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Abstract

This paper develops a rich class of discrete-time, nonlinear dynamic term structure models
(DTSMs). Under the risk-neutral measure, the distribution of the state vector Xt resides
within a family of discrete-time affine processes that nests the exact discrete-time counter-
parts of the entire class of continuous-time models in Duffie and Kan (1996) and Dai and
Singleton (2000). Moreover, we allow the market price of risk Λt, linking the risk-neutral
and historical distributions of X, to depend generally on the state Xt. The conditional
likelihood functions for coupon bond yields for the resulting nonlinear models under the
historical measure are known exactly in closed form. As an illustration of our approach, we
estimate a three factor model with a cubic term in the drift of the stochastic volatility factor
and compare it to a model with a linear drift. Our results show that inclusion of a cubic
term in the drift significantly improves the models statistical fit as well as its out-of-sample
forecasting performance.



1 Introduction

This paper develops a rich class of discrete-time, nonlinear dynamic term structure models
(DTSMs) in which zero-coupon bond yields and their conditional densities are known exactly
in closed form.1 Under the risk-neutral measure, the distribution of the state vector Xt

resides within a family of discrete-time affine processes that nests the exact discrete-time
counterparts of the entire class of continuous-time models in Duffie and Kan (1996) and
Dai and Singleton (2000).2 Moreover, we allow the market price of risk Λt, linking the
risk-neutral (Q) and historical (P) distributions of X, to depend generally on the state
Xt, requiring only that this dependence rules out arbitrage opportunities and that the P

distribution of X satisfy certain stationarity/ergodicity conditions needed for econometric
analysis. This flexibility in specifying Λt leads a family of nonlinear DTSMs that nests the
(discrete-time) counterparts to the extant linear models in which the state follows an affine
process under both P and Q.3

Both economic and econometric considerations motivate this analysis. The goodness-of-
fits of DTSMs depend critically on the specification of the market price of risk (see, e.g.,
Duffee (2002), Dai and Singleton (2002), Duarte (2004), and Ahn, Dittmar, and Gallant
(2002)). However, the functional forms of Λt in these studies are quite restrictive – reflecting
a trade-off in continuous-time formulations of DTSMs between generality in pricing and
tractability of estimation. By allowing the researcher almost complete freedom in specifying
the dependence of Λt on the state vector, we facilitate empirical investigation of much richer
specifications of risk premiums than have heretofore been examined empirically.

Furthermore, the development of the exact discrete-time counterparts to the entire family
of affine models examined by Dai and Singleton (2000) (hereafter DS) substantially expands
the family of models within which the macroeconomic underpinnings of the latent risk factors
in DTSMs can be tractably studied empirically. To date, the literature on integrating
DTSMs with dynamic macroeconomic models (e.g., Rudebusch and Wu (2003), Hordahl,
Tristani, and Vestin (2003), Dai and Philippon (2005), and Ang, Dong, and Piazzesi (2005))
has focused exclusively on discrete-time Gaussian DTSMs thereby ruling out a role for either
nonlinearity or time-varying second moments in modeling macroeconomic risks.

With regard to estimation of DTSMs, even when the state vector follows a continuous-
time, affine diffusion under the physical measure, the one-step ahead conditional density
of the state vector is not known in closed form, except for the special cases of Gaussian
(Vasicek (1977)) and independent square-root diffusions (Cox, Ingersoll, and Ross (1985)).
Accordingly, in estimation, the literature has relied on approximations, with varying degrees

1 In particular, our framework allows for nonlinearity in the conditional means of bond yields of the type
examined by Ait-Sahalia (1996), Stanton (1997), Chan, Karolyi, Longstaff, and Sanders (1992), and Duarte
(2004), all in a multi-factor setting.

2Our analysis extends immediately to the case of quadratic-Gaussian models of the type discussed in
Beaglehole and Tenney (1991), Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002). However,
we focus on the affine case.

3In the continuous-time literature, this is a feature of the models examined in Dai and Singleton (2000),
Duffee (2002), and Cheridito, Filipovic, and Kimmel (2003). It is also true of the discrete-time affine term
structure models discussed in Ang and Piazzesi (2003) and Gourieroux, Monfort, and Polimenis (2002).
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of complexity, to the relevant conditional P-densities.4 By shifting to discrete time, we are
able to nest the (discrete-time counterparts to the) entire class of affine DTSMs classified
by DS within a much larger class of nonlinear DTSMs, and at the same time obtain exact
representations of the likelihood functions of bond yields. Therefore, no approximations are
necessary in estimation.

The construction of our family of nonlinear DTSMs proceeds in three steps. First, we
develop N + 1 families of discrete-time affine processes DAQ

M(N), in which M of the N
risk factors drive stochastic volatility (M = 0, . . . , N). Each member of DAQ

M(N) will serve
as an admissible Q representation of the risk factors, analogously to the family AQ

M(N) of
Q-affine models examined in DS. For the M volatility factors, we build upon the analysis
of scalar “autoregressive gamma” processes in Gourieroux and Jasiak (2006) and Darolles,
Gourieroux, and Jasiak (2006) to develop the discrete-time counterpart to the multivariate,
correlated CIR process, Zt in the family DAQ

M(M). This construction is then extended to the
family DAQ

M(N) by introducing an N −M dimensional state process Yt+1 with the property
that, conditional on Xt = (Z ′

t, Y
′
t )

′, it is normally distributed with a conditional variance
that is an affine function of Zt.

Given a Q-affine representation of the risk factors X residing in DAQ
M(N), the pricing of

zero-coupon bonds is straightforward under the additional assumption that the one-period
short-term rate is an affine function of X. Zero-coupon bond prices are exact, exponential-
affine functions of X, just as in the continuous-time counterparts– the AQ

M(N) models–
examined in Duffie and Kan (1996) and DS.5

Second, for each family DAQ
M(N), we specify an associated family of state-price densities

(dP/dQ)D
t+1 linking the P and Q distributions of Xt+1 that has a natural interpretation as

a discrete-time counterpart to the state-price density associated with affine diffusion-based,
continuous-time DTSMs. Moreover, just as in a continuous-time model, we allow the modeler
substantial flexibility in specifying the dependence of the market price of factor risks, Λt, on
Xt. By roaming over admissible choices of Λt, we are effectively ranging across the entire
family of admissible arbitrage-free DTSMs constructed under the assumption that, under Q,
X follows a discrete-time affine process residing in one of the families AQ

M(N).
Importantly, a key difference between our discrete-time construction and the continuous-

time counterpart is that each choice of (dP/dQ)D
t+1, when combined with a known Q-affine

distribution of the state X, leads to a known parametric representation of the P-distribution
of X. Moreover, since bond prices are a known function of X, it follows immediately that
the likelihood functions of data on zero-coupon or coupon bond prices are known exactly in

4These include the direct approximations to the conditional densities explored in Duan and Simonato
(1999), Ait-Sahalia (1999, 2002), and Duffie, Pedersen, and Singleton (2003); the Monte Carlo based ap-
proximations of Pedersen (1995) and Brandt and Santa-Clara (2001)); and the simulation-based method-of-
moments estimators proposed by Duffie and Singleton (1993) and Gallant and Tauchen (1996).

5As with DS’s construction of a canonical model for the family AQ
M (N), our canonical model for DAQ

M (N)
is the maximally flexible Q-representation of the first-order Markov process Xt. Fixing the state space to be
RM

+ × RN−M , Duffie, Filipovic, and Schachermayer (2003) show that DS’s normalizations and constraints
are necessary and sufficient to derive the maximally Q-admissible (i.e., canonical) continuous-time affine
model. Collin-Dufresne, Goldstein, and Jones (2004) discuss an equivalent canonical continuous-time model
based on an invariant transformation of DS’s canonical model.
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closed form. The only restrictions we impose on the choice of Λ(Xt), beyond requiring that
the model not admit arbitrage opportunities, is that it be econometrically identified, and
that the P distribution of X be sufficiently regular for the maximum likelihood estimators
to have well-behaved large-sample distributions. While, in principle, similar flexibility arises
in AQ

M(N) models, researchers have rarely exploited this flexibility in practice because of the
computational complexity arising from an unknown P distribution of X. Our discrete-time
formulation circumvents these computational considerations by delivering an exact likelihood
function under general state-dependence of Λt.

To illustrate our approach, we report estimates of a nonlinear (DAQ
1 (3), Λ) model in

which the P-conditional mean of the volatility factor Zt+1 is nonlinear in Zt. The properties
of this model are compared to those of its nested linear counterpart along several dimensions,
including their within and out-of sample forecasting powers for bond yields. Additionally,
we also report results for a discrete-time counterpart to Duarte (2004)’s SASR1(3) model in
which the square-root of the volatility factor appears in its own drift under P. This is another
interesting application of our framework in that the likelihood function for our discrete-time
model is known in closed form, whereas Duarte had to resort to various approximations in
his estimation strategy.

In what is perhaps the closest precursor to our analysis, Gourieroux, Monfort, and Polime-
nis (2002) developed DTSMs based on the single-factor autoregressive gamma model (the
discrete-time counterpart to a one-factor CIR model), and multi-factor Gaussian models
(the counterparts of AQ

0 (N) models). In terms of coverage of models, our framework extends
their analysis to all of the families of multi-factor models DAQ

M(N), M = 0, 1, . . . , N . Fur-
thermore, Gourieroux, et. al. assumed that the market price of risk Λ is constant and, as
such, they focused on the “completely” affine versions of the DAQ

1 (1) and DAQ
0 (N) models.

A major focus of our analysis is on the specification and estimation of discrete-time affine
DTSMs that allow general dependence of Λt on Xt.

The families of models DAQ
M(N), M = 0, . . . , N , are not the only well-defined discrete-

time affine DTSMs. Gourieroux, Monfort, and Polimenis (2002) discuss a variety of other
examples that are outside the purview of our analysis (because their continuous-time coun-
terparts do not reside in one of the families AQ

M(N)). Moreover, Ang and Piazzesi (2003) and
Gourieroux, Monfort, and Polimenis (2002) illustrate (in the context of DAQ

0 (N) models)
the fact that discrete-time affine DTSMs can be extended to include lagged values of the
state. All of our representations of the Q distributions of X can similarly be extended to
higher-order Markov processes, though we choose to focus on the case of first-order Markov
processes for ease of exposition.

In our concluding Section 7 we address the potentially important extension of our model-
ing framework to the case of multiple regimes. Numerous studies have presented descriptive
evidence supporting multiple regimes in interest rates (e.g., Gray (1996) and Ang and Bekaert
(2002)), and recently Naik and Lee (1997), Evans (2000), Boudoukh, Richardson, Smith, and
Whitelaw (1999), Bansal and Zhou (2002), Ang and Bekaert (2005), and Dai, Singleton, and
Yang (2005), among others, have introduced regime switching into DTSMs. We briefly com-
ment on how our modeling framework for nonlinear (DAQ

M(N), Λ) models can be extended
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to the case of multiple regimes in the presence of stochastic volatility.

2 Canonical Discrete-Time Affine Processes

Following Duffie, Filipovic, and Schachermayer (2003), we will refer to a Markov process
X as affine if the conditional Laplace transforms of Xt+1 given Xt is an exponential-affine
function of Xt:

6 under a probability measure Q, for an N × 1 state vector X,

φQ(u; Xt) = EQ
[

eu′Xt+1

∣

∣

∣
Xt

]

= ea(u)+b(u)Xt. (1)

Paralleling DS, we focus (by choice of the N × 1 vector a(u) and N × N matrix b(u)) on
the particular sub-families of discrete-time affine models DAQ

M(N) that are formally the
exact discrete-time counterparts to their families AQ

M(N). The members of DAQ
M(N) are

well-defined affine models in their own right, and also have (by construction) the property
that, as the sampling interval of the data shrinks to zero, they converge to members of the
continuous-time family AQ

M(N).
Throughout this paper, we assume that the state vector Xt is affine under the risk-neutral

measure Q, in the sense just described. Hence equation (1) constitutes a basic distributional
assumption of our model. In the rest of this section, we make explicit the functional forms
of a(·) and b(·) that define the Q-affine families DAQ

M(N), M = 0, . . . , N .

