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Abstract

Several studies have put forward the non-linear structure and option-like features of returns

associated with hedge fund strategies. The authors provide a statistical methodology to test for

such non-linear features with the returns on any benchmark portfolio. They estimate the portfolio

of options that best approximates the returns of a given hedge fund, account for this search in the

statistical testing of the contingent claim features, and test whether the identified non-linear

features have a positive value. The authors find that not all categories of funds exhibit significant

non-linearities, and that only a few strategies as a group provide significant value to investors.

Individual funds may still provide value in an otherwise poorly performing category.

JEL classification: C1, C5, G1
Bank classification: Econometric and statistical methods; Financial institutions

Résumé

Plusieurs études ont montré que les rendements produits par les stratégies suivies dans la gestion

des fonds de couverture ont une structure non linéaire et un profil semblable à celui des

rendements associés à l’exercice d’options. Les auteurs proposent ici une méthode statistique

destinée à vérifier la présence de non-linéarités par rapport aux rendements de n’importe quel

portefeuille de référence. Ils estiment un portefeuille d’options représentant le mieux les

rendements d’un fonds de couverture, tiennent compte des résultats de cette recherche dans la

vérification statistique de la présence de structures non linéaires, puis déterminent si les non-

linéarités décelées ont une valeur positive. Les auteurs constatent que les différentes catégories de

fonds ne présentent pas toutes des non-linéarités significatives et qu’une poignée de stratégies

seulement, appliquées ensemble, assurent aux investisseurs des gains appréciables. Certains fonds

pris individuellement peuvent toutefois générer des profits intéressants, même s’ils font partie

d’une catégorie dont les rendements sont faibles.

Classification JEL : C1, C5, G1
Classification de la Banque : Méthodes économétriques et statistiques; Institutions financières





1. Introduction

Since the bursting of the Internet stock bubble in 2000, many pension funds have decided

to invest in hedge funds with the hope of improving their performance on a path to full

funding of their employee pensions. Assessing the performance of hedge funds has therefore

become a topic of major social relevance. Will hedge funds with a typical fee structure of

2 per cent of asset value and a 20 per cent performance fee be able to ful�ll institutional

investors�expectations? While a cursory look at historical performance suggests that even

modest allocations to hedge funds may improve signi�cantly the e¢ ciency of pension fund

portfolios, episodes like the near-bankruptcy of Long-Term Capital Management (LTCM) in

1998 have raised questions about the true nature of their risks.

In this paper we pursue two main objectives. First, we want to better characterize and

understand the risks associated with the di¤erent hedge fund strategies. Second, we want to

determine whether, given these risks, the value of the cash �ows generated by a fund, net of

management fees, is greater than the amount entrusted to the fund manager. Ful�lling these

two objectives is not an easy task. Hedge funds often engage in short-selling and derivatives

trading, while leveraging their positions. More importantly, hedge funds are not transparent

to the investor, since they have no obligation to disclose their positions. Therefore, any

assessment of hedge fund performance can only rely on analyzing their ex-post returns.

However, the return databases su¤er from several biases and they do not go back very far in

time.

Recent literature suggests that hedge fund returns exhibit non-linear structures and

option-like features, or, in other words, risks that are typically ignored by mean-variance

approaches. Fung and Hsieh (2001) analyze trend-following strategies and show that their

payo¤s are related to those of an investment in a lookback straddle. Mitchell and Pulvino

(2001) show that returns to risk arbitrage are similar to those obtained from selling uncovered

index put options. Agarwal and Naik (2004) extend these results and show that, in fact, a

wide range of equity-oriented hedge fund strategies exhibit this non-linear payo¤ structure.

In particular, they use a stepwise regression procedure to identify the signi�cant risk factors.

To account for non-linearities, they include option-based risk factors that consist of returns

obtained by buying, and selling one month later, liquid put and call options on the Standard

& Poor�s (S&P) 500 index.

Two main limitations arise in these studies. For one, they rely on the existence of liquid

options to capture the non-linearities. This is a clear drawback, since it precludes investigat-
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ing the presence of non-linearities with respect to risk factors where liquid option markets do

not exist, such as the international equity market, the bond market, or the exchange rate. In

addition, these studies identify the signi�cant factors by a stepwise regression approach; that

is, adding or deleting them in a sequential way that depends on the value of the F-statistic.

Such an approach rules out the possibility of relying on standard statistical inference to de-

termine in a statistically sound way whether the value of the cash �ows generated by a fund

is greater than the amount entrusted to the fund manager.

We propose a new methodology that goes a long way towards solving the di¢ culties

mentioned above. In particular, our approach allows us to (i) determine the portfolio of

options that best approximates the returns of a given hedge fund, (ii) use options on any

benchmark portfolio deemed to best characterize the strategies of the fund (and not simply

traded options on the S&P 500), (iii) estimate whether the options that best characterize

the returns of a particular fund are puts or calls, or both, as well as their corresponding

moneyness, (iv) assess whether the presence of the estimated non-linearities are statistically

signi�cant, (v) value the performance of a fund by valuing the portfolio of options that have

been found to be relevant in characterizing the hedge fund returns, and (vi) provide a reliable

test for a positive valuation of the fund.

The starting point of the methodology is based on Glosten and Jagannathan (1994). We

estimate a �exible piecewise linear function to capture the potentially non-linear relationship

between the returns of a hedge fund and those of benchmark portfolios. The coe¢ cients

of such a non-linear regression are interpretable by practitioners, since they correspond to a

position on a risk-free asset, a position on a set of benchmark portfolios, several positions on a

series of options on these benchmark portfolios, and the e¤ective strikes of such options. Our

additional contribution is to propose a valid inference procedure in such a framework. Indeed,

standard hypothesis tests to determine whether the coe¢ cients that capture the positions on

the options are di¤erent from zero are not applicable. When these coe¢ cients are zero, the

parameters corresponding to the option strikes are not identi�ed, since any value of the strike

will leave the R2 of the regression unchanged. Thus, the usual critical values of a Student

t-test cannot be used to establish whether there exists a non-linear relationship between

hedge fund returns and the benchmark returns. To overcome this important problem, we

adapt a testing methodology proposed by Hansen (1996) and compute the critical values

corresponding to the appropriate asymptotic distribution.

We apply this methodology to several indexes of hedge fund categories, such as convertible

arbitrage, �xed-income arbitrage, event driven, equity market neutral, long-short equity,
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global macro, and managed futures. We compute both equally weighted and value-weighted

indexes using the TASS database, which provides net-of-fees monthly returns and net asset

value data on 4,606 funds beginning in February 1977. We start our analysis by taking as the

market portfolio the Center for Research in Security Prices (CRSP) value-weighted index.

We analyze the robustness of our results by correcting for back�lling or lack of reporting

biases that a¤ect data on hedge fund returns.

We also extend previous studies by applying the methodology to individual funds within

the categories. These studies have mainly considered individual funds in one category or

simply indexes.1 Aggregation of individual funds with di¤erent non-linear payo¤s may, for

example, smooth the index returns and cause an underestimation of the non-linearities. On

the contrary, it can also be the case that aggregation of funds with di¤erent exposures to the

risk factors may create a spurious non-linear pattern and exaggerate the non-linear features

actually present in individual hedge funds.

Our �ndings indicate that using a proper statistical methodology matters. Not all cate-

gories exhibit signi�cant non-linearities, even though casual evidence from a scatter plot may

be suggestive of an option-like pattern of returns. There is statistical support for rejecting

linearity only for convertible arbitrage, �xed-income arbitrage, event driven, and managed

futures. These conclusions are robust for both equally weighted and value-weighted indexes

of hedge funds. This conclusion di¤ers from Agarwal and Naik (2004), who �nd evidence of

non-linearities in most category indexes. In addition, our results indicate that bias correc-

tions for back�lling and lack of reporting are crucial for valuing funds. They have a de�nite

impact on the test for positive performance. Only the categories of convertible arbitrage and

event driven seem to provide value for the investors. The index of managed futures, which

comprises a large number of funds, exhibits a poor performance even before accounting for

biases.

Looking at individual funds, we con�rm that results based only on indexes are mislead-

ing. The appearance of non-linear features in hedge fund returns is supported statistically

for only a third of the individual funds. Only one fund out of two provides a signi�cant

positive performance to its investors. These conclusions emphasize that both testing and

disaggregation are important to draw a realistic picture of performance in the hedge fund

industry. There are also important variations between the strategies. Arbitrage-based hedge

1Mitchell and Pulvino (2001) look at individual funds only in the risk arbitrage category, while Fung and
Hsieh (2001) study only trend-following strategies. Patton (2004) and Chan et al. (2005) look at returns
from individual funds.
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funds, which include convertible arbitrage, �xed-income arbitrage, and event driven, exhibit

signi�cant non-linearities (we reject linearity at a con�dence level of 10 per cent in about

40 per cent of the cases) and positive performance (the value of about 80 per cent of the

funds is signi�cantly greater than 0 at a con�dence level of 10 per cent). The directional

funds, under which we group global macro, emerging markets, and managed futures, have a

lower percentage of signi�cant non-linear features (32 per cent) and do not perform as well

(only 30 per cent have a signi�cant positive value). The last grouping includes equity market

neutral and long-short strategies. A small percentage shows signi�cant non-linearities (about

15 per cent), but more than 50 per cent of the funds have a signi�cant positive value. We

also look at two particular categories at the two extremes. Only 25 per cent of the funds in

convertible arbitrage exhibit a signi�cant non-linearity, although 75 per cent o¤er a positive

value to their investors. In managed futures, there is much more evidence of non-linearities

(close to 50 per cent), but only 25 per cent of the funds generate a signi�cantly positive

performance.

The results remain basically the same when we introduce more diversi�ed indexes (Russell

3000), indexes with international exposure (MSCI world), bond indexes, or other factors, such

as implied volatility on the S&P 500 index (VIX). If anything, non-linear e¤ects come out

more clearly for certain categories of funds and the value signs remain unchanged. We also

test whether our conclusions are robust to the inclusion of the option-based factors used in

Agarwal and Naik (2004). We �nd that our methodology is able to still detect non-linearities

when these option regressors are included, and we show that our method can lead to basically

the same �ndings in terms of valuation. Finally, we provide Monte Carlo evidence that our

asymptotic tests have good �nite-sample properties, an important property given the small

sample of returns available in the database.

Other papers have recently proposed statistical tests for the nature of the strategies

and the performance of hedge funds. Patton (2004) investigates whether hedge funds in

the market neutral category are really market neutral, developing tests for more elaborate

notions of market neutrality than the standard correlation-based de�nition. He �nds that a

quarter of the funds in this category have a signi�cant exposure to market risk. Bailey, Li,

and Zhang (2004) use a stochastic discount factor approach to evaluate hedge funds portfolios

based on the style and characteristics of managers. They conclude that a market factor and

two option factors (put and straddle) are signi�cantly priced. Finally, Chan et al. (2005)

develop a number of new risk measures for hedge funds, such as illiquidity risk exposure and

non-linear factor models, and apply them to individual and aggregate hedge-fund returns.
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The rest of this paper is organized as follows. In section 2 we explain the contingent claim

approach to performance evaluation. Section 3 describes the tests used to assess the presence

of non-linearities. Section 4 describes the data and presents results for global indexes, style

indexes, and individual funds in several groupings of strategies. Section 5 presents a robust-

ness analysis of the results. Section 6 concludes. Appendix A describes the TASS categories

of hedge funds. Appendix B presents the econometric details of our test for non-linearities,

and Appendix C provides details of a simulation study performed to assess its �nite-sample

properties.

