavior of interest rates. This observation holds

not only for the special case in this Section but also for the general case. Notice in (9)

that as rt rises, ct+1 decreases, E(us,t+s|It, us,t+s > ct+s) converges to E(us,t+s|It) = 0 and

[7]



Fs(ct+s) → 0. Then, the conditional forecast E(rt+s|It) tends to the one obtained under
the linear forecasting model that ignores (in this case, correctly) the effect of the zero lower

bound on expectations.

A more subtle point concerns the notion of “distance” between the nominal interest

rate and the zero lower bound. Notice that the appropriate measure of distance involves

a normalization by the (conditional) variance of the interest rate innovation. (See the

definition of ct+1 in Proposition 2). Hence, in considering whether the effects just described

may be empirically relevant, it not sufficient to focus only on the level of the current interest

rate. This is specially true due to the empirical observation that the level and the volatility

of nominal interest rates are positively correlated. Hence, it is entirely possible that one

may find equally large nonlinear effects for interest rates of , say, 1 and 0.1 per cent because

the conditional volatility is larger in the former than in the latter case.

2.2 Computation of the Conditional Expectations

For bonds with maturity longer than two periods, it is not possible to obtain a closed-form

for the conditional expectations. However, given a parametric process for the short-term

interest rate, it is possible to compute numerically the conditional forecasts E(rt+s|It) by
means of stochastic simulation. The procedure outlined below was proposed by Ruge-Murcia

(2002) and it is basically an application of the frequency simulators by Lerman and Manski

(1981) and McFadden (1989) to dynamic nonlinear rational-expectations models.

The simulation procedure involves the following steps.

Step 1: having found analytically or numerically (see below), the one-step-ahead conditional

expectation of the nominal interest rate, E(rt+1|It), use the definitions (8) and (7) for s = 2
to obtain ct+2.

Step 2: simulate M observations of the short-term interest rate at time t + 1 using (2)

and (4). The nonnegativity constraint can be enforced numerically by substituting negative

realization of rt+1 with zeroes. Compute the M realizations of the forecast error, µ1,t+1 =

rt+1 −E(rt+1|It).

Step 3: draw M realizations of ²t+2 and wt+2, and combine them with the µ0s according to

(6) to obtain M realizations of u2,t+2.

Step 4: construct an estimate of F2(ct+2) as the proportion of observations of u2,t+2 that are

larger than ct+2

Fs(ct+s) = (1/M)
MX
j=1

=(u2,t+2 > ct+2), (15)
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where =(·) is an indicator function takes value 1 when its argument is true and 0 other-
wise. Construct an estimate of E(u2,t+2|It, u2,t+2 > ct+2) by taking the arithmetic average
of observations of u2,t+2 that fall above ct+2

E(us,t+s|It, us,t+s > ct+s) = (1/M)
MX
j=1

us,t+s=(u2,t+2 > ct+2). (16)

Step 5: Applying relation (9) for s = 2, delivers E(rt+2|It). Using E(rt+2|It), the procedure
can then be repeated recursively for s = 3, 4, . . . , n− 1.

The one-step-ahead forecast, E(rt+1|It), required to start the recursion can be found
analytically in the special case where ²t is normally distributed. More generally, E(rt+1|It)
could be computed numerically using the same procedure above. In this case, the recursion

would start with rt, rather than with E(rt+1|It), but one would omit Step 2. Step 2 constructs
realizations of the forecast errors and it is not necessary in the case s = 1 because rt −
E(rt|It) = 0.4

This simulator will be employed below to examine the implications of the zero lower

bound for the Canadian term structure and the transmission of monetary policy via this

channel.

3 The Canadian Term Structure

This Section reports preliminary results of the analysis of the Canadian term structure using

the limited-dependent variable model proposed above. The data are 561 observations of

weekly (Wednesday) observations of the one-, three-, six-, and twelve-month nominal interest

rates on Treasury bills between 5 January 1994 and 29 September 2004. The data source

is the Bank of Canada Web Site (www.bank-banque-canada.ca). The sample starts with the

first observation available at the source and it ends with the latest observation available at

the time data was collected. All data series are plotted in Figure 1. Notice that Canadian

interest rates are safely above the zero lower bound for most of the sample, but that since

early 2002 they are at historically low levels. In the period 2 January 2002 to 29 September

2004, the average one-, three-, six-, and twelve-month interest rates are only 2.44, 2.63, 2.86,

and 2.53, respectively. Up to the extent that monetary policy affects long-term interest rates

through the term structure, it is of practical interest to study whether the implications of the

zero lower bound outlined above are empirically relevant for the recent Canadian experience.

4Ruge-Murcia (2002) also discusses the case where ²t is conditionally heteroskedastic, and presents a
kernel-smoothed version of this frequency simulator.
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3.1 The Short-Term Interest Rate

The empirical analysis that follows takes the one-month interest rate as the short-term

interest rate, rt.
5 The process of r∗t is described in terms of past realizations of the short-term

interest rate with the conditional variance of ²t modeled using an ARCH(2) specification.