2.1 DAQ
0 (N)

The DAQ
0 (N) process is an N × 1 vector Y that follows a Gaussian vector autoregression:

conditional on Yt, Yt+1 is normally distributed with conditional mean µ0 + µY Yt, and con-
ditional covariance matrix V . The conditional Laplace transform of Y is given by (1) with

a(u) = µ′
0u +

1

2
u′V u, b(u) = u′µY . (2)

To derive the continuous-time counterpart of this family, let ∆t be the length of the
observation interval, and let µ0 = κQθQ∆t, µY = IN×N − κQ∆t, and V = σσ′∆t, where
κQ and σ are N × N matrices and θQ is a N × 1 vector. Then in the limit ∆t → 0,
the process DAQ

0 (N) converges to the continuous-time A0(N) process, the N -dimensional
Gaussian process:

dYt = κQ(θQ − Yt)dt + σdBQ
t ,

where BQ
t is a N × 1 vector of standard Brownian motions under the measure Q.

Virtually all of the empirical work to date on multi-factor (exact) discrete-time affine
models has focused on the family DAQ

0 (N). See, for example, Ang and Piazzesi (2003),

6See Duffie, Pan, and Singleton (2000) for a proof that the continuous-time affine processes typically
examined have conditional characteristic functions that are exponential-affine functions, and Gourieroux and
Jasiak (2006) and Darolles, Gourieroux, and Jasiak (2006) for discussions of discrete-time affine processes
related to those examined in this paper.

4



Dai, Singleton, and Yang (2005), Rudebusch and Wu (2003), Hordahl, Tristani, and Vestin
(2003), and Dai and Philippon (2005).

2.2 DAQ
N(N)

Perhaps the most widely studied family of continuous-time affine DTSMs is the family
AQ

N(N), the multi-factor CIR-style models (see Dai and Singleton (2003) for a survey). Nu-
merous authors, including Sun (1992), Gray (1996), and Bekaert, Engstrom, and Grenadier
(2004), have examined discrete-time “CIR models” in which the shock to a state variable Zt

takes the form σZ

√
Zt−1ǫt, ǫt ∼ N(0, 1). The resulting term structure models are not exact,

either in the pricing of bonds or in the representations of the likelihood functions, because
these models are not well defined if ǫt+1 is literally a normal random variable.

The DAQ
N(N) process is the exact discrete-time equivalent of the multi-variate correlated

square-root or CIR process; Z is non-negative with probability one, no approximations are
required in the pricing of bonds, and the associated likelihood functions are known exactly in
closed-form. The scalar case N = 1 was explored in depth in Gourieroux and Jasiak (2006)
and Darolles, Gourieroux, and Jasiak (2006). We extend their analysis to the multi-variate
case of a DAQ

N(N) process Zt as follows.
As in the canonical AQ

N(N) model of DS we assume that, conditional on Zt, the compo-
nents of Zt+1 are independent. To specify the conditional distribution of Zt+1, we let ̺ be
an N × N matrix with elements satisfying

0 < ̺ii < 1, ̺ij ≤ 0, 1 ≤ i, j ≤ N.

Furthermore, for each 1 ≤ i ≤ N , we let ρi be the ith row of the N ×N non-singular matrix
ρ = (IN×N − ̺). Then, for constants ci > 0, νi > 0, i = 1, . . . , N, we define the conditional
density of Zi

t+1 given Zt as the Poisson mixture of standard gamma distributions:

Zi
t+1

ci

|(P, Zt) ∼ gamma(νi + P), where P|Zt ∼ Poisson(ρiZt/ci). (3)

Here, the random variable P ∈ (0, 1, 2, . . .) is drawn from a Poisson distribution with intensity
modulated by the current realization of the state vector Zt, and it in turn determines the
coefficient of the standard gamma distribution (with scale parameter equal to 1) from which
Zi

t+1 is drawn.
The conditional density function of Zi

t+1 takes the form:

fQ(Zi
t+1|Zt) =

1

ci

∞
∑

k=0









(

ρiZt

ci

)k

k!
e
− ρiZt

ci ×

(

Zi
t+1

ci

)νi+k−1

e
−Zi

t+1
ci

Γ(νi + k)









. (4)

Using conditional independence, the distribution of a DAQ
N(N) process Zt+1, conditional on

Zt, is given by fQ(Zt+1|Zt) =
∏N

i=1 fQ(Zi
t+1|Zt). Finally, it is straight-forward to show that
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for any u, such that ui < 1
ci

, the conditional Laplace transform of Zt+1 is given by (1) with

a(u) = −
N

∑

i=1

νi log (1 − uici), b(u) =
N

∑

i=1

ui

1 − uici

ρi. (5)

When the off-diagonal elements of the N × N matrix ̺ are non-zero, the autoregressive
gamma processes {Zi} are (unconditionally) correlated. Thus, even in the case of correlated
Zi

t , the conditional density of Zt+1 is known in closed form. This is not the case for correlated
Z in the continuous-time family AQ

N(N). The nature of the correlation between Zi and Zj

(i 6= j) is constrained by our requirement that ̺ij ≤ 0. Analogous to the constraint imposed
by DS on the off-diagonal elements of the feedback matrix κQ in their continuous-time models,
this constraint serves to ensure that feedback among the Z’s through their conditional means
does not compromise the requirement that the intensity of the Poisson process be positive.
Equivalently, it ensures that we have a well-defined multivariate discrete-time process taking
on strictly positive values.

The conditional mean EQ
t [Zt+1] and conditional covariance matrix V Q

t [Zt+1] implied by
the conditional moment-generating function (1) and (5) are

EQ
t [Zt+1] = a(1)(0) +

n
∑

i=1

b
(1)
i (0)Zi

t , V Q
t [Zt+1] = a(2)(0) + diag

[

∂2b/∂u2
i (0)Zt

]

, (6)

where a(k)(u) denotes the kth derivative of a(u) with respect to u, b
(1)
i is the first derivative

of bi with respect to ui, and diag[·] denotes the diagonal matrix generated by the elements
in brackets. Specifically,

EQ
t [Zt+1](i) = νici + ρiZt, V Q

t [Zt+1](i, i) = νic
2
i + 2ciρiZt, (7)

and the off-diagonal elements of V Q
t [Zt+1] are all zero (correlation occurs only through the

feedback matrix). Note the similarity between the affine form of these moments and those
of the exact discrete-time process implied by a univariate square-root diffusion.

That this process converges to the multi-factor correlated AQ
N(N) process7 can be seen

by letting ρ = IN×N − κQ∆t, ci =
σ2

i

2
∆t, and νi = 2(κQθQ)i

σ2
i

, where κQ is a N × N matrix and

θQ is a N × 1 vector. In the limit as ∆t → 0, the DAQ
N(N) process converges to:

dZt = κQ(θQ − Zt)dt + σ
√

diag(Zt)dBQ
t ,

where σ is a N × N diagonal matrix with ith diagonal element given by σi.

7Gourieroux and Jasiak (2006) attribute the insight that the DAQ
1 (1) process is a discrete-time counterpart

to the square-root diffusion to Lamberton and Lapeyre (1992).

6



2.2.1 DAQ
M(N) Processes, For 0 < M < N

We refer to an N ×1 vector of stochastic processes Xt = (Z ′
t, Y

′
t )

′ as a DAQ
M(N) process if (i)

Zt is an autonomous DAQ
M(M) process; and (ii) conditional on Yt and Zt, Yt+1 is independent

of Zt+1
8 and normally distributed with conditional mean and variance

ωQ
Y t ≡ µ0 + µY Xt and ΩY t ≡ ΣY SY tΣ

′
Y , (8)

where µ0 is a (N − M) × 1 vector, µY ≡
(

µZ
Y µY

Y

)

is a (N − M) × N matrix, µZ
Y is a

(N − M) × M matrix, µY
Y is a (N − M) × (N − M) matrix, ΣY is an (N − M) × (N − M)

matrix, and SY t is a (N−M)×(N−M) diagonal matrix with ith diagonal given by αi+β′
iZt,

1 ≤ i ≤ N − M . By construction, then, the conditional density of X is given by

fQ(Xt+1|Xt) = fQ(Yt+1|Yt, Zt) × fQ(Zt+1|Zt), (9)

with the first term being a multi-variate Gaussian density and the second term being a
multi-variate autoregressive gamma density.

Let uZ and uY be M × 1 and (N − M) × 1 vectors such that u = (u′
Z , u′

Y )′, and let h0

and hi, i = 1, 2, . . . ,M be (N − M) × (N − M) matrices defined as the coefficients in the
expansion of ΩY t = h0 +

∑M
i=1 hiZ

i
t , then the conditional Laplace transform of Xt+1 given

Xt is again given by (1), with

a(u) = −
M

∑

i=1

νi log (1 − uZ,ici) + µ′
0uY +

1

2
u′

Y h0uY , (10)

b(u) =
[

∑M
i=1

uZ,i

1−uZ,ici
ρi +

(

1
2
u′

Y hiuY

)

i=1,2,...,M
+ u′

Y µZ
Y u′

Y µY
Y

]

, (11)

provided that uZ,i < 1
ci

for all 1 ≤ i ≤ M .
Based on the above constructions, our first maintained assumption can be summarized

as follows:

Assumption 1 (N(Q)) : Under Q, the state vector Xt follows a DAQ
M(N) process, with

its conditional Laplace transform given by (1), (10), and (11).

If M = 0, we write Xt = Yt, where Yt is a DAQ
0 (N) process. If M > 0, we write Xt = (Z ′

t, Y
′
t )

′,
where Zt is a DAQ

M(M) process.

2.3 Bond Pricing

As in the extant literature on affine term structure models, we assume that the interest rate
on one-period zero-coupon bonds is related to the state vector according to:

8Within a general AQ
M (N) model the M factors driving stochastic volatility and the remaining (N −M)

factors may be (instantaneously) correlated. However, as discussed in Dai and Singleton (2000), within a
term structure context one is free to normalize these (instantaneous) correlations to zero. Our conditional
independence assumption is the discrete-time counterpart to this normalization.
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Assumption 2 (N(r)) : rt is affine in Xt; i.e., rt = δ0 + δXXt, where δX > 0 is a 1 × N
vector.9

Assumptions N(Q) and N(r) imply that zero-coupon bond yields are linear in the state
vector Xt. Specifically, the time-t zero-coupon bond price with maturity of n periods is given
by

Dn
t = EQ

t

[

e−
∑n−1

i=0 rt+i

]

= e−rtEQ
t

[

Dn−1
t+1

]

= e−An−BnXt , (12)

where the loadings An and Bn are determined by the following recursion:

An − An−1 = δ0 + An−1 − a(−Bn−1), (13)

Bn = δX − b(−Bn−1), (14)

with the initial condition A0 = B0 = 0.10

The linear structure to the cross-section of bond yields implied by affine DTSMs, includ-
ing the discrete-time models examined here, is potentially restrictive. Indeed, Boudoukh,
Richardson, Stanton, and Whitelaw (1998) present evidence of departures from this linear
structure within a two-factor setting. Yet Litterman and Scheinkman (1991), and many
subsequent papers, have shown that assuming that bond yields are linear functions of a
small number of factors (e.g., principal components of yields) provides an effective means of
hedging bond portfolios. Accordingly we maintain the linear yield structure implied by (12)
and, thereby, preserve tractability of bond pricing.

3 Physical Distribution of Bond Yields

A standard means of constructing an affine DTSM in continuous time is to start with a Q

representation of X in one of the families AQ
M(N), introduce a market price of risk ηt for the

state X, and then derive the implied P distributions of X and bond yields. Equivalently, in
a diffusion setting, one posits a pricing kernel or Radon-Nykodym derivative

(dQ/dP)C
t,t+1 =

e−
1
2

∫ t+1
t

η(s)′η(s)ds−
∫ t+1

t
η(s)′dBP(s)

EP
t

[

e−
1
2

∫ t+1
t

η(s)′η(s)ds−
∫ t+1

t
η(s)′dBP(s)

] (15)

linking P to Q, subject to the requirement that X is a Q-affine process. In principal, this
construction places minimal restrictions on the P-drifts of X. Starting with a Q-affine model
for X, one can generate essentially any functional form for the P drift of X by choice of the
market price of risk η, up to the weak requirement that η not admit arbitrage opportunities.

9If Xt is a DAQ
M (N) process, then setting δXi > 0 for i > M is a normalization, but setting δXi > 0 for

i ≤ M is a model restriction. When M > 0, this restriction ensures that (i) the level of the short rate r

and the factors with stochastic volatility are positively correlated; and (ii) zero-coupon bond prices are well
defined for any maturity. See Footnote 10 for further elaboration on the second point.