2. A Contingent Claim Approach to Performance

Evaluation

As noted by Glosten and Jagannathan (1994), the principle behind any evaluation measure is

to �assign the correct value to the cash�ow (net of management fees) the manager generates

from the amount entrusted to him by the investor.�For example, this cash �ow can be valued

using a linear factor model such as the capital-asset-pricing model (CAPM) or the arbitrage

pricing theory (APT). The literature, however, has identi�ed several problems with these

linear asset-pricing models when used for the task of performance evaluation. First, these

models restrict the relationship between risk factors and returns to be linear, and thus do

not properly evaluate assets with non-linear payo¤s. Second, performance measures based

on these linear models, such as Jensen�s alpha and Sharpe ratios, can be manipulated by

taking positions in the derivatives market (see, for example, Jagannathan and Korajczyk

1986 and Goetzmann et al. 2002). These two problems are especially relevant for our work,

because several studies have put forward the non-linear structure and option-like features of

returns associated with hedge fund strategies and, second, hedge funds usually take positions

in derivative securities.

Moreover, these two problems also make di¢ cult an interpretation of the non-linear fea-

tures potentially present in returns of managed portfolios. For example, it is common practice

to divide performance into two components: security selection and market timing. Merton

(1981) and Dybvig and Ross (1985) point out that portfolios managed using superior infor-

mation will exhibit option-like features, even when the portfolio manager does not explicitly

trade in options. Henriksson and Merton (1981) introduce one option on an index portfo-

lio, to try to separate the market-timing ability and the stock-picking ability of a portfolio
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manager. In particular, they propose to run a regression such as

Xp;t+1 = �0 + �1XI;t+1 + �1max(0;�XI;t+1) + "t+1; (1)

where Xp;t+1 is the excess return on the fund, and XI;t+1 on the market portfolio. A positive

estimate of �0 will indicate that the manager has security-selection ability, while a positive �1
will measure the market-timing ability of the fund. We estimate this Henriksson and Merton

(1981) regression for hedge funds in the TASS database with at least sixty observations.

Figure 1 shows a scatter plot of the estimates of �0 (security selection) against the estimates of

�1 (market timing). Notice that hedge funds with stock-picking ability (�0 > 0) tend to have

a �perverse timing activity�(�1 < 0), and vice versa. This suggests that, on average, security-

selection and market-timing abilities might cancel each other. This result is consistent with

previous studies of mutual funds such as Henriksson (1984).

Several reasons have been advanced for this �nding. Jagannathan and Korajczyk (1986)

suggest an explanation based on the non-linear payo¤ structure of options and �option-like�

securities. Given the nature of the strategies followed by hedge funds, it is specially relevant

here. Jagannathan and Korajczyk (1986) show that this negative cross-sectional correlation

might come from a manager who has no abilities and who engages in a strategy of writing

covered calls on the market. Then, the returns of this fund will show inferior market-timing

ability and superior selectivity when the manager is evaluated with the Henriksson and

Merton (1981) speci�cation. Therefore, it is di¢ cult to separate market-timing ability and

stock-picking ability.2

We follow Glosten and Jagannathan (1994) in circumventing these problems by taking

into account the possible presence of non-linear structures in the returns of a hedge fund,

and in giving a value to the fund manager�s abilities regardless of the strategies (e.g., security

selecion or market timing) the fund manager follows to generate these returns. Glosten and

Jagannathan (1994) suggest approximating the payo¤ on a managed portfolio using payo¤s

for a limited number of options on a suitably chosen index portfolio and evaluating the

performance of a managed portfolio by �nding the value of these options.

2In addition, Admati et al. (1986) invoke the di¢ culty in arriving at consistent theoretical de�nitions of
timing and selectivity abilities.
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2.1 Theoretical framework

The analysis in Glosten and Jagannathan (1994) is based on an investor who has to decide

whether to invest in a fund for which a portfolio manager promises a return of Rp;t+1 dollars

at time t + 1 for each dollar invested now (time t), net of management fees. To this end,

assume there is a nominally risk-free asset with gross return that, without loss of generality,

remains constant at Rf ; also, by a no-arbitrage argument consider the existence of a strictly

positive stochastic discount factor (SDF) that prices any asset. The SDF is denoted byMt+1

and its existence implies that the present value, Vt, of a claim to the portfolio payo¤, Xp;t+1 =

Rp;t+1 �Rf , satis�es:
Vt = Et [Mt+1Xpt+1] ; (2)

where Et [�] denotes expectation with respect to the information available at time t.

Note that Vt is the net present value at the margin of a borrowed dollar invested in the

managed portfolio, conditional on the information available at time t. For example, consider

a hedge fund manager who is a market timer à la Merton (1981); that is, a manager who

can perfectly forecast whether the return at time t+ 1 on some index RI;t+1 will outperform

the risk-free return. Using this perfect forecast, the manager invests one dollar in the index

if RI;t+1 > Rf . On the other hand, if Rf > RI;t+1, the manager will invest in the risk-free

asset (assume, for simplicity and without loss of generality, that short-selling is not allowed).

This implies that the hedge fund will have as a return Rp;t+1 = max (RI;t+1; Rf;t+1) and an

excess return of Xp;t+1 = max (RI;t+1 �Rf ; 0). If we apply the pricing relationship in (2) to
value this fund, we get a net present value

Vt = Et [Mt+1max (RI;t+1 �Rf ; 0)] = Ct; (3)

where Ct is the price of a call option with one period to expiration, and exercise price Rf
on the index with a current value equal to one. Since the price of a call option cannot

be negative, this valuation framework will classify the fund as providing valuable service

(Vt > 0). The intuition is straightforward: this manager is able to generate the payo¤s of a

call option with a zero investment (borrow at Rf and invest in the managed portfolio). On

the other hand, consider a hedge fund manager with no market-timing ability that buys a

call option with the same characteristics as before. If we apply this valuation methodology

to this second fund, we will �nd that it has a zero net present value.

Since the information set available at time t may be complicated, we follow Glosten and
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Jagannathan�s (1994) suggestion and focus on the average value of Vt given by

v = E [Vt] = E [Mt+1Xpt+1] : (4)

This simpli�cation is appropriate in a framework where the hedge fund manager accepts a

dollar from the investor at time t and returns Rp;t+1 dollars at time t + 1; and where this

process is repeated for several periods. We will therefore use the time series of returns of

the hedge fund along with the returns on the index to attribute an average value to the

fund. We also assume that, even if the manager�s abilities change over time, the average

ability is still well-de�ned. Under these simpli�cations, and under the assumption that the

SDF is a function only of the return on some index portfolio, Proposition 1 in Glosten

and Jagannathan�s (1994) study suggests an evaluation procedure that consists in valuing a

contingent claim. For clarity of exposition, we reproduce their result here:

Proposition 1 Suppose that the SDF, Mt+1, is a function solely of the vector of returns,

RI;t+1, on some index portfolio. Then, the average value of the portfolio v = E[Vt] is the

average price of the traded security with payo¤ e(RI;t+1) = E [Xp;t+1jRI;t+1] :

This result implies that Xp can be decomposed into two parts: (i) a payo¤ that is related

to the SDF and that is a function of the return on some index RI (possibly multidimen-

sional), and (ii) a payo¤ that is uncorrelated with the SDF and that as a result must have

zero mean and zero average price. Therefore, the valuation methodology in Glosten and

Jagannathan (1994) consists of selecting the relevant index (or set of indexes), estimating

the potentially non-linear relation between the portfolio excess returns and these indexes

and, �nally, applying contingent claim valuation techniques to arrive at the average value of

e(RI).

2.2 Choosing the functional form

Suppose we have chosen the relevant indexes or risk factors that drive the SDF. The next

step would be to choose and estimate a speci�c functional form for the relation between

the portfolio excess returns and the index e(�). This function must be �exible enough to
capture the non-linear nature of hedge fund returns. Since any function can be approximated

arbitrarily closely by a collection of spline functions, we could use a continuous piecewise

linear �t with m �knots,�such as:

Xp;t+1 = �0 + �1RI;t+1 +
Xm

i=1
�imax(RI;t+1 � ki; 0): (5)
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Note that the term inside the sum, say max(RI;t+1 � ki; 0), is the payo¤ at expiration on
an index call option with exercise price ki when the current value of the index is one. We

will also refer to the strike parameter as the �moneyness of the option.� In addition, this

equation can be interpretable by �nancial practitioners as it separates the payo¤s of the

hedge fund into three components. The �rst term in this equation is related to the payo¤

of a position in the risk-free asset (say, a one-period bond) that pays one dollar at the end

of the period. The second term is related to the return of a position in the index portfolio.

Finally, the summation term is related to the payo¤s of m call options on the same index

portfolio, but with di¤erent strikes. The performance of a fund can then be assessed by

valuing this particular portfolio of bonds, stocks, and call options. Recently, Vanden (2004)

has provided a theoretical support for such a speci�cation. If agents face wealth constraints,

the equilibrium SDF may be described by a similar formulation. Another approach that

includes non-linearities is proposed by Harvey and Siddique (2000). They add a non-linear

term derived from skewness to candidate linear SDFs.

Recall that the value of a dollar for sure received at time t + 1 is E [Mt+1] =

1=Rf ; the value of RI;t+1 received at time t + 1 is E [Mt+1RI;t+1] = 1; also note that

E [Mt+1max(RI;t+1 � ki; 0)] = Ci is the price of a call option (with one period to expira-

tion, and exercise price ki, when the current value of the index is one). Following Glosten

and Jagannathan (1994), we start by assuming that the return on the index portfolio RI is

lognormally distributed so that the value of the option can be computed using the Black-

Scholes formula. This valuation procedure has the advantage of being simple and intuitive.

Thus, the value of the portfolio will be:

v = �0=Rf + �1 +
Xm

i=1
�iCi: (6)

The implementation of this approach requires that the number of options, m, and their

strikes fk1; : : : ; kng be speci�ed. In previous papers, such as Agarwal and Naik (2004) and
Glosten and Jagannathan (1994), these are chosen a priori.3 Here, we want to let the data

determine this level. We will show that this extra degree of �exibility is critical to characterize

the strategy followed by hedge funds and to evaluate their performance.

In this context, we want to test the existence of non-linear patterns between hedge fund

3Glosten and Jagannathan (1994) set the knot equal to one for a one-knot estimation, as in the Henriksson-
Merton method. Agarwal and Naik (2004) do not use the same estimation strategy. They compute the
returns of strategies based on options using the observed prices of calls and puts at the money and slightly
out-of-the-money for the S&P 500 index.
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returns and risk factors. To this end, note that a linear relationship between Xp and the

index RI is nested within the formulation with one option:

Xp;t+1 = �0 + �1RI;t+1 + �1max(RI;t+1 � k; 0); (7)

when �1 = 0. However, note that if the model is linear, then the strike of the option is

not identi�ed, meaning that any value of k will leave the R2 of the regression unchanged.