That is, ²t =
√
htvt, where vt is i.i.d.N(0, 1) and ht = ζ + δ1²

2
t−1 + δ2²

2
t−2.

6 Thus, the

estimated process is:

rt =

½
r∗t , if r∗t > 0,
0, otherwise,

with

r∗t = 0.0068 + 0.977rt−1 − 0.053rt−2 + 0.074rt−3 + ²t,
(0.016) (0.077) (0.145) (0.086)

and

ht = 0.010 + 0.495²2t−1 + 0.397²2t−2.
(0.001) (0.087) (0.090)

In order to examine whether the parsimonious ARCH(2) model captures the volatility

changes in the short-term interest rate, LM tests for neglected ARCH were applied to the

standardized squared residuals of the estimated model. If the ARCH model is correctly

specified, then the residuals corrected for heteroskedasticity and squared should be serially

uncorrelated. Under the null hypothesis of no autocorrelation, the test statistic is distributed

chi-square with degrees of freedom equal to the number of autocorrelations tested for. The

statistics for up to five autocorrelations are 0.67, 1.48, 1.71, 1.85, and 3.66, respectively.

Since all statistics are below the 5 per cent critical value of their appropriate distributions,

the null hypothesis cannot be rejected at the 5 per cent level. These results suggest that

an ARCH(2) process captures adequately the conditional heteroskedasticity in the Canadian

one-month interest rate.

3.2 Predictions for Long-Term Interest Rates

This Section derives the implications of the model for the Canadian term structure taking

as given the estimated process for the short-term interest rate. The focus is on predictions

5The overnight money market rate would be a more natural choice as short-term interest rate for two
reasons. First, it is the shorter maturity available in the market. Second, it is directly under the control of
the Bank of Canada. However, a complete model of the overnight interest rate should also incorporate the
effect of the operating band on the expectations of market participants and the adoption of the Large-Value
Transfer System in February 1999. I plan to undertake this generalization of the model in future work.

6In preliminary work, I also considered using a GARCH(1,1) model for the conditional variance but
results are very similar those reported here.
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regarding the level of the long-term interest rate and the response of the long-term interest

rate to changes in the short-term interest rate. Predictions are derived under the nonlinear

model that takes into account, and the linear model that ignores, the effect of the zero

lower bound on expectations. In the case of the former, the conditional expectations of rt

are computed using the frequency simulator proposed in Section 2.3, and the conditional

variance of ²t is set to its sample median.
7

In interpreting the results and conclusions of this paper, it is useful to remember that the

predictions of the linear and nonlinear models coincide when the current short-term interest

rate is sufficiently high above the zero lower bound. Hence, comparing the predictions of

both models sheds some light on whether the nonlinear effects implied by the LD-RE model

are or are not likely to be empirically relevant at the current Canadian short-term interest

rates. If both models generate exactly the same predictions, then incorporating the effect of

the zero lower bound on expectations does not change the predictions of the linear forecasting

model of the term structure. One must conclude that in this case the current short-term

interest rates are sufficiently far from the nonnegativity constraint on interest rates.

Figure 2 plots the two-, three-, six-, and twelve-month interest rates predicted by the

linear and nonlinear models in Panels A and B, respectively, and their difference in Panel

C.8 The range of the 1-month interest rate in this Figure corresponds roughly to that

observed in Canada in the last four years. Recall that, in the neighborhood of the zero

lower bound, the nonlinear model predicts that long-term rates are nonlinear and convex

in the current short-term rate, and higher than predicted by the linear forecasting model.

Three observations that follow from Figure 2. First, the relation between the predicted

long- and the current short-term rates is well approximated by a straight line. Second, the

two-, three-, and six-month interest rates predicted by both models are identical. Third,

the nonlinear model predicts a higher 12-month interest rate than the linear model but the

difference is quantitatively small.9 In particular, the difference between the nonlinear and

linear models is only 0.04 basis points when the current short-term interest rate is 1.8 per

cent per year and drops to rapidly with rt.

7In preliminary work, I also considered other values for the conditional variance of the innovation. Except
in the cases where the conditional variance of ²t was implausibly high, results are similar to the ones reported
here.

8Since the one-month rate is forecasted using weekly (rather than monthly) realizations of the variable, I
construct the long-term rates by selecting the forecast of rt at the horizons closest to the date the one-month
bond would have been rolled over. For example, for the three-month rate, I use the four-week-ahead and
nine-week-ahead forecasts. Using interpolation yields the same results as reported but it is computationally
more burdensome.