10 When M > 0, the assumption δX > 0 ensures that the first M elements of Bn are never negative. This
in turn ensures that a(·) and b(·) are always evaluated in their admissible range in the recursion.
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What has led researchers to focus on relatively restrictive specifications of η(Xt) are the
computational burdens of estimation that arise when the chosen η leads to an unknown (in
closed form) P-likelihood function for the observed bond yields.

In this section we introduce a discrete-time P-formulation of affine DTSMs that over-
comes this limitation of continuous-time models. This is accomplished by choosing a Radon-
Nykodym derivative (dP/dQ)D(Xt+1, Λt) satisfying

fP(Xt+1|Xt) = (dP/dQ)D(Xt+1; Λt) × fQ(Xt+1|Xt), (16)

with the properties that (P1) it is known in closed form (so that fP can be derived in closed-
form from our knowledge of fQ developed in Section 2); (P2) Λt is naturally interpreted
as the market price of risk of Xt+1; and (P3) rich nonlinear dependence of Λt on Xt is
accommodated. In principle, any choice of (dP/dQ)D that is a known function of (Xt+1, Λt)
and for which P and Q are equivalent measures (as required by the absence of arbitrage)
leads to a nonlinear DTSM satisfying P1.

We proceed by adopting the following particularly tractable choice of (dP/dQ)D:

Assumption 3 (N(P)) The conditional density of X under the physical measure P is given
by (16) with

(

dP

dQ

)D

(Xt+1; Λt) =
eΛ′

tXt+1

φQ(Λt; Xt)
, (17)

where φQ is the conditional Laplace transform of X under Q, Λt is a N×1 vector of functions
of Xt satisfying Prob{Λi

tci < 1} = 1, for 1 ≤ ∀i ≤ M , and Prob{Λi
t < ∞} = 1, for

M + 1 ≤ i ≤ N .

This formulation of (dP/dQ)D is a conditional version of the Esscher (1932) transform for
the conditional Q distribution of X.11 Under Assumption N(P), the conditional P-Laplace
transform of Xt is given by

φP(u; Xt) =
φQ(u + Λt; Xt)

φQ(Λt; Xt)
= eA(u;Λt)+B(u;Λt)Xt , (18)

where A(u; v) ≡ a(u + v) − a(v) and B(u; v) ≡ b(u + v) − b(v). It follows that the pricing
kernel consistent with Assumptions N(Q) and N(P) can be written as

Mt,t+1 = e−rt × e−Λ′

tXt+1

φP(−Λt; Xt)
, (19)

where we have used the fact that φP(−Λt; Xt) =
[

φQ(Λt; Xt)
]−1

, which follows from (18)
evaluated at u = −Λt.

12

11Buhlmann, Delbaen, Embrechts, and Shiryaev (1996) formally develop the conditional Essher transform
using martingale theory in the context of no-arbitrage pricing. A notable application of the Esscher transform
(with constant Λ) to option pricing is Gerber and Shiu (1994) who demonstrate that many variants of the
Black-Scholes option pricing model can be developed using the Esscher transform. For our purposes, the
conditional transform is essential, because of our linkage (see below) of Λt to the market prices of risk.

12 Note that, though φP(u;Xt) has an exponential-affine form, A(u; Λt) and B(u; Λt) are functions of Λt

which, in turn, may be a nonlinear function of Xt. Thus, in general X is not an affine process under P.
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To motivate this choice of Radon-Nykodym derivative– equivalently pricing kernel M–
consider again the continuous-time formulation in (15). For a small time interval ∆, and
approximate affine state process Xt+∆ ≈ µP

X(Xt)∆+ΣX

√
SXtǫ

P
t+∆, with ǫt+∆|Xt ∼ N(0, ∆I),

(dQ/dP)C
t,t+∆ ≈ e−

1
2
η′

tηt∆−η′

tǫ
P
t+∆

EP
t

[

e−
1
2
η′

tηt∆−η′

tǫ
P
t+∆

] =
e−Λ′

tΣX

√
SXtǫ

P
t+∆

EP
t

[

e−Λ′

tΣX

√
SXtǫ

P
t+∆

]

=
e−Λ′

tXt+∆

EP
t

[

e−Λ′

tXt+∆
] =

e−Λ′

tXt+∆

φP(−Λt; Xt)
, (20)

where Λt ≡
(

ΣX

√
SXt

)′−1
ηt is a transformation of the market price of risk ηt. Thus, this

(approximate) continuous-time construction suggests that, for a small discrete time interval
of length ∆, the kernel for pricing payoffs at date t + ∆ is

Mt,t+∆ ≡ e−rt × fQ(Xt+∆|Xt)

fP(Xt+∆|Xt)
≈ e−rt∆

e−Λ′

tXt+∆

φP(−Λt; Xt)
. (21)

This kernel takes exactly the same form as (19).
Importantly, in deriving our actual pricing kernel we have dispensed with the “small time

interval” construction. Instead, we are assuming that t indexes the sampling interval of the
data which, as is conventional in discrete-time asset pricing models, is also assumed to index
the appropriate interval for the chosen specification of the pricing kernel (19).13 Subject to
this “matching condition,” no approximations are involved in deriving either fP(Xt+1|Xt) in
(16) or the associated pricing kernel Mt,t+1 in (19).

The preceding heuristic construction of M from a continuous-time model does suggest
that, as the sampling interval of the data shrinks to zero,

(

dP

dQ

)D

t,t+∆

≈
(

dP

dQ

)C

t,t+∆

. (22)

As such, the P distributions of the bond yields implied by our families DAQ
M(N), and asso-

ciated market prices of risk Λ, capture essentially the same degree of flexibility inherent in
the families AQ

M(N) as one ranges across all admissible (arbitrage-free) specifications of the
market prices of risk η(Xt). It is in this sense that we view our framework as the discrete-
time counterpart of the entire family of arbitrage-free, continuous-time affine DTSMs derived
under the assumption that the Q-representation of X resides in one of the families AQ

M(N).
The restrictions in Assumption N(P) that the products Λitci, 1 ≤ i ≤ M , for the M

volatility factors are bounded by unity are required to ensure that fP is a well-defined
probability density function and that P and Q are equivalent measures. This follows from
the observation that φQ(u; Xt) is finite if and only if uici < 1. Unless Λitci < 1 almost
surely, for i = 1, . . . ,M , φQ(Λt; Xt) is infinite with positive probability. In this case, fP

13The challenges that arise when the sampling and modeling intervals do not coincide are discussed in
more depth in Section 5.
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would not integrate to unity for a set of Xt that has positive measure, and P and Q would
not be equivalent. Examining these restrictions more closely, and using our mapping to
the parameters of the related CIR process, we see that we are effectively requiring that
2/(σ2

i ∆t) > Λit, i = 1, . . . ,M . Typically σ2
i is small and, depending on the application, ∆t

may also be small. Therefore, these bounds are typically weak and in the applications we
have encountered so far they are far from binding. As ∆t approaches zero (continuous time),
the only requirement is that the Λit be finite almost surely.14

Under these regularity conditions we have all of the information necessary to construct
the likelihood function of the state, and hence the bond yields, under P. Under Assump-
tions N(Q) and N(r), we effectively know fQ(Xt+1|Xt) from the cross-sectional behavior of
bond yields.15 Furthermore, the relationship between the observed yields yt and the state
vector Xt are also known due to the pricing equation (12), which depends only on the risk-
neutral distribution fQ(Xt+1|Xt). Thus, the unknown function (dP/dQ)D(Xt+1; Λt) can be
estimated from the time-series observations of bond yields, yt.

4 The Market Prices of Risk

An immediate implication of Assumption N(P) is that, if Λt = 0, then fP(Xt+1|Xt) =
fQ(Xt+1|Xt). Thus, agents’ market prices of risk are zero if and only if Λt = 0. In our
discrete-time setting, Λt is not literally the market price of X risk (MPR), but rather the
MPR is a nonlinear (deterministic) function of Λt. However, in a sense that we now make
precise, Λt is the dominant term in the MPR. Accordingly, we will refer to Λt as the MPR
as this will facilitate comparisons with the MPR in continuous-time (AQ

M(N), η) models.
Notice first of all that16

EP
t [Xt+1] − EQ

t [Xt+1] =
[

A(1)(0; Λt) − a(1)(0)
]

+
[

B(1)(0; Λt) − b(1)(0)
]

Xt

= V P
t [Xt+1] × Λt + o(Λt), (23)

where V P
t [·] is the conditional covariance matrix under P. Ignoring the higher order terms,

the above relationship is exactly what arises in diffusion-based models: Λt is the vector of
market prices of risk underlying the adjustment to the “drift” in the change of measure from
Q to P. Moreover, the continuously compounded, expected excess return on the security
with the payoff e−c′Xt+1 is

EP
t

[

log
e−c′Xt+1

EQ
t [e−rte−c′Xt+1 ]

]

− rt = −
[

a(−c) + c′a(1)(Λt)
]

−
[

b(−c) + c′b(1)(Λt)
]

Xt,

= −c′V P
t [Xt+1] × Λt + o(c) + o(Λt). (24)

14Note that, if Λit were to scale with (∆t)−1, the continuous-time limit would be different from a CIR
model.

15Intuitively, taking the leading principal components as the state vector, we can estimate δ0, δX , An, and
Bn by regressing bond yields on this state vector. The parameters that characterize fQ(Xt+1|Xt) can then
be estimated by treating the recursions (13) and (14) as (possibly nonlinear) cross-equation restrictions.

16The derivatives of A and B are with respect to their first arguments.
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Since c determines the exposure of this security to the factor risk X and V P
t [Xt+1] measures

the size of the risk, the random variable Λt is the dominant term in the true market price of
risk underlying expected excess returns.

A notable difference between Λt and the market price of risk ηt that appears in continuous-
time (AQ

M(N), η) models is that Λt measures the price of risk per per unit of variance, whereas
η measures risk in units of standard deviation. From the heuristic derivation of our choice
of (dP/dQ)D it is seen that this difference is simply a consequence of our convention that

Λt =
(

ΣX

√

SXt

)′−1

ηt. (25)

Our strategy for developing a fully specified model (DAQ
M(N), Λ) will be to specify the

Q distribution of X; specify Λt through (25) by adopting a specification ηt; and then to
use the resulting specification of (dP/dQ)D(Xt+1, Λt) to derive the P distribution X and
the likelihood function of the bond yields. Following this approach, the resulting model
automatically satisfies P1 - P3. In particular, the modeler has complete freedom to specify
the dependence of Λt on Xt (P3), while preserving P1. Moreover, by substituting (25) into
(17) to construct fP(Xt+1|Xt) within the model (DAQ

M(N), Λ), we ensure that the resulting
model fully accounts for any higher-order (nonlinear) terms in the actual MPR.

To better understand the nature of the potential nonlinearity inherent in our modeling
framework it is instructive to examine in more detail the model-implied first and second
P-moments of X. Pursing our connection with continuous time, we define by

Λt ≡ (ΣXSX(t)Σ′
X)−1(µP(Xt) − µQ(Xt)), (26)

where Σ
√

S(t) is the diffusion term in an AQ
M(N) affine diffusion model. From the first and

second derivatives of the MGF (18) evaluated at u = 0,

EP[Xt+∆|Xt] =
EQ[Xt+∆eΛ′

t(Xt+∆−EQ[Xt+∆|Xt])]

EQ[eΛ′

t(Xt+∆t−EQ[Xt+1∆|Xt])]
, (27)

CovP[Xt+∆|Xt] =
EQ[(Xt+∆ − EP[Xt+∆|Xt])X

′
t+∆eΛ′

t(Xt+∆−EQ[Xt+1∆|Xt])]

EQ[eΛ′

t(Xt+∆t−EQ[Xt+1∆|Xt])]
. (28)

Expanding the numerators and denominators of (27) and (28) in Taylor series and focusing
on terms of order less than or equal to ∆ (viewed as a small time interval), we obtain

EP[Xt+∆|Xt] = Xt + µP(Xt)∆ + o(∆) (29)

CovP[Xt+∆|Xt] = ΣS(t)Σ′∆ + o(∆). (30)

Thus, in the limit to continuous time (i.e., as ∆ → 0) the P drift of X approaches µP(Xt)
and the diffusion term approaches the affine diffusion term Σ

√

S(t). It follows that, starting
with an affine specification of the Q drift µQ(Xt), we can generate essentially any desired
nonlinear Xt dependence of the P drift of X, µP(Xt) by choosing Λt as in (26).