The main consequence of such a problem is that the asymptotic distribution of the usual

test statistic of the hypothesis that �1 is equal to zero is not standard, which means that we

cannot rely on a table of known critical values, as is usually done. Therefore, the non-linear

pattern in hedge fund returns found in previous papers may just be a statistical artifact due

to an ad hoc speci�cation of the number of options (and their strikes), and/or the use of a

statistical testing theory that is not valid for the purposes of testing linearity. Still, we can

apply the general theory for econometric testing problems involving parameters that are not

identi�ed under the null hypothesis developed in Hansen (1996). The next section brie�y

reviews the estimation and hypothesis testing of this non-linear model.

3. Assessing the Non-Linearities

We are interested in �tting a piecewise linear function such as:

Xp;t = �0 + �1RI;t +
Xm

i=1
�imax(RI;t � ki; 0) + "t t = 1; : : : n;

which can be interpreted as a regression equation of the excess return of a hedge fund (Xp;t)

on a constant, the return on an index that drives the SDF (RI;t), and m call options on

the same index portfolio but with di¤erent strikes. Our goal is to optimally determine the

number of options m and the positions of the set of strikes fk1; : : : ; kng based on the data,
instead of setting them a priori as in previous studies.

To determine how many options we need to approximate the returns of a hedge fund,

we start by testing whether the linear �t (m = 0) provides a better approximation to the

description of the data than a model with only one option (m = 1). If we cannot reject the

hypothesis that the model is linear, we can stop there. Otherwise, we could test whether the

�t of a model with two options is better than the �t with only one, and so on. Still, and due

to the short history of returns that characterizes hedge fund datasets, we focus only on tests

of a linear �t versus one option.

10



As before, note that when � = 0 the linear model is nested in the formulation with one

option, m = 1:

Xp;t = �0 + �1RI;t + �max(RI;t � k; 0) + "t t = 1; : : : n: (8)

When the strike of the option, k, is known a priori, testing the null hypothesis of linearity,

H0 : � = 0 is straightforward. The parameters �0, �1, and � are �rst estimated by running

an ordinary least squares (OLS) regression, and the usual Wald statistic is then used. The

null hypothesis is tested using the fact that this statistic has an approximate chi-square

distribution with one degree of freedom (the number of restrictions) in large samples.

However, since hedge funds are not required to be transparent about their strategies, we

know little about them. Therefore, letting the data reveal the option that best approximates

the returns of a hedge fund can shed light on the speci�cs of these strategies. This is the

empirical approach that we will follow by treating the position of the strike, k, as an unknown

to be estimated. In particular, the least-square estimate of k can be found sequentially

through concentration. That is, for a given value of the strike of the option, k, we �rst run

an OLS regression as if its value were known. Then, we search over the possible values of

k for the one that minimizes the sum of squared errors b"t(k)0b"t(k) to get the least-square
estimate of this parameter. Given this search, the Wald statistic of the null hypothesis � = 0

does not have a chi-square distribution, because the strike of the option has been chosen in

a data-dependent procedure.

Davies (1977, 1987) suggests computing, instead, the Wald test statistic for each possible

value of k and focusing on the supremum value of such sequence. We will refer to this statistic

as supWald. Again, the problem that we face is that the asymptotic distribution of this test

is non-standard and simulation-based methods are necessary for a correct inference. Hansen

(1996) shows how to compute the asymptotic distributions of the supWald test (among

others) by simulation methods. For completeness, Appendix B provides the details of such

simulation methods as well as details on how to compute the corresponding �asymptotic

p-values.�

We also use this statistical approach to evaluate whether individual funds o¤er a positive

performance for investors. Thus, we �rst test for the presence of an option-like feature. If a

non-linearity is found to be signi�cant, then we test whether the overall value, including the

option, is positive.
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4. Empirical Results

Our methodology for �nding non-linearities will be to estimate the strike instead of setting

it a priori. Otherwise, we will follow Glosten and Jagannathan (1994). We also investigate

how sensitive the non-linearity and performance results are to corrections for the back�lling

and survivorship biases. Finally, we look at the individual funds within the categories.

We estimate the non-linearities and the performance at the individual fund level, and then

determine whether the results are uniform among the funds, or whether there is a wide

cross-sectional dispersion.

4.1 Description of data and construction of hedge fund indexes

Our hedge fund returns are computed from the TASS database, which provides monthly

returns and net asset value data on 4,606 funds beginning in February 1977. For building

these hedge fund indexes, our sample starts in January 1996 and ends in March 2004.4 For

the individual funds, we use all funds for which at least 60 observations are available. The

individual funds are classi�ed into eleven categories: 1) convertible arbitrage; 2) �xed-income

arbitrage; 3) event driven; 4) equity market neutral; 5) long-short equity; 6) global macro;

7) emerging markets; 8) dedicated short bias; 9) managed futures; 10) funds of funds; and

11) other. For the sake of saving space, we do not report results for the index on the

category �other.�Appendix A gives a brief description of the typical strategies followed in

each category.

This database also includes, for each fund, an entry date, an exit date (if any), a date

for �rst reporting, reasons for the fund death (if necessary), and lock-up periods. This

information is useful for correcting two well-known biases associated with hedge fund data.

The �rst is a back�lling or instant-history bias, whereby the database back�lls the historical

return data of a fund before its entry into the database. The hypothesis is that a manager

will report to the database vendor only after obtaining a good track record of returns over the

�rst periods of the life of the hedge fund (and only if the fund performed well). Consequently,

we eliminate all data that precede the fund entry date in the database. A similar approach

is used by Fung and Hsieh (2001) and Posthuma and van der Sluis (2003).

The second bias corresponds to survivorship. Many funds disappear from the database

during the sample period for various reasons, such as fund liquidation, fund not reporting

4We choose to start in 1996 to have a reasonable representation for all categories of funds. Also, the TASS
database does not give any information on exited funds prior to 1994.
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any longer to the database, no answer from the fund managers, and merger with another

fund, to name a few. Not all these reasons have the same consequences in terms of mon-

etary loss for the investor. For example, an outperforming fund may stop reporting data

to protect its winning strategy, thus halting the in�ow of capital. On the other hand, an

underperforming fund has the incentive to not report, in order to hide bad results and avoid

investors withdrawing their money. For example, Posthuma and van der Sluis (2003) note

that: �[Long-Term Capital Management] lost 92 per cent of its capital from October 1997

to October 1998 and did not report to databases.�Therefore, we correct the returns for the

survivorship bias by applying a loss of 25 per cent when the indicated reasons for not report-

ing are fund liquidation, fund not reporting to TASS, managers not answering requests, and

other. In all other cases, particularly mergers and dormant funds, we do not apply any loss.5

Finally, we use the CRSP value-weighted NYSE, AMEX, and NASDAQ combined index

as a market measure, while we compute returns in excess of the 30-day Treasury bill yield

from the CRSP RISKFREE �les.

4.1.1 Global indexes

We build hedge fund indexes that are representative of the whole industry according to the

two basic methodologies used by the main index-producing �rms. The Hedge Fund Research

(HFR) indexes are equally weighted and therefore give relatively more weight to small hedge

funds. The Credit Suisse First Boston/Tremont (TREMONT) indexes are value-weighted

(i.e., valued by the net asset value of the fund) and are more representative of larger funds. We

construct these two types of global indexes starting from the individual funds in the database.

We report the gross returns associated with these two indexes, but we also construct series

that are free from the two above-mentioned biases (back�lling and survivorship). Summary

statistics are reported in panel a of Table 1.

These descriptive statistics show that annualized mean returns are much lower when the

two bias corrections are applied. The corrected returns still have a positive mean, but barely

spectacular. As expected, the TREMONT index exhibits higher returns than the HFR index.

The corrected indexes exhibit higher standard deviations than the respective gross return

indexes. This is explained by the fact that adding losses for the survivorship bias tends to

5This loss is applied in the month following the month where the fund stopped reporting. We feel that it
is a reasonable assumption given our ignorance regarding the true loss. It should be noted that performance
generally deteriorates before a fund stops reporting. Still, this approach is more conservative than the scenario
analysis proposed in Posthuma and van der Sluis (2003). Those authors add an extra return of 0 per cent,
-50 per cent, and -100 per cent, respectively, for every fund that stops reporting to TASS.
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increase dispersion. The corrections also make the fund indexes less Gaussian, since both the

skewness and kurtosis increase in absolute value. For gross returns, skewness is almost always

positive. However, when the corrections are applied, there is a clear distinction between

the equally weighted HFR index and the value-weighted TREMONT index. Skewness of

the former becomes negative, while for the latter it remains positive and not signi�cantly

di¤erent, due to a maximum return that is roughly double the minimum return in absolute

value. This tends to show that large funds are less susceptible to the survivorship bias, and

that they provide better performance than smaller funds. Finally, all indexes show excess

kurtosis, but the e¤ect is most pronounced when the two corrections are applied.

4.1.2 Indexes for fund categories

Looking at the various categories in panel b of Table 1 for the bias-corrected returns, we see

ample variation in mean returns. For the equally weighted HFR indexes, dedicated short bias

(category 8) and managed futures (category 9) exhibit negative means, while the index for

global macro strategies (category 6) is close to zero. This seems to be corrected when we look

at value-weighted indexes (TREMONT), where large funds with better performance and less

non-reporting funds are given more weight. Indirectly, it suggests that these categories may

have a greater number of smaller funds that tend to disappear. This does not seem to be the

case for the convertible arbitrage (category 1) and long-short equity (category 5) strategies,

since the mean returns are very similar for the HFR and TREMONT indexes.

In terms of standard deviations, the results are less uniform. For the equity market neutral

(category 4), the standard deviation of the TREMONT index is more than double the one

of the HFR index. A large increase is also noticeable for global macro. Emerging markets

(category 7) and dedicated short bias (category 8) strategies exhibit the highest volatility

levels. The least volatile are convertible arbitrage and �xed-income arbitrage (category 2)

strategies in the TREMONT indexes.

Skewness is almost always negative. The two exceptions are long-short equity and ded-

icated short bias. Skewness is also more pronounced in the categories than in the global

indexes, where averaging tends to make the returns distribution look more symmetric. Sim-

ilarly, excess kurtosis is generally much higher in the category indexes than in the global

indexes. However, for some categories, there are startling di¤erences between the equally

weighted and the value-weighted indexes. For the event driven (category 3) index, it is much

higher in HFR, while the contrary is true for equity market neutral and, especially, global

macro.
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We show for comparison the indexes without any bias corrections in panel c of Table 1.