9The difference between both model “wiggles” and appears to be nonmonotonic because the interest rate
predicted by the nonlinear model is obtained using simulation.
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Another dimension in which both forecasting models are similar is in the predicted re-

sponse of the long-term interest rates to a change in the short-term interest rate. Figure 3

plots the responses of the three-, six-, and twelve-month interest rates to an increase and to a

decrease of 25 basis points in the short-term rate under the linear (dotted line) and nonlinear

(continuous line) models. In constructing these responses, the current short-term interest

rate is set to 2 per cent. Recall that for linear models of the term structure, an innovation

to the short-term rate yields movements in the long-term rate that are symmetric, propor-

tional, and history-independent. That is, the impulse-response associated with a shock of

size 1 (standard deviation) would be the mirror image of the response to a shock of size −1,
one-half the response of shock size 2, and independent of the moment the shock is assumed

to take place. In contrast, under the nonlinear LD-RE model, the response of the long-term

rate to an innovation in the short-term rate is asymmetric. This reflects the more general

proposition that in nonlinear systems, impulse responses can vary with the size and sign

of the shock and the initial conditions (see Koop, Pesaran, and Potter, 1996). However,

from Figure 3, it is clear that responses predicted by both model are similar enough as to

be indistinguishable in the plots. Using other plausible values of the current short-term

interest rate and the conditional variance of the innovation does not change this result.

The results above compare the predictions of both models for specific values of the current

level and conditional variance of the short-term interest rate. A more complete strategy

to compare empirically the relative merits of the linear and nonlinear models is to compute

forecasts error statistics. To that effect, I constructed the in-sample and the one-step-

ahead out-of-sample Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)

for the models. The out-of-sample measures are computed for the last 50 observations in the

sample by recursively estimating the model and constructing the forecasts. The linear model

constructs the long-term interest rate using linear forecasts of the one-month interest rate.

The nonlinear models take into account the effect of the zero lower bound on expectations,

but differ on their treatment of the conditional standard deviation of ²t. The nonlinear model

I computes the forecasts of the one-month interest rates using the ARCH(2) estimates of the

conditional standard deviation of ²t. The nonlinear model II fixes the conditional standard

deviation of ²t to its unconditional mean. All statistics are reported in Table 1.

Notice that the nonlinear models deliver smaller in-sample and out-of-sample RMSEs and

MAEs than the linear model for all maturities. However, the gain of using the nonlinear

forecasting model are extremely small in all cases, though it tends to be larger in the case of

longer-term maturities. These results are in line with results above that indicate that there

are only small differences between the linear and nonlinear models at the current short-term

interest rates.
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In summary, all these results suggest that at the current interest rate levels in Canada,

the nonlinear and linear models yield roughly the same predictions regarding the long-term

interest rate and fit the data equally well. Since, both models only coincide when interest

rates are sufficiently high above the zero lower bound, we must conclude that the reason the

predictions of the nonlinear appear not to be verified in the data is that although Canadian

interest rates are at historically low levels, they are still safely above the nonnegativity

constraint.

4 Discussion

This paper was motivated by the observation that Canadian interest rates are at historically

low levels. Up to the extent that monetary policy affects long-term interest rates through

the term structure, it is of practical interest to study whether the implications of the zero

lower bound outlined in Ruge-Murcia (2002) are empirically relevant for the recent Canadian

experience. However, the results reported here indicate that the linear and nonlinear model

generate basically the same predictions and, consequently, there is no significant difference

in terms of forecasting power. In order to understand this finding it is helpful to remember

that the predictions of both models coincide only when the current short-term interest rate is

sufficiently high above the zero lower bound. Since incorporating the effect of the zero lower

bound on expectations does not change the predictions of the linear forecasting model, one

must conclude that current Canadian short-term interest rates are sufficiently high above

the nonnegativity constraint that the predictions of the LD-RE model are not verified.
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Table 1. Comparison of Linear and Nonlinear Forecasting Models

Maturity Model
Nonlinear Nonlinear

Linear I II

A. In-Sample RMSE
3 Months 55.073 55.067 55.069
6 Months 88.058 88.007 87.917
12 Months 32.477 32.179 32.172

B. In-Sample MAE
3 Months 41.510 41.506 41.503
6 Months 69.119 69.072 68.935
12 Months 23.568 23.364 23.404

C. Out-of-Sample RMSE
3 Months 21.661 21.660 21.568
6 Months 45.265 45.075 44.169
12 Months 15.468 14.728 14.435

D. Out-of-Sample MAE
3 Months 17.314 17.314 17.249
6 Months 35.123 34.993 34.418
12 Months 13.699 12.420 11.846

Notes: This Table reports RMSE and MAE in basis points. The linear model forecasts the

one-month interest rate linearly. The nonlinear model I takes into account the effect of the

zero lower bound and the conditional standard deviation of ²t. The nonlinear model II takes

into account the effect of the zero lower bound but fixes the conditional standard deviation

of ²t to its unconditional mean.
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Fig. 1: Canadian Nominal Interest Rates