Of course with this choice of Λt, in discrete time, the conditional Esscher transform
(17) in general induces nonlinear conditional P moments of all orders, not just a nonlinear
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conditional mean. For example, Letting ΛZt and ΛY t form a conformal partition of Λt, the
conditional P-mean of the ith member of the M -vector of volatility factors Zt+1 is

EP
t

[

Zi
t+1

]

=
∂

∂uZi

[A(u; Λt) + B(u; Λt)Xt]

∣

∣

∣

∣

u=0

=
νici

1 − ΛZt,ici

+
ρi

(1 − ΛZt,ici)2
Zt. (31)

Similarly, the conditional variance of Zi
t+1 is given by

VarP
t [Z

i
t+1] =

νic
2
i

(1 − ΛZt,ici)2
+

2ciρiZt

(1 − ΛZt,ici)3
, i = 1, . . . ,M. (32)

The nonlinearity of these moments, in contrast to their affine counterparts under Q (see (7)),
is induced by the state-dependence of ΛZt,i through the terms 1/(1 − ΛZt,ici).

Suppose that Λt is parameterized, by choice of ηt, in the same manner as in (AQ
M(N), η)

models. Within the canonical AQ
M(N) model ΣX is normalized to the identity matrix (ΣX =

I) so, from (26),
ΛZt = (diag[Zi

t ])
−1[(diag[Zi

t ])
1/2ηZt]. (33)

From (23) it follows that, to first order, the term in brackets, [(diag[Z i
t ])

1/2ηZt] is the ad-
justment to the drift of Z in the measure change from Q to P. The special case of Dai
and Singleton (2000)’s “completely affine” specification of ηZ has (diag[Zi

t ])
1/2ηZt = λD

Z1Zt,
where λD

Z1 is an M × M diagonal matrix. Therefore, under their MPR,

ΛZt =
(

diag[Zi
t ]
)−1

λD
Z1Zt = λD

Z1, (34)

and (31) and (32) imply that the conditional moments of Z are affine under P as well as under
Q. In other words, completely affine (AQ

M(N), η) and (DAQ
M(N), Λ) models both imply that

Zt follows an affine process under P. A special case of this construction is the (DA1(1), Λ)
model examined by Gourieroux, Monfort, and Polimenis (2002).

A more general formulation of ΛZt that nests the specifications (of ηZ) adopted in Duffee
(2002), Duarte (2004), and Cheridito, Filipovic, and Kimmel (2003) has

ΛZt =
(

diag[Zi
t ]
)−1

(

√

diag[Zi
t ]λd + (λZ0 + λZ1Zt) + ΥZt

)

, (35)

where λd and λZ0 are M × 1 vectors and λZ1 is a (not necessarily diagonal) M ×M matrix.
Setting λd = 0 and ΥZt = 0, and imposing sufficient structure on λZ0 and λZ1 to ensure
non-attainment by Z of the zero boundary under P and Q, gives the model in Cheridito,
et. al. The special case of λZ0 = 0 and ΥZt = 0 gives Duarte’s model. Whenever ΛZt is
state-dependent, the conditional P-moments of Zt+1 show nonlinear dependence on Zt. The
term ΥZt is introduced to illustrate that the modeler is free to add essentially any nonlinear
dependence of ΛZt on Z.17 We investigate empirically a model with ΥZt 6= 0 in Section 6.

17We restrict attention to cases where ΥZt depends only on Z to ensure that Z remains a non-negative
process under P.
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Turning to the conditionally Gaussian components of X, and recalling the definitions in
(8), the conditional mean of Yt+1 under P is

EP
t [Yt+1] = ωQ

Y t + ΩY tΛY t. (36)

To interpret the consequences of alternative specifications of Λ for the functional form of
EP

t [Yt+1], it is instructive to express the market price of risk for the entire state vector X in
a (DAQ

M(N), Λ) model (again under the normalization ΣX = I) as

ΛXt = S−1
Xt

(

λX0 + λX1Xt +
√

SXtλXd + ΥXt

)

, (37)

where λX0 and λXd are N × 1 vectors of constants, λX1 is an N × N matrix of constants,
and ΥXt can be any N × 1 vector of non-linear functions of X. The subvector of market
prices of risk associated with Y is thus

ΛY t = S−1
Y t

(

λY 0 + λY 1Xt +
√

SY tλY d + ΥY t

)

, (38)

where λY 1 is the (N −M)×N matrix containing the last N −M rows of λX1. Substituting
(38) into (36) gives

EP[Yt+1|Yt] = ωQ
Y t + λY 0 + λY 1Xt +

√

SY tλY d + ΥY t. (39)

It follows that the completely and essentially affine components of ΛY t contribute an affine
function of X to the conditional mean of Yt+1. Duarte’s added term in Λt introduces a
nonlinear term– the square roots of affine functions of X– to the drift of Y . Finally, to
illustrate the flexibility of specifying the conditional mean within our family of nonlinear
DTSMs, we have added the term ΥY t and given the modeler essentially complete freedom
in specifying its functional dependence on X. Note in particular that, by an appropriate
choice of ΥY t, we can replicate the nonlinear dependence of the drifts documented in the
non-parametric analysis of Ait-Sahalia (1996). For any choice of ΥY t, the conditional P

distribution of X, and hence the likelihood function of the data, are known in closed form.
What our formulation of the (DAQ

M(N), Λ) model does not allow is complete freedom
in specifying the nonlinearity of higher order moments, once we have chosen a functional
form for the conditional first moment. This is illustrated by the first two moments of the
autoregressive gamma process. The conditional means and variances depend on 1/(1 −
ΛZt,ici) in a nearly symmetric way (compare (31) with (32)). Indeed, the variance has a very
similar structure to the mean with each term of V arP

t [Zi
t+1] divided by one higher power of

(1 − ΛZt,ici). Thus, the nonlinear dependence in the mean achieved by one’s choice of ΛZt

effectively determines the structure of the nonlinearity of the conditional second moments.
This specialized structure, which is a consequence of Assumption N(P), is the discrete-time
counterpart to the similarly special structure on moments implied by diffusion models. An
interesting question for future research is the feasibility of working with even richer pricing
kernels, while preserving the tractability of the resulting (DAM(N), Λ) models.
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Though we have allowed for considerable flexibility in specifying the dependence of Λt

on Xt, it is desirable to impose sufficient structure on Λt to ensure that the maximum
likelihood estimator of ΘP has a well-behaved large-sample distribution. One property of the
P distribution of X that takes us a long ways toward assuring this is geometric ergodicity.18

That X will not be a geometrically ergodic process for all specifications of Λt can be seen
immediately from (31). If ΛZt,i approaches ci as Zi

t increases, then the second term eventually
dominates and the state variable is explosive under P. Similarly, if ΩY tΛt in (36) sufficiently
amplifies the effect of Xt on Yt+1, then Y will be explosive under P.

Such explosive behavior is ruled out by geometric ergodicity since, intuitively, the latter
ensures that a Markov process converges to its ergodic distribution at a geometric rate.
The following proposition provides sufficient conditions for the geometric ergodicity of an
autoregressive gamma process (see Appendix A for the proof).

Proposition 1 (G.E.(Z)) Suppose that the market prices of risk ΛZ(Zt) is a continuous
function of Zt, and the eigenvalues of the matrix ρ, ψi (i = 1, 2, . . . ,M), satisfy maxi |ψi| < 1.
If, in addition,

1. ΛZ(z) ≤ 0 for ∀z ≥ 0, or

2. ΛZ(z) → λ̄ ≤ 0 as z → ∞ and ρij = 0 for 0 ≤ i 6= j ≤ M ,

then Zt is geometrically ergodic under both Q and P.

Central to the geometric ergodicity of the P distribution of Z is the behavior of ΛZt for
‖Z‖ > K, for some positive constant K. Applying Proposition G.E.(Z) to the specification
(35) of ΛZt, we note first of all that the restriction λ1 < 0 is required to replicate the upward
sloping yield curve observed historically, on average. For a one-factor model (M = 1),
Proposition G.E.(Z) implies that this sign restriction and the assumption that

√
ZtλZ2+ΥZt

is a bounded function of Z are sufficient for Zt to be geometrically ergodic. Since we are
free to set the bound at a very large number, for practical purposes, once we have imposed
the sign restriction on λ1 called for by the historical data we obtain geometric ergodicity. If
M > 1, then the correlations among the Zi will potentially affect the geometric ergodicity
of Z. Sufficient conditions for geometric ergodicity would involve a bound on some terms in
ΛZt and imposition of the sign restriction λ0 < 0, though these conditions may be stronger
than necessary.

The challenge of formally establishing geometric ergodicity for the entire state vector
Xt is naturally even more complex, because of the range of possible specifications of ΛY t,
many of which lead to models that lie outside those considered in the literature on geometric
ergodicity. For this reason researchers will most likely have to treat the issue of geometric
ergodicity on a case-by-case basis, as we do in our illustrations.

Finally we note that, for our particular choice of Radon-Nykodym derivative, there is
also a computationally fast way to simulate directly from the conditional P distribution

18See Duffie and Singleton (1993) for definitions and applications of geometric ergodicity in the context of
generalized method of moments estimation. General criteria for the geometric ergodicity of a Markov chain
have been obtained by Nummelin and Tuominen (1982) and Tweedie (1982).
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of X. Specifically, returning to the exponential-affine representations (1) and (18) for the
conditional MGFs, upon making the dependence of the coefficients a(·) and b(·) of φQ on the
risk-neutral parameters explicit by writing

a(u) = a(u; ΘQ), b(u) = b(u; ΘQ),

ΘQ = (ci, ρi, νi; µ0, µ, h0, hi : i = 1, 2, . . . ,M) ,

the coefficients A(u, v) and B(u, v) of φP can be written as

A(u, v) = a(u; ΘP(v)), B(u, v) = b(u; ΘP(v)),

ΘP(v) = (ci(v), ρi(v), νi; µ0(v), µ(v), h0, hi : i = 1, 2, . . . ,M) .

where v′ = (v′
Z , v′

Y ), for M × 1 vector vZ and (N − M) × 1 vector vY , and

ci(v) =
ci

1 − vZ,ici

, ρi(v) =
ρi

(1 − vZ,ici)2
,

µ0(v) = µ0 + h′
0vY , µY (v) =

(

µZ
Y + {h′

ivY }i=1,2,...,M µY
Y

)

.

It follows that the conditional density under P has exactly the same functional form as that
under Q, except that the latter is now evaluated at the (possibly time-varying) parameters
ΘP(Λt). Analogously to the continuous-time case, the volatility parameters {νi}M

i=1 (for the
M stochastic volatility factors), and h0 and {hi}M

i=1 (for the N − M conditional Gaussian
factors), are not affected by the measure change. It follows that, given Xt, the value of
the state at date t + 1 can be simulated exactly using the Q density, with the parameters
adjusted to reflect the state dependence induced by the measure change.

Now consider the problem of computing the conditional P-expectation of a measurable
function g(Xt+τ ), for any τ > 1, by Monte Carlo methods. Such computations can be
approached in either of two ways. First, defining the random variable

πD
t,t+τ =

τ
∏

j=1

(

dP

dQ

)D

t+j−1,t+j

, (40)

we can write
EP [g(Xt+τ )|Xt] = EQ

[

g(Xt+τ )π
D
t,t+τ |Xt

]

. (41)

The expectation on the right-hand-side of (41) can be computed, for a given value of Xt,
by simulation under Q using the known density fQ(Xt+1|Xt). Moreover, the nonlinearity in
the P distribution– its non-affine structure– is captured through the random variable πD

t,t+τ

which is also known in closed form.
Alternatively, using the preceding short-cut to simulating from the P distribution of

X directly, we can compute the left-hand side of (41) by Monte Carlo simulation without
reference to the right-hand side. This second approach is used in our empirical illustrations
in Section 6.
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5 Sampling Intervals Longer than Modeling Intervals

Up to this point we have presumed that the sampling interval of the data coincides with
the modeling interval for the risk factors. That is, the discrete time interval over which
the distribution fQ(Xt+1|Xt) is specified matches the sampling interval of the data. For the
purpose of standard term structure modeling, with latent risk factors X, this assumption
seems innocuous in that bond yield data can often be sampled a frequencies as short as one
day. The decision the researcher is left with then is at what sampling (equals modeling)
interval will the model-implied distributions under P and Q best match the historical and
pricing distributions, respectively, of bond yields.