The bias corrections lower the means for all categories, but the e¤ect is much more pronounced

for some categories than for others. Global macro, emerging markets, and managed futures

are the most spectacular, both in HFR and TREMONT. In terms of volatility, the bias

corrections tend to push it higher, a little bit more for TREMONT than for HFR. The two

bias corrections act in opposite directions. The correction for back�lling tends to take out

the higher returns,6 which lowers dispersion, while the correction for no more reporting adds

very negative returns, which increases dispersion.

4.2 Assessing non-linearities and performance in hedge fund

indexes

We estimate a one-option speci�cation in (8) for each one of the global hedge fund indexes,

each of the indexes in the various categories, and each individual fund within each category.

We report three sets of results for each index: (i) the estimated values of the coe¢ cients�

respectively, the intercept (�0), the coe¢ cient of the market index (�1), the coe¢ cient on

the option (�), and the strike (k); (ii) the test results for the presence of the non-linearity;

and (iii) the test results for the fund valuation. We start our analysis by taking the market

portfolio (the CRSP value-weighted index) as the only relevant factor driving the SDF. We

include other factors in the robustness analysis in section 5.

It is important to discuss the interpretation of the coe¢ cients. Following Glosten and

Jagannathan (1994), we estimate a normalized version of equation (8):

X�
pt = �0 + �1R

�
It + �max(R

�
It � k; 0) + "t; (9)

where we de�ne X�
pt as Xpt=Rft and R�It as RIt=Rft:

With this transformation, the valuation of the projection ofXpt; conditional on the interest

rate, is independent of the interest rate. The value of the �rst two terms is �0+�1; while the

value of the third term can be shown (in a Black-Scholes world) to be equal to �(N(d1) �
kN(d2)) with: d1 = � log(k)=� + �=2 and d2 = d1 � �; where � denotes the standard
deviation of the index returns and N(�) is the standard normal distribution function. With
this normalization, the parameter k is a strike on the normalized returns on the market.

6This is because funds decide to enter the market after obtaining high returns and choosing how many
back years to report. This shows in the maximum, which is often lower in the corrected returns than in the
original returns.
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With the average value of the monthly interest rate, the at-the-money strike (1=Rf ) will be

equal to 0.9669. This will be useful for interpreting the estimated values for k. If they are

greater than this value, the option will be out-of-the-money.

It should be noted that, even with only one call option, this non-linear speci�cation allows

us to capture many meaningful payo¤ structures. For example, a short position in a put

option can be obtained when �1 > 0 and � = ��1. Similarly, the payo¤s of a straddle, which
involves buying a call and a put with the same strike and expiration date, are obtained when

�1 < 0 and � = �2�1. When necessary, we will provide graphs to illustrate these resulting
strategies, as well as valuation of the fund as a function of market volatility.

Finally, and since we have searched for the moneyness that best approximates the returns,

we test whether the value of the fund is equal to zero using a supWald test. This allows us

to account for this search in the statistical testing of the positive performance of the fund.

4.2.1 Global indexes

Panel a of Table 2 provides the estimated values of the coe¢ cients of (9) for the global hedge

fund indexes HFR and TREMONT, with and without bias corrections. A �rst remark is that

the estimated coe¢ cients are very similar, in terms of sign and magnitude, for all indexes.

The coe¢ cient �2 is consistently negative, but is not estimated precisely. This is re�ected in

the p-values of the Wald tests reported in panel b of Table 2.7 In fact, none of the indexes

shows a marginally signi�cant kink. The knot or strike value is estimated very precisely and

is always greater than the reference value of 0.9669.

In terms of option strategy, we see that the graphs in Figure 2 for the TREMONT index

resemble the payo¤ structure of selling put options. This result is consistent with what

was found for most category indexes by Agarwal and Naik (2004). These graphs also show

that bias corrections do not a¤ect the kinks. Another interesting feature in Figure 2 is the

comparison between the optimal kink estimated with our procedure and the one estimated

by setting k to one. The slope is still broken, especially for the indexes corrected for the two

biases, but it is much less pronounced than when chosen optimally.

Panel c of Table 2 provides valuations for the various indexes with and without bias

corrections for several market volatilities. There is evidence of a positive valuation even

7The p-values deliver the same message even if we set k to one and do not search over the optimal value
of the strike (see the Wald k=1 column in panel b of Table 2).
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when one corrects for the back�lling bias, but it disappears when the survivorship bias is

accounted for. This is very clear in panel a of Figure 3, where the valuations are plotted

against volatility. Panels b, c, and d compare, with and without bias correction, the three

valuations obtained (i) without any option strategy, the straight line parallel to the volatility

axis,8 (ii) with an option with k = 1; the thin line, and (iii) the option with the optimal k;

the thick line. Even without bias corrections, the value with the option strategy goes below

the linear strategy when volatility is higher than 15 per cent.

A closer look at the various categories reveals the story behind the aggregate indexes. As

we will see, there is much variation between the categories.

4.2.2 Indexes for fund categories

We start by reporting the results on the presence of non-linearities for each one of the cat-

egories with and without the two bias corrections. Table 3 reports the estimated values for

the coe¢ cients of (9) for each category in each type of index: HFR and TREMONT. Ta-

ble 4 provides results for the linearity test for the same breakdown, and Table 5 shows the

corresponding valuation results.

Let us �rst look at panel a of Table 3, which shows the piecewise linear �t on the raw

data without any bias corrections. Estimated values for the non-linear component � vary

across categories. While they are mostly negative, their magnitudes di¤er considerably. For

managed futures and dedicated short bias, the coe¢ cient � is positive and �1 is negative,

while it is the contrary for the other categories. When we apply the two bias corrections

(panel b, Table 3), the estimated values change somewhat but the signs and the relative

magnitudes are maintained across categories. In most cases, the estimated value of the strike

is greater than the at-the-money strike benchmark, regardless of the bias corrections. This

means that the call option is out-of-the-money. Notable exceptions are convertible arbitrage,

managed futures, and emerging markets. Results for the other categories alternate between

the raw series and the corrected one.

In Figure 4 we present several graphs to illustrate di¤erent shapes of non-linear strategies

followed by three of the categories: convertible arbitrage, �xed-income arbitrage, and man-

aged futures. Let us comment brie�y on the particular strategies involved in these categories

and the shapes found for the non-linear features. We start by analyzing the convertible ar-

8Under the null hypothesis of linearity, the performance of the fund is given by e� = e�0 + e�1, where e�0
and e�1 are the OLS of estimates of �0 and �1 when we impose that � = 0.
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bitrage category. A typical strategy in convertible arbitrage is to be long in the convertible

bond and short in the common stock of the same company. Pro�ts are generated from both

positions. The principal is usually protected from market �uctuations. The corresponding

graph in Figure 4 is suggestive of a short position in a put option, which means that these

strategies lose money when the equity index incurs a large fall. In most situations, however,

the fund collects a small premium on the price discrepancy.

The shape of the non-linear feature for �xed-income arbitrage resembles that of an in-

verted straddle. Funds in this category exploit price anomalies between related interest rate

securities. They buy undervalued securities and sell short overvalued ones. The correspond-

ing graph in Figure 4 suggests that this strategy makes money when the stock market is

calm, since it may be the time when the two securities revert to their fundamental value. On

the other hand, a large shock like the Russian crisis creates large losses.

Finally, the managed futures pro�le in Figure 4 is more illustrative of a straddle. This

result is intuitive because funds in this category tend to be trend followers. That is, they

buy in an up market and sell (or even take a short position) in a down market. Therefore,

large movements up or down are pro�table. All these results are consistent with the �ndings

of Agarwal and Naik (2004), but our method allows us to provide clear illustrations of the

underlying strategies.

We next look at the linearity test in Table 4, panel a (raw series) and panel b (bias-

corrected series), to see whether these apparent non-linearities are statistically signi�cant.

There is more support for rejecting linearity than for the global indexes, especially for con-

vertible arbitrage, �xed-income arbitrage, event driven, and managed futures. Without bias

correction, this rejection spreads over the HFR and TREMONT indexes. With bias cor-

rection, only the p-values of convertible arbitrage and managed futures remain low for the

TREMONT value-weighted indexes. We also reject linearity for emerging markets at the

10 per cent level in most cases.

The ultimate test for investors remains a positive value. In Table 5, panels a and b, we

report the alpha corresponding to a linear projection on the market index, as well as the

valuation after accounting for the option feature for various levels of volatility. P-values are

also reported between brackets to test whether the performance is signi�cantly di¤erent from

zero. Without bias correction, the p-values are all close to zero, except for the managed

futures and the dedicated short bias strategies. In the latter categories, the linear alpha

is positive and signi�cantly di¤erent from zero, but the performance deteriorates once the
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non-linear feature is accounted for. For volatilities up to 15 per cent, the valuation is lower

and not signi�cantly di¤erent from zero. Only high volatilities show that the magnitude

and the statistical signi�cance of performance improve markedly. This is consistent with

the straddle-like strategies shown in Figure 4 for managed futures. Panel b of Table 5

for valuation with bias corrections provides varied and interesting results. Few categories

exhibit a signi�cant positive performance. The two categories that stand out are convertible

arbitrage and event driven. The option-like feature improves performance, especially for

event driven, where the linear alpha in HFR is not signi�cantly di¤erent from zero. For both

these categories, performance worsens when volatility is high. When more weight is given to

large funds (TREMONT index), the event driven and the long-short equity categories show

some signi�cant improvement in performance at low levels of volatility.

The graphs in Figure 5 illustrate the performance (corrected for biases) of convertible

arbitrage, �xed-income arbitrage, and managed futures. The performance that would be

achieved with an ad hoc strike set at a value of one is also displayed for comparison purposes.

It shows that performance is usually higher with the optimally chosen strike and that the

TREMONT index, which weights large funds more heavily, exhibits a higher valuation than

the HFR index.

Our results tend to carry the same cautious message as Agarwal and Naik (2004) about the

performance of hedge funds. Only a few categories seem to pass the �lters of bias corrections

and formal statistical inference. Convertible arbitrage stands prominently among the few

winners, while the performance of managed futures is simply dreadful. In the next section

we look at individual funds in each category and determine how widespread good or bad

performance is in these categories. We also look at various strategy groupings.

4.3 Assessing non-linearities and performance in individual funds

Data on individual funds help unveil the reality behind indexes. Aggregation could po-

tentially create either a smoothing e¤ect, which will mask existing non-linearities for each

individual fund, or, at the opposite, create spurious non-linear structures that are not present

in individual funds. The information in the database will also be used more e¢ ciently. All

funds, alive or dead, since the inception of the database in 1977, will be included in the

analysis, as long as a fund has been in existence for 60 months.9 In this section, we look

only at raw returns, since we want to maximize the number of funds included. Eliminating

9We consider that this is a minimum number of observations required to conduct the type of linearity and
value tests we have described in section 3.
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back�lled returns would have sensibly reduced the number of funds. We also abstain from

introducing a loss when a fund stops reporting for the reasons mentioned above, as we did

for the indexes. We want to look at the raw cross-sectional distributions in order to draw

a comparison with the raw indexes used in previous studies. This will undoubtedly bias

performance upwards for some funds.