The inclusion of macroeconomic information, as in the growing literature on macro term
structure models, often leads researchers to work with the monthly or quarterly sampling
intervals. While sampling and decision intervals are frequently equated in situations like this
in the macroeconomics literature, there may well be circumstances where one would like to
allow the decision interval to be shorter than the sampling interval.

When working with continuous time models researchers fix, somewhat artificially, the
modeling interval to be instantaneous, and then estimation is typically based on moments
of the implied conditional distribution of X for the relevant sampling interval. The model-
implied likelihood function is not used (at least in its exact form) because, for AM(N) models
with M < N , it is not known in closed form. In extending our framework, we encounter
precisely the same obstacles with regard to the conditional Q distribution of the state.

To fix notation, we let t index the modeling interval and τ index the sampling interval,
with τ ≥ 1. Consider first the Q distribution fQ(Xt+τ |Xt). Repeated application of (1) and
the law of iterated expectations gives

φQ
τ (u; Xt) ≡ EQ

[

eu′Xt+τ

∣

∣

∣ Xt

]

= e

(

∑τ−1
j=0 a(b̃j′(u))

)

+b̃τ−1(u)Xt , (42)

where b̃ is defined recursively by b̃0(u) = b(u), b̃1(u) = b(b̃0′(u)), etc. Thus the conditional
distribution of Xt+τ given Xt is that of an affine process. In general, the functional form
of this distribution is unknown.19 One can, in principle, compute fQ(Xt+τ |Xt) by Fourier
inversion of the conditional characteristic function (see, e.g., Singleton (2001)). However,
in multi-variate setting this computation can become burdensome. In Appendix B we dis-
cuss special cases– when the sampling and modeling intervals do not coincide– where the
conditional density implied by (42) is known in closed from, as well as some accurate ap-
proximations for some cases where this density is not known.

6 Empirical Illustrations

In this section we illustrate the flexibility of our modeling framework by estimating nonlin-
ear (DAQ

1 (3), Λ) models that nest several of the linear (AQ
1 (3), η) models in the published

19This is the discrete-time counterpart to the result in Duffie, Pan, and Singleton (2000) that the charac-
teristic functions of general affine diffusions are exponential affine, again with the implied densities of these
processes being generally not known in closed form.
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literature. In presenting these models, we adopt the notation of continuous time, leaving
the mappings between these parameters and the primitive parameters of our DAQ

1 (3) models
presented in Section 2 implicit. We stress that this is only for notational convenience and
ease of comparison with the reported estimates in the literature on continuous-time models.
Our nonlinear DTSMs are parameterized by writing down a continuous-time model, param-
eterizing the drift, diffusion term, and the market prices of risk, and then mapping these
parameters to those of our discrete-time conditional Gaussian and autoregressive-gamma
processes. In the end, it is the likelihood functions of these nonlinear discrete-time models
that we estimate. Further, all of the subsequent calculations of moments of the processes
are based on the moments of these exact discrete-time pricing models.

With these implicit mappings in the background, the model we examine is:

dXt = κQ(θQ − Xt)dt + ΣX

√

S(t)dBQ
t (43)

where S(t) = diag(α + βXt) and dBQ is an N-vector of independent standard Brownian
motions under Q; and the one-period (monthly) short rate is rt = δ0 + δ′XXt, where X ′ =
(Z, Y ′) with Z following a one-dimensional autoregressive-gamma process and Y following a
two-dimensional Gaussian process conditional on X, and δ′X = (δZ , δ′Y )′. Consequently, the
yield on an n-period bond yn

t satisfies

yn
t = δn

0 + δn
X

′Xt. (44)

Following Dai and Singleton (2000), we impose the following normalizations for econometric
identification of the models:

κQ =

[

κZZ 0
κY Z

2×1 κY Y
2×2

]

; (45)

ΣX = I3; and

θQ =

[

θQ
1

02×1

]

, α =

[

0
12×1

]

, β =

[

1 01×2

βY Z
2×1 02×2

]

. (46)

For the autoregressive-gamma process Z we impose conditions to ensure non-attainment
of the zero boundary under both P and Q:

νP
1 =

2κP
(1,1)θ

P
(1,1)

Σ2
(1,1)

> 1, (47)

νQ
1 =

2κQ

(1,1)θ
Q

(1,1)

Σ2
(1,1)

> 1. (48)

Dai and Singleton (2000), Duarte (2004) and Duffee (2002) imposed the weaker requirement
that νP

1 > 0 and νQ
1 > 0. However, in addition to having ΥZt 6= 0, we extend their speci-

fications of the market price of risk by letting λZ0 6= 0 in (35). As discussed in Cheridito,
Filipovic, and Kimmel (2003) within a setting with ΥZt = 0, imposing both (47) and (48)
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is sufficient to rule out arbitrage opportunities within our richer model. So long as ΥZt is
bounded, their analysis also ensures that our extended models of Z also rule out arbitrage
opportunities. For consistency, we impose these non-attainment restrictions in all of our
illustrative models.

Two different specifications of the market prices of risk for the volatility factor Z are
examined:

Model NLDA: A DAQ
1 (3) model with nonlinear polynomial drift for the volatility factor

Z. The market prices of risk are given by (37) with λXd = 0, ΥY t = 0, and ΥZt being an
affine function of Z2, Z3 and Z4.

Model SASR This is Duarte’s model which starts from an DAQ
1 (3) model and introduces

a square-root term in the P-drift of Z through the market price of risk. Λt is given by (37)
with ΥXt = 0, λZ0 = 0, and λ′

Xd = (λZd, 0, 0).

Relying again on the notation of continuous time, these formulations of the market price of
risk imply a P-drift of the form




κP
1,1 0 0

κP
2,1 κP

2,2 κP
2,3

κP
3,1 κP

3,2 κP
3,3













θP
1

θP
2

θP
3



 −





Zt

Y1t

Y2t







 +





λd

√
Zt + λZ2Z

2
t + λZ3Z

3
t + λZ4Z

4
t

0
0



 .(49)

The SASR model is the special case with λZ2 = λZ3 = λZ4 = 0, and the polynomial models
are the special cases with λZd = 0. In subsequent discussions we will refer to the NLDA
models as the quadratic, cubic and quartic models, corresponding to the maximal power in
their polynomial drift specification.

Our focus on these nonlinear DTSMs is motivated by several observations. First, one
of our goals is to expand the extant focus in the literature on discrete-time DTSMs from
DAQ

0 (N) models to DAQ
M(N) models with M > 0. Second, in its continuous-time formula-

tion, Duarte’s model does not have a known likelihood function and, therefore, he had to
resort to approximations in computing his ML estimates. The likelihood functions of all of
our discrete-time nonlinear DTSMs are known in closed-form and these examples illustrate
the tractability obtained by shifting to discrete time. Finally, and most central to the liter-
ature on term structure modeling, the goodness-of-fit of affine DTSMs has been constrained
both by the requirements of admissibility of AQ

M(M) models and the standard formulations
of the market prices of risk for Z. Of interest, then, is the relative fits of DAQ

1 (3) models with
alternative extended formulations of ΛZt with their induced nonlinearity in the P distribu-
tions of Z. In particular, Duffee (2002) found that his essentially affine model substantially
outperformed completely affine models in matching the persistence in excess returns. A
question that we address with our nonlinear (DAQ

1 (3), Λ) model is whether there is a further
improvement in the out-of-sample performance of DA1(3) models with the introduction of
our more general market price of volatility risk. Even more general formulations of this model
are possible by allowing Λt to induce nonlinearity in the drifts of all three state variables.

The models were estimated using “smoothed” Fama-Bliss monthly data on treasury zero-
coupon bond yields from 1970:1 to 1995:12.20 We assumed that bonds with .5, 2 and 10

20 This is the same data used in Backus, Foresi, and Zin (1998) and Dai and Singleton (2002).
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years to maturity were priced without errors, while bonds with maturities of 1, 5 and 7 years
were priced with serially independent Gaussian errors. The data for the period 1996-2000
were omitted from the estimation in order to examine out-of-sample fits of the models.

The “maximal” models (in the sense of Dai and Singleton (2000)) are highly parame-
terized and, therefore, it is desirable to explore more parsimonious models that set those
parameters with large associated standard errors to zero. One might expect to arrive at
different “preferred” parsimonious models depending on which maximal model one starts
from (e.g., the linear affine model, the fully parameterized NLDA model, etc.). We have
chosen to focus our analysis on two preferred parameterizations: PMI is simplified from the
maximal cubic model21 and PMII is simplified from the maximal linear and SASR models.22

Table 1 reports the likelihood values and degrees of freedom of the estimated models.
Next to the likelihood values of the preferred models are the likelihood ratio (LR) statistics
and associated p-values for the constraints imposed in simplifying to the models PMI and
PMII. All preferred models show very little deterioration in fit relative to the their maximal
counterparts.23 Henceforth, we focus on models PMI and PMII.

Maximal[df] PMI[df] LR [pval] PMII[df] LR [pval]
Linear 10475.6 [30] 10471.5 [23] 8.38 [0.30] 10473.0 [22] 5.31 [0.72]
Nonlinear

Quadratic 10476.9 [31] 10471.5 [24] 10.65 [0.15] 10473.9 [23] 5.89 [0.66]

Cubic 10485.9 [32] 10481.7 [25] 8.39 [0.30] 10478.8 [24] 14.17 [0.08]

Quartic 10486.6 [33] 10482.3 [26] 8.60 [0.20] 10481.1 [25] 11.11 [0.20]

SASR 10475.9 [31] 10471.5 [24] 8.77 [0.27] 10473.2 [23] 5.42 [0.71]

Table 1: Log-likelihood values and LR statistics: Log-likelihood values and degrees of
freedom (in brackets) of the maximal and preferred models. Next to each likelihood value
for models PMI and PMII are the likelihood ratio statistic (LR) and p-value (in brackets)
for the associated constraints.

As a first step in evaluating the contribution of nonlinear P-drifts to the fit of our models
we compute likelihood ratio tests of the restricted models indicated in the column headings
of Table 2 against the alternatives indicated by the row headings. Both the linear and SASR
models are rejected (at conventional significance levels) against the NLDA model with a
cubic term in the drift of the volatility factor. Adding a quartic term in addition to the
cubic term does not add significantly to the fit of the NLDA model PMI, but does provide
some incremental improvement in fit within model PMII. One reason for this might be that

21We chose the cubic model as representative for the polynomial models since adding a term in the forth
power of Z did not substantially improve the fit.

22The maximal linear and SASR models reduce to the same preferred model. See the subsequent discussion
of the parameter estimates.

23The only exception at a 10% significance level is the PMII cubic model where the likelihood ratio test
statistic is significant at 8% confidence level.
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the simplification achieved started from the P-affine PMII model (as contrasted with the
P-cubic model) over-simplifies the dynamic structure of the conditional Gaussian factors
under P and this is compensated for by the quartic term under the alternative formulation.
Squared and SASR terms by themselves only modestly improve the fits of the models and,
in fact, the nested linear model is not rejected against the alternative SASR model.

Linear SASR Cubic
PMI

Quadratic 0.16 [0.69] - - - -
Cubic 20.44 [0.00] 20.29 [0.00] - -
Quartic 21.77 [0.00] 21.61 [0.00] 1.32 [0.25]
SASR 0.06 [0.80] - - - -

PMI
Quadratic 1.85 [0.17] - - - -
Cubic 11.59 [0.00] 9.74 [0.00] - -
Quartic 16.19 [0.00] 14.34 [0.00] 4.60 [0.03]
SASR 0.35 [0.55] - - - -

Table 2: Likelihood ratio tests, along with their associated p-values are displayed for various
nested special cases of the models examined. Each row defines the alternative model, while
the column defines the null (constrained) model. p-values are given in brackets.

The ML estimates of the parameters under Q of the linear, SASR and cubic NLDA
models within the PMI and PMII families are displayed in Table 3. For each parameter,
the first number in parentheses is its estimated asymptotic standard error and the second
is the likelihood ratio statistic for the null hypothesis that the parameter is zero. In those
cases where the latter null hypothesis places us on the boundary of the admissible parameter
space (e.g., κQ(i, i), i = 1, 2, 3 and θQ(1)), we display a “*”. Parameters that are set to zero
in simplifying the maximal models to the preferred models are indicated by a dash. Within
each family of preferred models (I or II), the corresponding estimates across the linear,
SASR, and cubic models are quite similar. Estimates across the PMI and PMII families of
models are also similar, with the primary exception being β(2, 1), the parameter governing
the dependence of the volatility of the first conditionally Gaussian factor Y1 on the volatility
factor Z. The latter parameter is much larger in PMI than in PMII.

The near invariance of the Q parameters to alternative formulations of the P distributions
of bond yields (through different choices of Λt) is striking. This finding implies that the
pricing implications of these DTSMs are invariant to the assumed P distribution of bond
yields. Put differently, the same pricing parameters are extracted from a variety of models,
at least some of which are surely misspecified (under P). Evidently the cross-maturity
restrictions implied by the no-arbitrage pricing restrictions are easily satisfied, and recovered
econometrically, within a variety of DTSMs.

Figure 1 displays the loadings on the state variables within the cubic NLDA models for
zero-coupon bonds with maturities ranging from three months to ten years. The graphs for
all three models– linear, SASR, and cubic– are virtually on top of each other because of the
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A. Preferred Model I
Linear SASR Cubic

κQ(1, 1) 0.56 ( 0.02 , * ) 0.55 ( 0.02 , * ) 0.56 ( 0.02 , * )
κQ(2, 1) -10.5 ( 36.6 , 70.7 ) -10.7 ( 48.3 , 67.4 ) -12.4 ( 8.03 , 86.2 )
κQ(3, 1) 0.22 ( 0.09 , 13.6 ) 0.21 ( 0.09 , 13.2 ) 0.24 ( 0.09 , 15.2 )
κQ(2, 2) 1.63 ( 0.18 , * ) 1.66 ( 0.17 , * ) 1.65 ( 0.17 , * )
κQ(3, 2) -0.03 ( 0.12 , 14.5 ) -0.03 ( 0.15 , 14.1 ) -0.03 ( 0.03 , 16.1 )
κQ(2, 3) -9.89 ( 33.9 , 73.0 ) -9.78 ( 43.9 , 72.4 ) -11.4 ( 6.93 , 81.9 )
κQ(3, 3) 0.21 ( 0.16 , * ) 0.20 ( 0.15 , * ) 0.23 ( 0.16 , * )
θQ(1, 1) 5.85 ( 1.10 , * ) 5.83 ( 1.20 , * ) 5.44 ( 0.804 , * )
β(2, 1) 38.4 ( 267 , 78.5 ) 38.2 ( 347 , 77.1 ) 51.4 ( 61.5 , 85.3 )
β(3, 1) - ( NA ) - ( NA ) - ( NA )
δ0(1, 1) 0.699 ( 0.516 , 109 ) 0.684 ( 0.508 , 105 ) 0.645 ( 0.433 , 125 )
δY (1, 1) 0.003 ( 0.000 , 33.1 ) 0.003 ( 0.001 , 33.1 ) 0.003 ( 0.001 , 34.0 )
δY (2, 1) 0.002 ( 0.005 , 124 ) 0.002 ( 0.007 , 125 ) 0.001 ( 0.001 , 145 )
δY (3, 1) 0.002 ( 0.003 , 0.26 ) 0.002 ( 0.003 , 0.31 ) 0.002 ( 0.003 , 4.59 )

B. Preferred Model II
Linear SASR Cubic

κQ(1, 1) 0.56 ( 0.02 , * ) 0.56 ( 0.02 , * ) 0.56 ( 0.02 , * )
κQ(2, 1) -4.78 ( 6.91 , 70.5 ) -4.78 ( 6.63 , 70.1 ) -4.65 ( 6.66 , 79.5 )
κQ(3, 1) 0.29 ( 0.05 , 58.6 ) 0.29 ( 0.05 , 58.5 ) 0.28 ( 0.04 , 59.2 )
κQ(2, 2) 1.55 ( 0.10 , * ) 1.55 ( 0.10 , * ) 1.53 ( 0.10 , * )
κQ(3, 2) -0.10 ( 0.13 , 63.9 ) -0.10 ( 0.13 , 63.9 ) -0.09 ( 0.13 , 64.5 )
κQ(2, 3) -5.23 ( 7.51 , * ) -5.21 ( 7.17 , * ) -5.27 ( 7.46 , * )
κQ(3, 3) 0.32 ( 0.04 , * ) 0.32 ( 0.04 , * ) 0.32 ( 0.04 , * )
θQ(1, 1) 5.66 ( 0.95 , * ) 5.63 ( 0.95 , * ) 5.89 ( 1.04 , * )
β(2, 1) 7.65 ( 22.4 , 70.8 ) 7.7 ( 21.5 , 70.7 ) 7.67 ( 22.2 , 72.2 )
β(3, 1) - (NA ) - ( NA ) - ( NA )
δ0(1, 1) 0.671 ( 0.464 , 94.4 ) 0.672 ( 0.467 , 93.9 ) 0.715 ( 0.555 , 99.4 )
δY (1, 1) 0.003 ( 0.000 , 29.5 ) 0.003 ( 0.000 , 29.4 ) 0.003 ( 0.000 , 29.5 )
δY (2, 1) 0.004 ( 0.005 , * ) 0.004 ( 0.005 , * ) 0.003 ( 0.005 , * )

δY (3) - ( NA ) - ( NA ) - ( NA )

Table 3: Parameters of the Q representation of rt: The first number in parentheses is
the associated asymptotic standard error and the second is the likelihood ratio test statistic
for the null hypothesis that the parameter is zero. For the LR statistic, we report a “*”
in those cases where the null would place us on the boundary of the admissible parameter
space. A “-” indicates that the parameter was set to zero in the preferred model.

similarity in the parameters of the Q representation of r in Table 3. For the same reason,
the corresponding loadings across the preferred families have a similar shape. The loadings
on the volatility factor Z capture curvature at the very short end the yield curve and have
a “slope”-like shape for maturities beyond a year or so. The third factor appears to capture
features of both the “level” and “slope” factors in standard principal components analyses of
bond yields (e.g., Litterman, Scheinkman, and Weiss (1991)). Its level-like shape for longer
maturities is reflected in its degree of mean reversion. κQ(3, 3) is the smallest of the diagonal

22



0 5 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
PMI

State1

State2

State3

0 5 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
PMII

State1

State2

State3

Maturity (years) Maturity (years)

Figure 1: Loadings on Risk Factors: δn
Y as n varies across maturities for cubic models

within the families PMI (left) and PMII (right).

elements of κQ, consistent with the typical finding that the “level” of the yield curve shows
the least amount of mean reversion. The largest diagonal element of κQ is κQ(2, 2).

Table 4 displays the parameters that determine the market price of risk Λt. Rows for
the parameters λ0(3), λ1(2, 1), λ1(3, 1), and λ1(2, 2) are omitted, because these parameters
were set to zero in both the preferred families of models PMI and PMII. Focusing first on
the parameter vector λ0, we see that the test statistics suggest that the extension of square-
root diffusion models suggested by Cheridito, Filipovic, and Kimmel (2003) is not playing
a substantial role in our analysis of the PMII family of models (it is set to zero). There
is some evidence for a role of their extension from the LR statistic within the cubic PMI
model, though not from the asymptotic Wald test.

The parameter governing the “completely affine” market prices of risk for the volatility
factor (λ1(1, 1)) is significantly different from zero in most of the PMI models (according to
the LR statistics), but this parameter is set to zero in arriving at the parsimonious PMII
models. Evidently, within the latter family, the nonlinear polynomial terms suffice to capture
the market prices of risk for the volatility factor Z.

Within the NLDA models, the nonlinearity in the drift of Z is governed by the parameters
λZ2 (the quadratic term) and λZ3 (the cubic term). For the cubic models, both the asymp-
totic t- and LR statistics indicate rejection of the null hypotheses that λZ2 = 0 and λZ3 = 0
at conventional significance levels. With regard to the SASR specification, λd is positive for
the PMI models and negative for the PMII models, and in both cases it is estimated with
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A. Preferred Model I
Linear SASR Cubic

λ0(1) 1.69 ( 1.16 , 2.25 ) -0.30 ( 2.95 , -0.08 ) 4.08 ( 4.50 , 8.05 )
λ0(2) -259 ( 915 , 10.1 ) -259 ( 1196 , 9.72 ) -259 ( 288 , 11.4 )

λ1(1, 1) -0.39 ( 0.23 , 2.94 ) -1.02 ( 1.28 , 0.49 ) -6.04 ( 3.75 , 11.2 )
λ1(3, 2) - ( NA ) - ( NA ) - ( NA )
λ1(2, 3) -4.59 ( 16.0 , 7.58 ) -4.68 ( 21.1 , 7.53 ) -5.04 ( 3.71 , 8.65 )
λ1(3, 3) - ( NA ) - ( NA ) - ( NA )

λd 2.31 ( 4.29 , 0.06 )
λZ2 2.06 ( 0.85 , 14.2 )
λZ3 -0.20 ( 0.07 , 20.3 )

B. Preferred Model II
Linear SASR Cubic

λ0(1) - ( NA ) - ( NA ) - ( NA )
λ0(2) -114 ( 195 , 9.05 ) -114 ( 190 , 8.87 ) -114 ( 202 , 8.44 )

λ1(1, 1) - ( NA ) - ( NA ) - ( NA )
λ1(3, 2) 0.08 ( 0.11 , 10.3 ) 0.08 ( 0.11 , 5.62 ) 0.08 ( 0.11 , 7.97 )
λ1(2, 3) -2.18 ( 3.23 , 8.48 ) -2.18 ( 3.09 , 8.42 ) -2.03 ( 2.98 , 7.93 )
λ1(3, 3) -0.27 ( 0.10 , 14.9 ) -0.27 ( 0.10 , 14.9 ) -0.27 ( 0.10 , 14.6 )

λd -0.12 ( 0.23 , 0.35 )
λZ2 0.22 ( 0.10 , 8.01 )
λZ3 -0.04 ( 0.02 , 9.74 )

Table 4: This table reports the parameters of the market prices of risk Λt. The first number
in parentheses is the associated asymptotic standard error and the second is the likelihood
ratio test statistic for the null hypothesis that the parameter is zero. A “-” indicates that
the parameter was set to zero in the preferred model.

relatively little precision.
The estimated λZ3 are negative in both the PMI and PMII models. This induces a similar

shape to the conditional mean function as the one documented by Ait-Sahalia (1996) and
Ang and Bekaert (2002). Ait-Sahalia (1996) noted that short-term interest rates tend to
behave like a random walk when rates are in the vicinity of their average values, but tend
to mean revert at increasing rates as the levels of rates become unusually high or low. As Z
becomes large, the pull-to-the-mean from this (negative) cubic term is much stronger than
that of the (negative) linear term. This is visually illustrated in Figure 2 which plots the
drifts of Z for the cubic and SASR models. The drift in the PMI cubic model (on the left)
resembles more closely the nonlinear shapes documented in previous descriptive studies of
nonlinearity in short-term interest rates. The degree of mean reversion in Z at low values is
mild compared to high values, but the characteristic “S on its side” shape is present. The
left-hand-side of this graph turns up sharply for smaller values of Z than are depicted in
this graph, though the likelihood of observing values in this region is very small. The drift
of the PMII cubic model (on the right) also displays mean reversion around the mean, but
to a much lesser extent. This may be due to the fact that the PMII family is a simplified
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Figure 2: The drift of the volatility factor, plotted as a function of the level of volatility
measured in units of standard deviation from from the mean of Z.

version of the maximal linear model.
Pursing these differences, the drift of Z in the cubic PMII model crosses zero at one

point, close to the mean of its stationary distribution implied by this model. In this regard,
over a wide range around its long-run mean, Z behaves much like a P-affine model: the drift
of Z is nearly linear and is zero at its long-run mean. In contrast, the drift of Z in the cubic
PMI model crosses zero three times at the points -1.3, -0.95, and 0.40 standard deviations
from its long-run mean. Though the precise crossing points will be sensitive to the value
of κP(1, 1)θP(1), the fitted pattern for the cubic PMI model highlights the sharp contrast
between the essentially zero drift of Z over a wide portion of the support of its distribution
and the rapid mean reversion in both tails. This pattern is characteristic of that generated
by regime-switching models of interest rates (e.g., Ang and Bekaert (2002)).

In both the SASR model (due to the presence of
√

Z) and the quadratic NLDA model
(due to the presence of Z2), there is the possibility of higher mean reversion than in the linear
model as Z increases relative to its unconditional mean. However, this state-dependent mean
reversion is one-sided: it either shows higher mean reversion for large values of Z or higher
mean reversion for small values of Z, but not both. Particularly when the critical point of the
parabolic shape of the drift is near the unconditional mean of Z, we will see mean reversion
in one direction and mean diversion in the other. When only one wing of the parabola is
used in modelling the drift as in the SASR specification, there is no possibility of inducing
the “S on its side” pattern that we saw in the cubic models. This difference is illustrated
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clearly in Figure 2 where it is seen that the drift of the SASR model does not turn up for
low values of Z.