All funds, Live Funds, Graveyard Funds In Table 6, we �rst look at the whole universe

of funds in the database since its introduction. Overall, 1,847 funds have 60 observations

or more. It should be noted that the total number of funds in the database for our sample

period is 4,467. This indicates not so much the large number of exits before a �ve-year period

of operation, but mainly the very large number of entries in the past few years. The rate

of growth in the number of funds has averaged 18 per cent over the past ten years and has

accelerated considerably in the last two to three years, especially for funds of funds. Of our

total funds with 60 observations or more, 1,230 are live funds, meaning that they were still

in operation in March 2004, and 617 are graveyard funds, which are no longer reporting to

the database. We will conduct the same analysis for these two categories in Tables 7 and 8,

respectively.

Tables 6 to 13 are structured in the same way. In panel a, we report the cross-sectional

distribution of the linearity test. The cross-sectional distributions for performance and its

p-value are presented in panel b. Panel a is based on the p-values for the linearity test; that

is, the null hypothesis that the return of the fund has a linear relationship with the return on

the market portfolio (H0 : � = 0): We compare the results for four tests: the two Wald tests

(with or without heteroscedasticity correction) when the moneyness parameter k is set to a

value of 1, and the two SupWald tests (with or without heteroscedasticity correction) when

this parameter is determined optimally. For panel b, which reports the results for hedge fund

performance, we keep this comparison between the set value of k and the optimal value of

the threshold. Moreover, all results for value are conditioned on a value for the volatility of

the return on the market index, which we assume to be 15 per cent.10 To summarize the test

results, we report the maximum, minimum, and average p-values, but, more interestingly,

the number (and percentage) of funds for which the p-value is less than 1 per cent, between

1 per cent and 5 per cent, between 5 per cent and 10 per cent, and above 10 per cent.

The �rst important result is that we reject linearity for about one-third of the funds.

This shows that simply relying on the global indexes is misleading, but also that the non-

10This value is a rough estimate of the historical volatility of the market over this period (see Table 1).

20



linear feature is not a statistical reality for all funds. The result is robust over all tests,

whether we search optimally for the k parameter value or not, and whether we account for

heteroscedasticity or not. The sup tests reject linearity for 8 per cent to 10 per cent more

funds if we set the critical p-value at 10 per cent. Results on the performance tests are also

very informative. Only one out of every two funds provides a signi�cant positive value to

its investors. It should be stressed that we did not add a loss for the next month after the

disappearance of a fund, as we did when we computed the indexes. Again, looking only at

the indexes would have been misleading. Without bias corrections, we would have accepted

that hedge funds provide positive value to their investors at any level of con�dence. When

we average, the very good performers push the mean value of the index higher, especially for

the value-weighted index. As we can see in panel b of Table 6, the maximum value is very

high.

The picture for the linearity test is almost the same for both live and graveyard funds

(Tables 7 and 8). Live funds exhibit somewhat less signi�cant non-linearities than the ag-

gregate, and corresponding graveyard funds somewhat more. This is not the case, of course,

for performance. For about two-thirds of the live funds, performance is signi�cantly positive

at 10 per cent. The percentage falls to one-third for graveyard funds, which means that dis-

appearance from the database is usually associated with bad outcomes. This provides some

support for our decision to add a loss when we feel that the disappearance was associated

with a negative event. As far as the index is concerned, bad performance over the past few

months was not enough to counterbalance stellar performers. The decline in performance

over the last months of an individual fund�s life is enough to reject an average positive value

for this particular fund.

We have seen that there are important di¤erences between the category indexes. We

next look at three groupings of our original ten categories: arbitrage, long-short equity,

and directional. We leave aside the category funds of funds because it is, by de�nition, a

diversi�ed mixture of managers and strategies.

Arbitrage-based strategies In the TASS database, arbitrage strategies are grouped into

three categories: convertible arbitrage, �xed-income arbitrage, and event driven. In the event

driven category, the arbitrage is conducted whenever �rms are merged, liquidated, bankrupt,

or reorganized. Overall, the database contains 328 funds in these three categories. Event

driven funds represent about half the number of funds in this grouping. The results in Table

9 show that close to 50 per cent of the funds exhibit a signi�cant non-linearity with respect to

21



the market return. Searching for the optimal moneyness increases the number of signi�cant

non-linear strategies by about 30 funds. In terms of performance, a signi�cant positive value

is found for close to 80 per cent of the funds. However, the maximum value in panel b is

much less (37.95) than what we found for all funds (86.06). The median value is close to

7 per cent a year. There is not much di¤erence between the value at k = 1 and at the optimal

k:

These results con�rm the conclusions of Mitchell and Pulvino (2001) in their thorough

study of risk-arbitrage. In particular, they suggest that three parameters, estimated with

a piecewise linear regression, should be used in evaluating return series generated by risk

arbitrage hedge funds. However, their valuation procedure does not account for the fact that

the threshold is determined endogenously. We have provided a statistical procedure that

accounts for this search and for uncertainty in the estimation of the parameters in question.

Equity market neutral and long-short strategies In this grouping, the long-short

funds are by far the most numerous. Overall, the latter category represents a large percentage

(close to 30 per cent) of the hedge fund industry. This strategy corresponds to the original

strategy followed by Albert Winslow Jones in 1949. Overall, we do not �nd overwhelming

evidence of non-linearities in this category. Results in Table 10 show that only 15 per cent

of the funds exhibit a signi�cant non-linear relationship with the return of the CRSP index.

This con�rms the results based on the index where the p-values associated with the two

categories included in this grouping are among the highest. It also con�rms the analysis of

Agarwal and Naik (2004), who do not �nd a signi�cant relationship with their option return

index.

In terms of performance, the evidence is mixed. One fund out of two provides a signi�cant

positive value to investors. This is where the individual fund analysis provides a picture that

is not available when we only look at an index. Without bias corrections, the performance

of the index was signi�cantly positive, but it was hiding the fact that a lot of funds in this

category disappear. Correcting for biases accounted for this and resulted in a negative overall

performance.

Directional strategies This grouping includes three categories: global macro, emerging

markets, and managed futures. All strategies associated with these funds involve some kind

of bet on market direction. This bet can be based on economic fundamentals or on some
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technical analysis. A common strategy, studied in detail in Fung and Hsieh (2001), is the

trend-following strategy. It consists in buying in an up market and selling in a down market.

This strategy is characteristic of managed futures funds, which make up half of the 463 funds

included in our grouping. In Table 11, we �nd that the non-linear feature is present at the

10 per cent level in about 40 per cent of the funds. This, therefore, con�rms the evidence

in the index for emerging markets and managed futures. For performance, the percentage of

p-values below 10 per cent falls to about 30 per cent. The distribution of values in panel b

indicates the widespread nature of value in this category, with extreme negative minimum

and maximum values.

We conclude this analysis on individual hedge funds by looking more closely at the two

categories that exhibit the best and the worst performance.

Convertible arbitrage Table 12 reports results for the category with the best index per-

formance among all categories. This category contains 80 funds. The hypothesis that fund

excess returns have a linear relationship with the market portfolio is rejected at the 10 per

cent level in about 25 per cent of the cases. A majority of funds thus do not seem to use

market �uctuations to build strategies with options. However, these funds still manage to

generate a positive performance. About 80 per cent of the funds have a signi�cantly positive

performance, for an average volatility of 15 per cent.

Managed futures There are 235 funds claiming to belong to this category (Table 13).

There is much more evidence of non-linearities in this category. In about half the cases,

we can reject the null hypothesis of linearity at the 10 per cent level. However, these non-

linear strategies do not seem to pay o¤, since about 25 per cent have a signi�cantly positive

performance, even though about 80 per cent exhibit a positive valuation. This is where

statistical testing in the presence of non-linearities is important. It should be stressed that

managed futures represent a percentage of graveyard funds that is about three times the

percentage of live funds.

Two main conclusions can be drawn from the results on individual funds. First, the

non-linear features in the indexes may overestimate the actual use of non-linear strategies by

individual funds. Second, the overall performance of the index is more or less supported by

the cross-sectional distributions of individual performances. The quality of the fund within

a strategy is also an important factor, since a fund can make pro�ts in a generally losing

23



category, or vice versa.

5. Robustness Analysis

Our core methodology delivers clear results on the presence or absence of non-linearities in

the returns of hedge fund indexes and individual hedge funds. However, these results rely

on using a particular index to capture the stochastic discount factor with which to value the

funds, as well as a speci�c contingent claim valuation formula. In this section, we assess

the robustness of our �ndings to these choices. First, we compare our results with those

obtained in previous studies. Second, we discuss the sensitivity of the results to using the

Black-Scholes formula to value the option-like feature. Third, we use several other factors

to con�rm test results concerning the presence of non-linearities and a positive valuation.

Finally, the tests performed to detect non-linearities are asymptotic, but our samples are

rather small. Therefore, we perform a Monte Carlo study to check the performance of tests

in small samples. The simulation study is described in detail in Appendix C.

5.1 Comparison with previous studies

An alternative approach to assess the presence of non-linearities consists in constructing the

returns on a portfolio of options and testing whether this factor explains linearly the returns

on a fund (or the corresponding index). This approach is suggested by Agarwal and Naik

(2004), who compute four option factors that include highly liquid at-the-money (ATM) and

out-of-the-money (OTM) European call and put options on the S&P 500 index.

In this subsection, we incorporate these option-based risk factors into our analysis. We

start by running a regression of the normalized hedge fund returns on three normalized

factors� the market and the two OTM option factors (call and put options)11:

X�
pt = �0 + �1R

�
It + �2R

�
call;t + �3R

�
put;t + "t; (10)

where the asterisk indicates that the returns on the indexes have been normalized by Rft,

as in (9); RIt denotes the returns on the CRSP value-weighted index; and Rcall;t and Rput;t
denote the returns on the OTM call and put option factors, respectively.

Note that when �2 and �3 in equation (10) are jointly equal to zero, the hedge fund

11The results in Agarwal and Naik (2004) suggest that ATM option factors do not play a big role in
explaining hedge fund returns.
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returns are then linearly related to the market return. Therefore, a linearity test amounts

to testing H0 : �2 = �3 = 0. Also note that, under this approach, there are no parameters

unidenti�ed under the null hypothesis of linearity. Therefore, we can rely for inference on the

usual Wald test. With this speci�cation we reject the linearity assumption for all categories

of hedge funds, a �nding in line with the results in Agarwal and Naik (2004).12 Therefore, we

tend to �nd more evidence against linearity with this approach than with our procedure. One

reason may be that these factors have been built to uncover non-linear patterns. Finding

the optimal factors has certainly involved some search from the researchers, which is not

accounted for when we use a Wald test.

An important check for our study is to verify whether these two option-based factors can

account for all the non-linear patterns found in the hedge fund return data. To do so, we

augment equation (10) with a non-linear term:

X�
pt = �0 + �1R

�
It + �2R

�
call;t + �3R

�
put;t + �max(R

�
It � k; 0) + "t; (11)

and test whether the coe¢ cient in front of this non-linear term, �, is equal to zero. Again,

the parameter k must be estimated and, therefore, the test of the hypothesis H0 : � = 0 is

non-standard, as explained earlier. Our results indicate that the evidence of non-linearities

still remains for �xed-income arbitrage (HFR and TREMONT), global macro (HFR), and

managed futures (HFR and TREMONT). Therefore, there remain some non-linearities in

the hedge fund return data that cannot be fully explained by Agarwal and Naik�s (2004)

option-based factors.