Linear SASR Cubic
PMI PMII PMI PMII PMI PMII

κP(1, 1) 0.95 0.56 1.57 0.56 6.60 0.56
κP(2, 1) -10.55 -4.78 -10.67 -4.78 -12.41 -4.65
κP(3, 1) 0.22 0.29 0.21 0.29 0.24 0.28
κP(2, 2) 1.63 1.55 1.66 1.55 1.65 1.53
κP(3, 2) -0.03 -0.17 -0.03 -0.17 -0.03 -0.17
κP(2, 3) -5.30 -3.04 -5.11 -3.03 -6.40 -3.23
κP(3, 3) 0.21 0.60 0.20 0.60 0.23 0.59

θP(1) 5.20 5.66 1.87 5.63 1.08 5.89
θP(2) -342.00 -171.64 -349.13 -171.49 -385.25 -188.02
θP(3) -55.29 -50.05 -54.40 -50.19 -50.43 -53.78

Table 5: This table reports the parameters of the P-representation of rt. For each model,
the PMI results are presented on the left and the PMII results are presented on the right.

The estimated values of the parameters of the P-distribution of rt are displayed in Table 5.
Most of the parameters governing the distribution of the conditional Gaussian Y are similar,
both across models and the families PMI and PMII. Most notably, for the volatility factor
Z, the parameter governing linear mean reversion (κP(1, 1)) is much larger for the nonlinear
(SASR and cubic) models in family PMI than in the family PMII. At the same time θP(1)
is larger in the PMII family than in the PMI family. That is, the affine component of the
drift of Z shows relatively fast mean reversion to a relatively small θP(1) compared to the
nonlinear models in the family PMII.

The implications of these differences for the within sample fits of the models is summarized
graphically in Figure 3 where the root mean-squared errors (RMSE), computed over the
sample period 1970:1 to 1995:12, are displayed. The forecast horizon is six months and the
state variables used in forecasting are inverted from the models at the ML estimates.24 One
thousand six-month ahead simulations are computed at each point in time and the resulting
yields are then averaged to compute the forecasts for future yields.25 Pricing errors are
differences between these forecasts and the actual yields realized at the forecast horizon. For
ease of exposition, we only show graphs for the maturities of five years and above, noting
that the pattern is very similar for other maturities.

We see that, within sample, the cubic models out perform both the linear and SASR
models. Comparing across the preferred families PMI and PMII, the cubic model in family
PMII (obtained by first eliminating insignificant parameters in the maximal linear model)
produces the lower RMSEs. We conclude that, based on the metric of lower RMSEs, the
cubic model with slow reversion to a high level of Z through the affine component of the
drift performs the best.

Of equal, if not greater, interest is the out-of-sample forecasting performance of the

24 We experimented with forecast horizons of 4, 8 and 10 months and obtained essentially the same pattern
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Figure 3: This figure displays the Root Mean Squared Errors (RMSE) computed within the
sample period 1970:1 to 1995:12. The results for the family PMI are on the left and for PMII
on the right.

various models examined. We explore this issue using the hold-out sample of the final five
years of our data set. From the out-of-sample RMSEs displayed in Figure 4 for the family
PMII, it is seen that the cubic models again perform the best (have the smallest RMSEs)
for these six-month ahead forecasts. Most striking is the poor performance of the linear and
SASR PMII models. In both cases, this relatively weak performance is overcome through the
addition of a cubic term to the drift, as the RMSE of the cubic PMII model is comparable
to that of the cubic PMI model.

Within the PMI family, the linear, SASR, and cubic models all perform similarly (in
terms of out-of-sample RMSEs). Our interpretation of this contrasting performance of the
PMI and PMII models is as follows. When fitting to our entire sample period, the inclusion
of the cubic terms is important for accurately describing the joint distribution of bond yields.
This is reflected in the highly significant estimates of λZ3 documented in Table 4. At the
same time, our hold-out sample, from the late 1990’s, is a relatively quiet period by historical
standards in terms of interest rate behavior. Therefore the cubic term in the market price
of risk is not playing a key role and, within the PMI family, the linear, SASR, and cubic
models all have comparable RMSEs out of sample.

However, if the benchmark model for the entire sample is obtained by fitting the data
without the cubic term in Λt– as in the PMII family of models– then the other parameters

of results.
25We experimented with a larger number of simulations and the results were qualitatively the same.
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Figure 4: Out of sample RMSE of pricing errors: For each model, state variables are
implied from the ML estimates of parameters and bond yield data. Pricing errors are the
differences between forecasts and actual yields. RMSEs are computed for the hold out period
from 1996:1 to 2000:12.

of Λt (and hence of the P distribution of the state X) must compensate for this omission.
This model misspecification shows up in our out-of-sample analysis in the form of relatively
large RMSEs for the linear and SASR models within the PMII family. Only when we put
the cubic term in Λt back into the PMII model do we recover the same low level of RMSEs.

In sum, this out-of-sample analysis reinforces the view that the cubic term in the market
price of risk of Z is important for accurately describing the historical behavior of U.S. Trea-
sury bond yields. Returning to the shapes of the drifts of Z in Figure 2, these observations
also suggest that the “S on its side” shape to the drift of Z in family PMI is a contributing
factor to the better performance of this family on an out-of-sample basis.

The components of the RMSEs in Figure 4– the means and standard deviations of the
pricing errors– are displayed in Figures 5 and 6. Though all models seem to overestimate
yields on average, it can be seen that the PMI models provide better forecasts of the bond
yields than the PMII models. Among the PMII models, there is a clear hierarchy of perfor-
mance: the cubic fits best, followed by the SASR and then the linear models. Interestingly,
the cubic PMI model does not fit the yields (on average) as well as the SASR or linear PMI

28



0 2 4 6 8 10
-60

-50

-40

-30

-20

-10

0

linear PMI

SASR PMI

cubic PMI

linear PMII

SASR PMII

cubic PMII

Maturity (years)

B
as
is
P
oi
nt
s

Figure 5: Out of sample average pricing errors: Pricing errors are differences between
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models.
The two cubic models (from the PMI and PMII families) give rise to the smallest standard

deviations of the out-of-sample pricing errors. The linear and SASR PMII models perform
the worst by having the largest volatilities of pricing errors. In the middle are the linear and
SASR PMI models. Once again this is consistent with our view that inclusion of the cubic
terms in deriving the benchmark PMI family improves the out-of-sample performance of the
models that exclude the cubic term. Put differently, allowing for the “S on its side” shape
in the drift of Z appears to matter on an out-of-sample basis even during relatively quiet
periods for interest rates.

7 Concluding Remarks

In this paper we have argued that, along important dimensions, researchers can gain flex-
ibility and tractability in analyzing DTSMs by switching from continuous to discrete time.
We have developed a family of nonlinear DTSMs that has several key properties: (i) under
Q, the risk factors X follow the discrete-time counterpart of an affine process residing in one
of the families AQ

M(N), as classified by Dai and Singleton (2000), (ii) the pricing kernel is
specified so as to give the modeler nearly complete flexibility in specifying the market price
of risk Λt of the risk factors, and (iii) for any admissible specification of Λt, the likelihood
function of the bond yield data is known in closed form. This modeling framework was
illustrated by estimating nonlinear (DAQ

1 (3), Λ) models with several specifications of Λt that
give rise to nonlinear (and non-affine) representations of X under the historical measure
P. Our particular choices of Λt introduced powers of the volatility factor Z. However, our
modeling framework allows, in principle, for a fully semi-parametric specification of Λt, and
for possible nonlinearity in all three state variables in these (DAQ

1 (3), Λ) models, and not
just in the volatility factor. An interesting topic for future research is a systematic analysis
of the nature of nonlinearity in the P distributions of bond yields in multi-factor models.

There are many directions in which our modeling framework can be extended. For
instance, given the widespread interest in regime-switching models for interest rates, the
extension to pricing models that allow for volatility processes to switch regimes may well be of
interest. Under certain conditions analogous to those set forth in Dai and Singleton (2003) for
continuous-time models, we preserve analytical bond pricing even in the presence of switching
regimes. Ang and Bekaert (2005) and Dai, Singleton, and Yang (2005) study DTSMs in which
X follows a regime-switching DAQ

0 (N) process, with the latter study allowing for priced
regime-shift risk. Monfort and Pegoraro (2006) propose several families of regime-switching,
affine models based on Gaussian and autoregressive gamma models.
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Appendix

A Proof of Proposition G.E.(Z)

The proof follows from a lemma due to Mokkadem (1985)

Lemma 1 (Mokkadem) Suppose {Zt} is an aperiodic and irreducible Markov chain defined
by

Zt+1 = H(Zt, ǫt+1, θ), (50)

where ǫt is an i.i.d. process. Fix θ and suppose there are constants K > 0, δθ ∈ (0, 1), and
q > 0 such that H(·, ǫ1, θ) is well defined and continuous with

‖H(z, ǫ1, θ)‖q < δθ‖z‖, ‖z‖ > K. (51)

Then {Zt} is geometrically ergodic.

In our setting, we can write, without loss of generality,

H(z, ǫ1, θ) =
[

a(1)(λ(z)) + b(1)(λ(z))z
]

+
√

Ω(z)ǫ1,

where ǫ1 has a zero mean and unit variance, and Ω(z) = a(2)(λ(z))+ b(2)(λ(z))z. Take q = 2,
we have

‖H(z, ǫ1, θ)‖2

‖z‖ ≤ ‖a(1)(λ(z))‖
‖z‖ +

‖b(1)(λ(z))z‖
‖z‖ +

‖
√

Ω(z)ǫ1‖2

‖z‖ . (52)

The first term on the right-hand-side of (52) satisfies

‖a(1)(λ(z))‖
‖z‖ =

‖vec
[

νici

1−λi(z)ci

]

‖
‖z‖ ≤ ‖vec [νici] ‖

‖z‖ → 0, ‖z‖ → ∞, (53)

where we have used the assumption (i) to obtain the inequality.
Since all elements of ρ are non-negative, if 1−λi(z)ci ≥ 1 for all z and i, then the second

term in (52) is bounded by

‖b(1)(λ(z))z‖
‖z‖ ≤ ‖ρz‖

‖z‖ ≤ max
i

|ψi|.

If, in addition, ρij = 0 for i 6= j, the above bound is valid for each element of z when it is
sufficiently large. That is, there exists a K > 0, such that

‖b(1)
ii(λ(z))zi‖
‖zi‖

≤ ‖ρiizi‖
‖zi‖

≤ ρii ≤ max
i

ψi, zi > K
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Finally, the last term in (52) can be made arbitrarily small by choice of a sufficiently
large K, because ‖ǫ1‖2 = 1 and

√

Ω(z) depends on z through terms of the form
√

z.26

The only term on the right-hand side of (52) that does not become arbitrarily small as
K increases towards infinity is the second term. Since we assume that maxi |ψi| < 1, we are
free to choose δθ to satisfy maxi |ψi| < δθ < 1 so that Lemma 1 is satisfied.