This comparison tells us that our test may be somewhat conservative, but that it might

uncover non-linearities undetected by option factors constructed a priori with a set money-

ness. However, testing for non-linearities is just a step towards the most important goal,

which is to determine whether the funds provide a positive value to the investors. In the

next section, we compare the two approaches in terms of valuation.

5.2 Option valuation

In order to value the contingent claims that best approximate the hedge fund returns, we

rely on the Black-Scholes formula and a constant average volatility over the sample to value

12For space considerations, we do not present these results, but they are available upon request from the
authors. It should be noted that we use the bias-corrected returns, whereas Agarwal and Naik (2004) use
raw returns without any adjustment.
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these contingent claims. To add some con�dence to our results we include �ve values of the

volatility in Table 5 to show how fund value varies with the level of volatility. A high volatility

may transform a positive performance into a negative one or vice versa. For example, the

value for the index of �xed-income arbitrage becomes negative for a volatility of 25 per cent,

while the index of managed futures starts showing positive value for a volatility of 20 per cent

or more. Earlier, we stated that these results are consistent with the strategies associated

with these types of funds.

Of course, volatility varies over time and so will the value of the funds. Ideally, one would

like to incorporate this time-varying volatility into the pricing formula of the contingent claim.

However, our methodology is based on a regression where the average kink that determines

the moneyness is found to characterize the option-like feature in the hedge fund returns.

Plugging in a value for volatility gives the average value of the fund over the sample. A clear

advantage of the procedure suggested by Glosten and Jagannathan (1994) is that it produces

a fund value while incorporating non-linearities with any index chosen as the benchmark

portfolio. In the methodology chosen by Agarwal and Naik (2004), one needs to rely on

options exchanged on the market to construct the returns on a portfolio of options, and

test whether this factor explains linearly the returns on a fund index. Therefore, Agarwal

and Naik (2004) limit themselves to options on the S&P 500. Our methodology allows

testing for non-linearity and for positive value with any candidate portfolio. The funds could

synthetically reproduce such options if they are not exchanged on the market. Finally, it

should be noted that to evaluate the performance of hedge funds in the long run, Agarwal

and Naik (2004) also rely on the Black and Scholes valuation formula.

Nevertheless, to somehow control for time-varying volatility, we present two di¤erent

exercises. First, we enter the implied volatility index on the S&P 500 published by the

Chicago Board of Options Exchange linearly as a factor, along with the returns on the market

index. The presence of this volatility factor can partly capture the hedge fund strategies based

on volatility, the variation in the moneyness not accounted for in the non-linear term, and

departures from log-normality of hedge fund returns. Therefore, we estimate the following

model for the indexes, as in subsection 4.2:

X�
pt = �0 + �1R

�
It + �2V IX

�
t + �max(R

�
It � k; 0) + "t; (12)

where X�
pt and R

�
It are de�ned as in (9) and V IX

�
t as V IXt=Rft.

Results of the linearity test show that, for many fund categories, the evidence of non-
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linearity is stronger with VIX added as a factor. For example, this is the case for convertible

arbitrage, �xed-income arbitrage, event driven, emerging markets, and funds of funds. On

the other hand, evidence of non-linearity disappears for managed futures once we introduce

volatility as a factor. This is a very intuitive result, since we see that the strategy followed by

these funds resembles a straddle. The relationship between volatility and returns is therefore

more complex than the relationship we assume in our one-factor model with one option. Since

the VIX is not a return series, it is di¢ cult to draw a valid conclusion about performance

given this new characterization of managed futures returns, but the large attrition in this

category tells us that our previous results on average valuation are probably a good indicator

of performance. The inclusion of a volatility factor in describing the returns seems therefore

to be important for most of the categories, but, as expected, its e¤ect is mostly prevalent in

categories of funds where performance relies on volatility trading, such as managed futures.

We leave further valuation analysis of these categories with volatility strategies for future

research.

Second, we can use Agarwal and Naik�s (2004) option-based factors to obtain a measure of

the overall value of a fund that does not depend on the Black-Scholes formula. In particular,

note that equation (10) implies that the performance of a fund is given by vAN = �0 + �1 +

�2 + �3. In Table 14 we report the valuation of the fund using these option-based factors as

well as the p-value that corresponds with the hypothesis that the value of the fund is zero.

A �rst and important �nding is that we arrive at the same conclusions regarding positive or

negative valuation as in Table 5 (panel b) for volatilities between 15 and 20 per cent. In terms

of magnitude, the results are the closest for a volatility of the market equal to 20 per cent.

These �ndings show that using the Black Scholes model to value the option-like features

in our procedure does not lead to di¤erent conclusions in terms of valuation. Given the

possibility of valuing options on any benchmark factor instead of relying on liquid markets,

this check provides a comforting reassurance.

5.3 Other market indexes

In Agarwal and Naik (2004), several indexes are used as factors to describe hedge fund

returns. To account for the large set of equities in which the hedge funds can invest, these

authors use the Russell 3000 index to capture small U.S. �rms; and to capture international

returns, they include the Morgan Stanley Capital International (MSCI) world return index.

By using the CRSP index, as we did until now, we may not have adequately represented the

presence of small �rms and international diversi�cation in certain strategies. We also include
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in our analysis a bond return index: the Lehmann Brothers U.S. aggregate bond index.

5.3.1 Russell indexes

For the Russell 3000 index, most of the results (not reported here to conserve space) are both

qualitatively and quantitatively the same in terms of detection of non-linearity and valuation.

However, the e¤ect of including a larger set of equities is mostly felt in the long-short equity

hedge category. The p-values of the linearity test are now more indicative of the presence

of a non-linearity in returns, with a value of 0.0010 for the supWald(h) statistic instead of

0.5790 with the CRSP index in the HFR category. The message for valuation is basically the

same as before, but all valuations are below the ones obtained with CRSP. Similar results

are obtained with the TREMONT category.

To further explore the e¤ect of using strategies based on small and large �rms in invest-

ment strategies like in the long-short equity hedge, we include two indexes, Russell 1000

and Russell 2000, to capture, respectively, the large and small equities. The Russell 1000

index measures the performance of the 1000 largest companies in the Russell 3000, which

represents approximately 92 per cent of its total capitalization. The Russell 2000 index mea-

sures the performance of the 2000 smallest companies (approximately 8 per cent of its total

capitalization).

Through the signs of exposition to both indexes, we can hope to capture the short and

long positions in the strategy. Moreover, we introduce two options, one for each of the

indexes. The estimated model is as follows:

X�
pt = �0 + �1RU1

�
t + �2RU2

�
t + �1max(RU1

�
t � k1; 0) + �2max(RU2�t � k2; 0) + "t; (13)

where the asterisk indicates that the returns on the indexes have been normalized by Rft,

as in (9), and RU1t and RU2t denote the returns on the Russell 1000 and 2000 indexes,

respectively. The most interesting results are obtained again for the long-short equity hedge

category. In particular, and in line with the rest of the paper, we provide two graphs in

Figure 6 to illustrate the shapes of the non-linear strategies of the TREMONT index for

this category (the shape of the HFR index is qualitatively similar). Panel a suggests a

position on an inverted straddle on the Russell 1000. However, we cannot reject the null

hypothesis of �1 = 0 (p-value equal to 0.2400 and 0.1080 for the HFR and TREMONT

indexes, respectively). The graph in panel b resembles that of a long position in the Russell

2000 index jointly with another long position in an out-of-the-money call on the same index
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(k1 is equal to 1:0694 for both the HFR and TREMONT indexes). We reject that the

coe¢ cient �2 is equal to zero (p-value equal to 0.0480 and 0.0910 for the HFR and TREMONT

indexes, respectively).

These robustness checks with more indexes have shown that we can re�ne to a certain

extent the strategies used by some categories. However, the basic facts that we �nd relative to

category indexes on the presence or absence of non-linearities or the valuation are unchanged

for almost all categories.

5.3.2 MSCI world index

We know that certain categories, such as global macro or emerging markets, may include

securities from di¤erent countries. Also, the equity market neutral strategy may be more

related to a world index than to an index like CRSP. Therefore, we run the same regression

as in (9) with the MSCI world index instead of the CRSP. Apart from stronger statistical

evidence against linearity for the equity market neutral, results are basically the same as for

the CRSP, both in terms of evidence on option-like features and of valuation.

5.3.3 Lehmann Brothers U.S. aggregate bond index

Hedge funds in the �xed-income arbitrage category try to exploit price anomalies between

related interest rate securities. Therefore, it can be the case that another relevant benchmark

to evaluate this category is a bond market factor alongside the equity index. To investigate

this issue we estimate the following model:

X�
pt = �0 + �1R

�
It + �2R

�
bt + �1max(R

�
It � k; 0) + �2max(R�bt � k; 0) + "t; (14)

where the asterisk indicates that the returns on the indexes have been normalized by Rft,

as in (9), and RIt and Rbt denote the returns on the CRSP and Lehmann Brothers indexes,

respectively.

A �rst important �nding is that the inclusion of the bond factor and the bond-based option

does not alter our previous conclusions about non-linearities with respect to the equity index.

Results regarding the test of H0 : �1 = 0 are qualitatively the same as before for all categories

of funds.

The central issue is to verify whether the bond factor, together with its corresponding

option, appears signi�cant in the �xed-income category. When we test the hypothesis that
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this category is not related to the bond market index (H0 : �2 = �2 = 0), we obtain p-values

equal to 0.752 or 0.414 for the HFR and the TREMONT indexes, respectively. Therefore,

we can safely conclude that there does not seem to be a missing factor linked to the bond

market for the �xed-income category.

Interestingly, there appears to be a role for this factor in the categories that belong to

the directional strategies group. In particular, we reject this hypothesis for the global macro

(p-values equal to 0.002 and 0.044 for the HFR and TREMONT indexes, respectively),

emerging markets (p-value equal to 0.047 for the HFR index), managed futures (p-values

equal to 0.001 and 0.050 for the HFR and TREMONT indexes, respectively), and the funds

of funds category (p-values equal to 0.050 and 0.046 for the HFR and TREMONT indexes,

respectively). Our interpretation of this �nding is that these hedge funds can be looking to

the bond market to extract information about the overall state of the economy.

5.4 Finite-sample properties of the linearity test

In Appendix C, we brie�y describe the experimental setting and the results of two Monte

Carlo simulation studies that were done in order to assess the �nite-sample properties of

the tests used in this paper. One is based on the estimated parameters for the TREMONT

index for category 1 (convertible arbitrage), and the second is based on estimates of the

TREMONT index for category 9 (managed futures). We investigate two sample sizes: T =

100 (which is roughly our sample size for data on indexes) and T = 60 (the minimum

number of observations that we require to include an individual fund in our study). Our

results indicate that the tests have generally good �nite-sample size and power properties.