B Sampling Intervals Longer than Decision Intervals

Fortunately, within the context of DTSMs, there is an important subclass of discrete-time
affine processes for which the joint density implied by (42) can be expressed analytically.
Specifically, suppose that fQ(Zt+1|Zt) is the density of a DAQ

M(M) process for the M au-
toregressive gamma processes are mutually independent (the discrete-time counterpart to
the case of M independent square-root diffusions). As shown by Gourieroux and Jasiak
(2006), the conditional densities fQ(Zi

t+τ |Zi
t) are known in closed form and, indeed, are also

those of scalar autoregressive gamma processes with

ai(u) = −νi log (1 − uic̃(τ, i)), bi(u) =
ui

1 − uic̃(τ, i)
ρτ

ii, (54)

where c̃(τ, i) ≡ ci(1− ρτ
ii)/(1− ρii) and ρii is the ith diagonal element of the matrix ρ. Thus

the joint conditional density function of Z can be constructed using the marginal densities

fQ(Zi
t+τ |Zi

t) =
1

c̃(τ, i)

∞
∑

k=0









(

ρτ
iiZ

i
t

c̃(τ,i)

)k

k!
e−

ρτ
iiZi

t
c̃(τ,i) ×

(

Zi
t+1

c̃(τ,i)

)νi+k−1

e−
Zi

t+1
c̃(τ,i)

Γ(νi + k)









. (55)

To construct the conditional density fQ(Xt+τ |Xt) of an DAQ
M(N) process, with 0 <

M < N , it remains to address the distribution of Y , the N − M state variables whose
conditional variance depends on the autoregressive gamma process Z. Just as with multi-
period forecasting in GARCH-style models (Bollerslev (1986)), the conditional distribution
of Yt+τ given Xt does not remain Gaussian for τ > 1. Following Duffie, Pedersen, and
Singleton (2003), we can construct a very accurate approximation to the density fQ(Yt+τ |Xt)
by conditioning on both Xt and the sample path (Zt, Zt+1, . . . , Zt+τ ). Recalling the notation
introduced below equation (8), we can write

Yt+τ =

(

τ−1
∑

j=0

(µY
Y )j

)

µ0 +
τ−1
∑

j=0

(µY
Y )jµZ

Y Zt+τ +
τ−1
∑

j=0

(µY
Y )j

√

SY,t+jǫt+τ+1, (56)

where (µY
Y )0 = IN−M , ǫt ∼ N(0, IN−M) and, consistent with our construction of canonical

DAQ
M(N) models, we have normalized ΣY = IN−M . It follows that fQ(Yt+τ |Zt+τ , . . . , Zt+1, Xt)

26See Duffie and Singleton (1993) for a discussion of the geometric ergodicity of models in which volatility
depends on terms of the form xγ , for γ < 1. By using L2 norm (q = 2), we can apply Mokkadem’s lemma
without the i.i.d. assumption for the state innovations.
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is the density of a normal random vector with conditional mean and variance that are easily
derived from (56).

The insight of Duffie, et. al. is that, to a high degree of accuracy,

fQ(Yt+τ |Zt+τ , . . . , Zt+1, Xt) ≈ f̃Q(Yt+τ |Zt+τ , Xt), (57)

where the right-hand density is obtained by replacing the Zs (t + 1 ≤ s < t + τ) by linearly
interpolated values between Zt and Zt+τ . Accordingly, we can take as our approximation to
fQ(Xt+1|Xt) the density fQ(Zt+τ |Zt)×f̃Q(Yt+τ |Zt+τ , Xt). We stress that the first term in this
construction, fQ(Zt+τ |Zt), is known exactly in closed form, so that the only approximation is
with regard to the density fQ(Yt+τ |Zt+τ , . . . , Zt+1, Xt). This approximation is very accurate
because, for moderate τ , the non-normality induced by the time-varying volatility from
Z builds up quite slowly with increasing τ (see Das and Sundaram (1999) and Singleton
(2006)).27

With the conditional Q density fQ(Xt+τ |Xt) in hand, we turn next to the derivation of
the P density fP(Xt+τ |Xt). If Λt is such that the P distribution of Xt+1 given Xt is that of
an affine process in the family DAP

M(N), then the preceding discussion yields an accurate
approximation to the conditional density of the risk factors X and, hence, of the likelihood
function of bond yields. That is, for P-affine processes, (approximate) ML estimation when
the sampling interval exceeds the modeling interval is straightforward. Though this discus-
sion preserves the assumption of linear (affine) models under both P and Q, it is nevertheless
of some practical importance because of its applicability to macro-term structure models.
Using this approach, researchers can explore the sensitivity of integrated discrete-time term
structure and structural macroeconomic models to the specification of the decision interval
of agents relative to the sampling interval of the data.

Once nonlinearity is introduced through the choice of Λt, so that the P distribution of X
is no longer affine, then we cannot in general derive a simple approximation to fP(Xt+τ |Xt)
when τ > 1.

References

Ahn, D., Dittmar, R., Gallant, A., 2002. Quadratic term structure models: Theory and
evidence. Review of Financial Studies 15, 243–288.

Ait-Sahalia, Y., 1996. Testing continuous-time models of the spot interest rate. Review of
Financial Studies 9(2), 385 – 426.

Ait-Sahalia, Y., 1999. Transition densities for interest rate and other nonlinear diffusions.
Journal of Finance 54, 1361–1395.

, 2002. Maximum-likelihood estimation of discretely-sampled diffusions: A closed-
form approximation approach. Econometrica 2, 223–262.

27Duffie, Pedersen, and Singleton (2003) discuss ways of improving the accuracy of their approximation,
but it involves some additional computational complexity due to the use of simulations.

33



Ang, A., Bekaert, G., 2002. Short rate nonlinearities and regime switches. Journal of Eco-
nomic Dynamics and Control 26, 1243–1274.

, 2005. The term structure of real rates and expected inflation. Working paper,
Columbia University.

Ang, A., Dong, S., Piazzesi, M., 2005. No-arbitrage taylor rules. Unpublished working paper.
Columbia University.

Ang, A., Piazzesi, M., 2003. A no-arbitrage vector autoregression of term structure dynamics
with macroeconomic and latent variables. Journal of Monetary Economics 50, 745–787.

Backus, D., Foresi, S., Zin, S., 1998. Arbitrage opportunities in arbitrage-free models of bond
pricing. Journal of Business and Economic Statistics 16, 13–26.

Bansal, R., Zhou, H., 2002. Term structure of interest rates with regime shifts. Journal of
Finance 57, 1997 – 2043.

Beaglehole, D. R., Tenney, M. S., 1991. General solutions of some interest rate-contingent
claim pricing equations. Journal of Fixed Income September, 69–83.

Bekaert, G., Engstrom, E., Grenadier, S., 2004. Stock and bond returns with moody in-
vestors. Unpublished working paper. Stanford University.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics 31, 307–327.

Boudoukh, J., Richardson, M., Smith, T., Whitelaw, R. F., 1999. Regime shifts and bond
returns. Working paper, New York University.

Boudoukh, J., Richardson, M., Stanton, R., Whitelaw, R. F., 1998. The stochastic behav-
ior of interest rates: Implications from a multifactor, nonlinear continuous-time model.
Working Paper, New York University.

Brandt, M., Santa-Clara, P., 2001. Simulated likelihood estimation of diffusions with an
application to exchange rate dynamics in incomplete markets. Working paper, Wharton
School.

Buhlmann, H., Delbaen, F., Embrechts, P., Shiryaev, A., 1996. No-arbitrage, change of
measure and conditional esscher transforms. CWI Quarterly 9, 291–317.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., Sanders, A. B., 1992. An empirical comparison
of alternative models of the short-term interest rate. Journal of Finance XLVII(3), 1209–
1227.

Cheridito, R., Filipovic, D., Kimmel, R., 2003. Market price of risk in affine models: Theory
and evidence. Working Paper, Princeton University.

34



Collin-Dufresne, P., Goldstein, R., Jones, C., 2004. Can interest rate volatility be extracted
from the cross section of bond yields? an investigation of unspanned stochastic volatility.
Unpublished working paper. NBER 10756.

Cox, J., Ingersoll, J., Ross, S., 1985. A theory of the term structure of interest rates. Econo-
metrica 53, 385–407.

Dai, Q., Philippon, T., 2005. Fiscal policy and the term structure of interest rates. Unpub-
lished working paper. NYU and UNC.

Dai, Q., Singleton, K., 2000. Specification analysis of affine term structure models. Journal
of Finance 55, 1943–1978.

, 2002. Expectations puzzles, time-varying risk premia, and affine models of the term
structure. Journal of Financial Economics 63, 415–441.

, 2003. Term structure dynamics in theory and reality. Review of Financial Studies
16, 631–678.

Dai, Q., Singleton, K., Yang, W., 2005. Regime shifts in a dynamic term structure model of
u.s. treasury bond yields. Working Paper, Stanford University.

Darolles, S., Gourieroux, C., Jasiak, J., 2006. Structural laplace transforms and compound
autoregressive processes. forthcoming, Journal of Time Series Analysis.

Das, S., Sundaram, R., 1999. Of smiles and smirks: A term structure perspective. Journal
of Financial and Quantitative Analysis 34, 211–239.

Duan, J., Simonato, J., 1999. Estimating and testing exponential-affine term structure mod-
els by kalman filter. Review of Quantitative Finance and Accounting 13, 111–135.

Duarte, J., 2004. Evaluating an alternative risk preference in affine term structure models.
Review of Financial Studies 17, 379–404.

Duffee, G. R., 2002. Term premia and interest rate forecasts in affine models. Journal of
Finance 57, 405–443.

Duffie, D., Filipovic, D., Schachermayer, W., 2003. Affine processes and applications in
finance. Annals of Applied Probability 13, 984–1053.

Duffie, D., Kan, R., 1996. A yield-factor model of interest rates. Mathematical Finance 6,
379–406.

Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine jump-
diffusions. Econometrica 68, 1343–1376.

Duffie, D., Pedersen, L., Singleton, K., 2003. Modeling credit spreads on sovereign debt: A
case study of russian bonds. Journal of Finance 55, 119–159.

35



Duffie, D., Singleton, K., 1993. Simulated moments estimation of markov models of asset
prices. Econometrica 61, 929–952.

Esscher, F., 1932. On the probability function in the collective theory of risk. Skandinavisk
Aktuarietidskrift 15, 175–195.

Evans, M., 2000. Regime shifts, risk and the term structure. Working Paper, Georgetown
University.

Gallant, A. R., Tauchen, G., 1996. Which moments to match?. Econometric Theory 12,
657–681.

Gerber, H., Shiu, E., 1994. Option pricing by esscher transforms. Transactions of Society of
Actuaries 46, 99–140.

Gourieroux, C., Jasiak, J., 2006. Autoregressive gamma processes. forthcoming, Journal of
Forecasting.

Gourieroux, C., Monfort, A., Polimenis, V., 2002. Affine term structure models. Working
paper, University of Toronto, Canada.

Gray, S., 1996. Modeling the conditional distribution of interest rates as a regime switching
process. Journal of Financial Economics 42, 27–62.

Hordahl, P., Tristani, O., Vestin, D., 2003. A joint econometric model of macroeconomic and
term structure dynamics. Working Paper, European Central Bank.

Lamberton, D., Lapeyre, B., 1992. Introduction au calcul stochastique applique a la finance.
Unpublished working paper. Mathematique et Applications, Ellipses-Editions.

Leippold, M., Wu, L., 2002. Asset pricing under the quadratic class. Journal of Financial
and Quantitative Analysis 37, 271–295.

Litterman, R., Scheinkman, J., 1991. Common factors affecting bond returns. Journal of
Fixed Income 1, 54–61.

Litterman, R., Scheinkman, J., Weiss, L., 1991. Volatility and the yield curve. Journal of
Fixed Income 1, 49–53.

Mokkadem, A., 1985. Le modele non lineaire ar(1) general. ergodicite et ergodicite ge-
ometrique. Comptes Rendues Academie Scientifique Paris 301, Serie I, 889–892.

Monfort, A., Pegoraro, F., 2006. Switching varma term structure models. CREST.

Naik, V., Lee, M. H., 1997. Yield curve dynamics with discrete shifts in economic regimes:
Theory and estimation. Working paper, Faculty of Commerce, University of British
Columbia.

36



Nummelin, E., Tuominen, P., 1982. Geometric ergodicity of harris recurrent markov chains
with applications to renewel theory. Stochastic Processes and Their Applications 12, 187–
202.

Pedersen, A., 1995. A new approach to maximum likelihood estimation for stochastic differ-
ential equations based on discrete observations. Scand J Statistics 22, 55–71.

Rudebusch, G., Wu, T., 2003. A no-arbitrage model of the term structure and the macroe-
conomy. Working Paper, Federal Reserve Bank of San Francisco.

Singleton, K., 2001. Estimation of affine asset pricing models using the empirical character-
istic function. Journal of Econometrics 102, 111–141.

, 2006. Empirical Asset Pricing Models: Specification and Empirical Assessment.
Princeton University Press, .

Stanton, R., 1997. A nonparametric model of term structure dynamics and the market price
of interest rate risk. Journal of Finance 52, 1973–2002.

Sun, T., 1992. Real and nominal interest rates: A discrete-time model and its continuous-
time limit. Review of Financial Studies 5(4), 581–611.

Tweedie, R., 1982. Criteria for rates of convergence of markov chains, with applications to
queuing and storage theory. in Probability, Statistics, and Analysis, ed. by J. Kingman,
and G. Reuter. Cambridge: Cambridge University Press.

Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of Financial
Economics 5, 177–188.

37