Moreover, they are comparable with the case where the position of the knot is set to its true

value.

6. Conclusion

We have shown that an approach to optimally searching for non-linearities unveils strate-

gies that look like put selling, straddles, or inverted straddles. However, given the limited

information available on hedge fund returns, the statistical evidence is not as overwhelming

as previous studies tend to conclude. Even if non-linear strategies are employed, few cate-

gories provide a signi�cantly positive value to investors, especially after accounting for the

back�lling and survivorship biases. Quality funds can still be found in each category and our

methodology helps identify them.
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Our �ndings suggest that prudence should prevail when investing in hedge funds. Pension

funds as well as retail investors have increased exposure to funds that engage in active and

often di¢ cult-to-decipher strategies. We hope that the tools developed in this paper will

help investors recognize funds that o¤er the risk and return combination ultimately sought

in these strategies.
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Table 1
Summary Statistics
Panel a: Indexes

Mean Median S.D. Skew. Kurt. Min. Max.
One-month interest rate 3:77 4:51 0:49 �0:65 �1:17 0:79 6:23
Value-weighted CRSP index 10:36 19:60 17:34 �0:68 0:22 �189:16 100:71

HFR
No bias correction 11:96 9:35 6:02 0:20 1:36 �60:12 76:02
Bias 1 corrected 8:60 7:99 7:00 �0:23 2:53 �89:52 83:53
Biases 1 and 2 corrected 4:45 4:41 6:93 �0:38 2:46 �94:49 73:69

TREMONT
No bias correction 12:87 11:26 5:57 0:63 1:67 �38:99 83:41
Bias 1 corrected 10:19 10:07 6:48 0:72 3:18 �53:93 99:20
Biases 1 and 2 corrected 6:84 6:01 6:60 0:62 2:71 �55:97 94:66

This table shows the means, medians, standard deviations (S.D.), skewness (Skew,), kurtosis (Kurt.), and minimum
(Min.) and maximum (Max.) of (annualized) returns for HFR and TREMONT indexes without bias correction, corrected
for back�lling bias (Bias 1) and corrected by back�lling and survivorship bias (Biases 1 and 2) during January 1996 to
March 2004 (99 observations).

Panel b: Indexes by Categories (Back�lling and Survivorship Biases Corrected)

Mean Median S.D. Skew. Kurt. Min. Max.
HFR
C1 Convertible arbitrage 8:14 10:34 4:63 �1:52 7:22 �75:24 44:40
C2 Fixed-income arbitrage 3:33 7:06 4:91 �2:74 11:63 �89:30 34:32
C3 Event driven 6:60 8:11 5:61 �1:38 6:33 �93:35 48:23
C4 Equity market neutral 4:05 3:31 3:55 0:25 1:71 �31:77 50:06
C5 Long-short equity hedge 8:06 6:83 10:57 0:17 1:67 �109:76 125:55
C6 Global macro 0:16 �1:37 6:79 0:21 0:08 �53:15 61:76
C7 Emerging markets 7:70 13:53 17:57 �1:38 5:48 �294:92 152:49
C8 Dedicated short nias �3:44 �10:50 21:29 0:43 0:84 �186:12 252:03
C9 Managed futures �3:13 �5:09 9:25 0:22 �0:13 �84:24 80:83
C10 Funds of funds 3:65 5:67 6:18 �0:30 2:75 �81:88 63:75

TREMONT
C1 Convertible arbitrage 8:45 8:85 4:06 �1:13 4:66 �56:95 46:23
C2 Fixed-income arbitrage 4:87 7:15 3:49 �2:76 12:31 �64:07 26:80
C3 Event driven 11:62 12:87 6:88 �0:13 1:36 �73:73 72:64
C4 Equity market neutral 5:40 8:14 7:72 �2:58 16:56 �164:63 79:96
C5 Long-short equity hedge 10:71 11:38 11:79 0:42 2:95 �108:26 180:37
C6 Global macro 2:22 4:21 11:99 �4:40 34:32 �314:18 98:06
C7 Emerging markets 4:02 18:13 16:89 �1:53 4:83 �236:65 163:96
C8 Dedicated short bias 3:18 �8:17 25:76 0:85 3:03 �261:71 340:94
C9 Managed futures 3:71 5:67 13:20 �0:67 3:31 �200:84 120:96
C10 Funds of funds 5:99 6:65 5:87 �0:47 3:71 �81:43 66:82

This table shows the means, medians, standard deviations (S.D.), skewness (Skew,), kurtosis (Kurt.), and minimum
(Min.) and maximum (Max.) of (annualized) returns for HFR and TREMONT indexes corrected by back�lling and
survivorship bias, for each one of the categories during January 1996 to March 2004 (99 observations).
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Table 1
Summary Statistics

Panel c: Indexes by Categories (No Bias Correction)

Mean Median S.D. Skew. Kurt. Min. Max.
HFR
C1 Convertible arbitrage 12:10 12:40 3:72 �0:88 3:43 �44:50 45:20
C2 Fixed-income arbitrage 9:03 11:42 3:70 �3:69 21:25 �76:41 25:80
C3 Event driven 12:10 13:38 4:96 �1:98 9:43 �84:33 48:32
C4 Equity market neutral 10:22 8:45 2:49 0:45 0:16 �9:51 36:63
C5 Long-short equity hedge 16:37 13:84 10:20 0:19 1:56 �102:57 126:69
C6 Global macro 10:02 6:72 5:52 0:65 0:62 �38:58 61:78
C7 Emerging markets 14:90 22:09 16:73 �1:26 4:81 �266:26 158:24
C8 Dedicated short bias 2:69 �5:12 20:99 0:63 0:94 �141:58 272:34
C9 Managed futures 10:17 7:35 9:65 0:20 �0:39 �58:92 93:21
C10 Funds of funds 8:86 6:82 5:31 0:44 1:62 �48:91 65:95

TREMONT
C1 Convertible arbitrage 12:85 12:74 3:36 �0:55 2:30 �34:50 40:49
C2 Fixed-income arbitrage 6:16 8:06 2:62 �2:04 6:43 �36:93 19:80
C3 Event driven 13:00 14:34 5:83 �1:76 7:74 �95:65 49:05
C4 Equity market neutral 13:91 11:12 3:84 0:54 0:66 �18:04 56:24
C5 Long-short equity hedge 18:73 15:28 10:87 �0:08 3:54 �132:91 161:55
C6 Global macro 11:85 10:25 4:95 0:05 0:86 �43:43 54:82
C7 Emerging markets 13:46 22:57 13:94 �1:55 6:19 �206:42 153:66
C8 Dedicated short bias 7:25 �3:29 19:60 0:40 0:98 �175:59 250:45
C9 Managed futures 12:29 8:70 10:51 0:40 0:05 �57:28 117:95
C10 Funds of funds 10:48 7:29 5:00 0:72 1:47 �28:90 70:23

This table shows the means, medians, standard deviations (S.D.), skewness (Skew,), kurtosis (Kurt.), and minimum
(Min.) and maximum (Max.) of (annualized) returns for HFR and TREMONT indexes without bias correction, for each
one of the categories during January 1996 to March 2004 (99 observations).
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Table 2
Results with Indexes

Panel a: Piecewise Linear Fit
�0 �1 � k �2 � 10�3

HFR
No bias correction �0:2797 0:2860 �0:2417 1:0450 0:1329

(0:0317) (0:0325) (0:2917) (0:0208)
Bias 1 corrected �0:3420 0:3461 �0:2440 1:0331 0:1842

(0:0519) (0:0530) (0:2247) (0:0245)
Biases 1 and 2 corrected �0:3485 0:3492 �0:2583 1:0331 0:1769

(0:0517) (0:0528) (0:2140) (0:0225)

TREMONT
No bias correction �0:2346 0:2415 �0:1915 1:0471 0:1322

(0:0282) (0:0290) (0:3006) (0:0273)
Bias 1 corrected �0:2575 0:2630 �0:1619 1:0272 0:2222

(0:0398) (0:0411) (0:2515) (0:0525)
Biases 1 and 2 corrected �0:2549 0:2572 �0:1178 1:0272 0:2356

(0:0414) (0:0426) (0:2492) (0:0721)

This table shows the results of the following piecewise linear �t for HFR and TREMONT indexes without bias cor-
rection, corrected for back�lling bias (Bias 1) and corrected by back�lling and survivorship bias (Biases 1 and 2) during
January 1996 to March 2004 (99 obs): X�

p;t+1 = �0 + �1R
�
I;t+1 + �max(R

�
I;t+1 � k; 0) + "t+1; E

�
"2t+1

�
= �2 where

X�
p;t+1 = (Rp;t+1 � Rf;t)=Rf;t, R�I;t+1 = RI;t+1=Rf;t. Std. errors (in parentheses) are computed using Chan and Tsay

(1998).

Panel b: Tests of Linearity (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

HFR
No bias correction 0:554 0:308 0:580 0:569
Bias 1 corrected 0:195 0:200 0:267 0:387
Biases 1 and 2 corrected 0:143 0:154 0:212 0:324

TREMONT
No bias correction 0:846 0:560 0:837 0:731
Bias 1 corrected 0:624 0:504 0:564 0:630
Biases 1 and 2 corrected 0:904 0:754 0:889 0:799

This table shows the p-values for the test of the hypothesis H0 : � = 0 in the following piecewise linear regression:
X�
p;t+1 = �0 + �1R

�
I;t+1 + �max(R

�
I;t+1 � k; 0) + "t+1:

Panel c: Valuation
� � = 5% � = 10% � = 15% � = 20% � = 25%

HFR
No bias correction 6:4625 7:5627 7:3271 6:5277 5:3666 4:0134

[0:000] [0:000] [0:000] [0:000] [0:000] [0:003]
Bias 1 corrected 2:8527 4:8480 4:3089 3:1827 1:7965 0:2885

[0:079] [0:012] [0:010] [0:033] [0:181] [0:537]
Biases 1 and 2 corrected �1:2925 0:8200 0:2492 �0:9431 �2:4107 �4:0072

[0:421] [0:801] [0:957] [0:571] [0:276] [0:189]

TREMONT
No bias correction 7:6115 8:3771 8:2180 7:6267 6:7387 5:6889

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
Bias 1 corrected 4:9212 6:5778 6:0713 5:2189 4:2368 3:1971

[0:005] [0:011] [0:007] [0:003] [0:010] [0:031]
Biases 1 and 2 corrected 1:5555 2:7611 2:3925 1:7721 1:0574 0:3007

[0:388] [0:425] [0:406] [0:406] [0:477] [0:592]

This table shows the value of the fund for di¤erent values of the annual volatility of the market �. The value of the fund
is computed according to the following formula: v = �0+�1+ � [N(d1)� kN(d2)] where d1 = � log(k)=� and d2 = d1��.
p-values for the hypothesis that the value of the fund is equal to zero, H0 : v = 0, are presented in brackets.
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Table 3
Piecewise Linear Fit: Indexes by Category

Panel a: No Bias Correction
�0 �1 � k �2 � 10�3

HFR
C1 Convertible arbitrage �0:2318 0:2478 �0:1915 0:9562 0:0835

(0:1159) (0:1243) (0:1269) (0:0212)
C2 Fixed-income arbitrage �0:0696 0:0755 �0:3081 1:0378 0:1068

(0:0203) (0:0207) (0:1944) (0:0104)
C3 Event driven �0:4334 0:4566 �0:3438 0:9562 0:0941

(0:1583) (0:1696) (0:1720) (0:0142)
C4 Equity market neutral �0:0299 0:0353 �0:1754 1:0591 0:0432

(0:0148) (0:0149) (0:2750) (0:0231)
C5 Long-short equity hedge �0:5165 0:5258 �0:2167 1:0331 0:2708

(0:0507) (0:0526) (0:3064) (0:0375)
C6 Global macro �0:1132 0:1188 �0:2723 1:0468 0:2393

(0:0332) (0:0340) (0:3175) (0:0251)
C7 Emerging markets �1:1186 1:1588 �0:6828 0:9562 1:2848

(0:5070) (0:5452) (0:5573) (0:0267)
C8 Dedicated short bias 1:1299 �1:1275 0:2851 1:0272 0:8246

(0:0947) (0:0968) (0:3911) (0:0495)
C9 Managed futures 0:5578 �0:5831 0:6741 0:9617 0:6936

(0:1170) (0:1281) (0:1560) (0:0151)
C10 Funds of funds �0:2039 0:2082 �0:2884 1:0468 0:1529

(0:0335) (0:0341) (0:3190) (0:0172)

TREMONT
C1 Convertible arbitrage �0:1893 0:2033 �0:1383 0:9562 0:0659

(0:0954) (0:1026) (0:1054) (0:0268)
C2 Fixed-income arbitrage �0:0501 0:0534 �0:1443 1:0242 0:0550

(0:0165) (0:0166) (0:0532) (0:0131)
C3 Event driven �0:4028 0:4188 �0:1946 0:9562 0:0968

(0:2103) (0:2252) (0:2271) (0:0310)
C4 Equity market neutral �0:0554 0:0643 �0:4637 1:0591 0:1113

(0:0262) (0:0265) (0:4082) (0:0141)
C5 Long-short equity hedge �0:5540 0:5660 �0:3301 1:0331 0:3420

(0:0773) (0:0794) (0:2630) (0:0245)
C6 Global macro �0:1008 0:1088 �0:1805 1:0260 0:1974

(0:0411) (0:0427) (0:1431) (0:0246)
C7 Emerging markets �0:6780 0:7009 �0:3417 0:9562 1:1537

(0:5469) (0:5873) (0:5995) (0:0556)
C8 Dedicated short bias 0:9809 �0:9762 0:3555 1:0272 1:1747

(0:1007) (0:1036) (0:4912) (0:0500)
C9 Managed futures 0:6139 �0:6446 0:7556 0:9562 0:8354

(0:1907) (0:2080) (0:2249) (0:0163)
C10 Funds of funds �0:0775 0:0784 0:0850 0:9617 0:1554

(0:0954) (0:1029) (0:1123) (0:0593)

This table shows the results of the following piecewise linear �t for SP, HFR, and TREMONT indexes for the di¤erent
categories and without bias correction during January 1996 to March 2004 (99 observations): X�

p;t+1 = �0 + �1R
�
I;t+1 +

�max(R�I;t+1� k; 0)+ "t+1 E
�
"2t+1

�
= �2 where X�

p;t+1 = (Rp;t+1�Rf;t)=Rf;t, R�I;t+1 = RI;t+1=Rf;t. Standard errors
(in parentheses) are computed using Chan and Tsay (1998).
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Table 3
Piecewise Linear Fit: Indexes by Category

Panel b: Back�lling and Survivorship Bias Correction
�0 �1 � k �2 � 10�3

HFR
C1 Convertible arbitrage �0:3194 0:3366 �0:2827 0:9562 0:1340

(0:1888) (0:2027) (0:2058) (0:0216)
C2 Fixed-income arbitrage �0:0749 0:0765 �0:3198 1:0346 0:1974

(0:0383) (0:0387) (0:2288) (0:0166)
C3 Event driven �0:2763 0:2804 �0:3344 1:0272 0:1489

(0:0681) (0:0690) (0:1645) (0:0161)
C4 Equity market neutral �0:0559 0:0564 �0:3630 1:0591 0:0946

(0:0197) (0:0197) (0:3944) (0:0177)
C5 Long-short equity hedge �0:5432 0:5457 �0:2452 1:0331 0:3059

(0:0519) (0:0538) (0:3258) (0:0352)
C6 Global macro �0:1674 0:1664 �0:6275 1:0447 0:3612

(0:0447) (0:0454) (0:3735) (0:0142)
C7 Emerging markets �1:1563 1:1896 �0:6687 0:9562 1:3950

(0:5795) (0:6231) (0:6347) (0:0304)
C8 Dedicated short bias 1:0124 �1:0144 0:1891 1:0331 1:3727

(0:1142) (0:1178) (0:3790) (0:0683)
C9 Managed futures 0:4181 �0:4471 0:5133 0:9617 0:6869

(0:1117) (0:1227) (0:1462) (0:0206)
C10 Funds of funds �0:2644 0:2646 �0:3848 1:0450 0:1948

(0:0473) (0:0477) (0:3214) (0:0151)

TREMONT
C1 Convertible arbitrage �0:2690 0:2831 �0:2151 0:9562 0:1000

(0:1321) (0:1422) (0:1452) (0:0227)
C2 Fixed-income arbitrage �0:0602 0:0640 �0:1219 0:9947 0:1009

(0:0217) (0:0227) (0:0452) (0:0211)
C3 Event driven �0:2540 0:2606 �0:1554 1:0272 0:2686

(0:0691) (0:0700) (0:2476) (0:0494)
C4 Equity market neutral �0:1643 0:1659 �0:7600 1:0591 0:4479

(0:0597) (0:0586) (0:6101) (0:0134)
C5 Long-short equity hedge �0:5906 0:5966 �0:3497 1:0272 0:4820

(0:0505) (0:0513) (0:4374) (0:0422)
C6 Global macro 0:0039 �0:0153 0:2185 0:9658 1:1703

(0:1025) (0:1095) (0:2029) (0:0639)
C7 Emerging markets �0:7052 0:7204 �0:3450 0:9562 1:8907

(0:6313) (0:6780) (0:6927) (0:0626)
C8 Dedicated short bias 1:0319 �1:0302 0:4569 1:0346 3:2792

(0:2070) (0:2112) (0:5365) (0:0412)
C9 Managed futures 0:6013 �0:6355 0:7523 0:9617 1:3692

(0:1016) (0:1125) (0:1776) (0:0174)
C10 Funds of funds �0:2945 0:3029 �0:1496 0:9562 0:2015

(0:2046) (0:2207) (0:2252) (0:0550)

This table shows the results of the following piecewise linear �t for SP, HFR, and TREMONT indexes for the di¤erent
categories and with back�lling and survivorship bias correction during January 1996 to March 2004 (99 observations):
X�
p;t+1 = �0 + �1R

�
I;t+1 + �max(R

�
I;t+1 � k; 0) + "t+1 E

�
"2t+1

�
= �2 where X�

p;t+1 = (Rp;t+1 � Rf;t)=Rf;t, R�I;t+1 =
RI;t+1=Rf;t. Standard errors (in parentheses) are computed using Chan and Tsay (1998).
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Table 4
Tests of Linearity: Indexes by Category

Panel a: No Bias Correction
Wald k = 1 supWald Wald(h) k = 1 supWald(h)

HFR
C1 Convertible arbitrage 0:2848 0:0425 0:4444 0:1740
C2 Fixed-income arbitrage 0:0234 0:0345 0:0399 0:0555
C3 Event driven 0:0003 0:0000 0:0288 0:0220
C4 Equity market neutral 0:5613 0:5675 0:5426 0:4610
C5 Long-short equity hedge 0:7857 0:4385 0:7844 0:6510
C6 Global macro 0:9045 0:5160 0:9012 0:3380
C7 Emerging markets 0:0524 0:0620 0:1514 0:2830
C8 Dedicated short bias 0:5243 0:5880 0:5202 0:6280
C9 Managed futures 0:0275 0:0035 0:0355 0:0000
C10 Funds of funds 0:4114 0:2600 0:4422 0:5150

TREMONT
C1 Convertible arbitrage 0:4421 0:1110 0:5549 0:2615
C2 Fixed-income arbitrage 0:0301 0:0750 0:0036 0:0145
C3 Event driven 0:0312 0:0480 0:2407 0:3115
C4 Equity market neutral 0:3158 0:1845 0:3239 0:1680
C5 Long-short equity hedge 0:2892 0:2090 0:3406 0:3505
C6 Global macro 0:3731 0:3740 0:3878 0:4210
C7 Emerging markets 0:2845 0:5015 0:4344 0:7145
C8 Dedicated short bias 0:3161 0:5555 0:2848 0:5390
C9 Managed futures 0:0500 0:0050 0:0930 0:0000
C10 Funds of funds 0:7383 0:7640 0:7521 0:7330

This table shows the p-values for the test of the hypothesis H0 : � = 0 in the following piecewise linear regression:
X�
p;t+1 = �0 + �1R

�
I;t+1 + �max(R

�
I;t+1 � k; 0) + "t+1:

Panel b: Back�lling and Survivorship Bias Correction

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

HFR
C1 Convertible arbitrage 0:1188 0:0145 0:3315 0:1955
C2 Fixed-income arbitrage 0:0335 0:0915 0:0540 0:1095
C3 Event driven 0:0134 0:0075 0:1068 0:0650
C4 Equity market neutral 0:2085 0:2945 0:1465 0:1985
C5 Long-short equity hedge 0:4933 0:3845 0:4686 0:5790
C6 Global macro 0:1367 0:0405 0:1145 0:0545
C7 Emerging markets 0:0429 0:0855 0:1435 0:2935
C8 Dedicated short bias 0:9778 0:9570 0:9787 0:9420
C9 Managed futures 0:0647 0:0455 0:0441 0:0015
C10 Funds of funds 0:0862 0:1190 0:1361 0:2695

TREMONT
C1 Convertible arbitrage 0:2182 0:0275 0:3767 0:1475
C2 Fixed-income arbitrage 0:1020 0:2455 0:0077 0:0185
C3 Event driven 0:8060 0:6180 0:8500 0:7375
C4 Equity market neutral 0:2811 0:3350 0:1612 0:0875
C5 Long-short equity hedge 0:4585 0:2095 0:3902 0:3335
C6 Global macro 0:9747 0:7715 0:9698 0:7715
C7 Emerging markets 0:6233 0:6940 0:7049 0:8750
C8 Dedicated short bias 0:9869 0:8110 0:9892 0:5925
C9 Managed futures 0:0643 0:0300 0:0441 0:0015
C10 Funds of funds 0:2203 0:4715 0:3685 0:6405

This table shows the p-values for the test of the hypothesis H0 : � = 0 in the following piecewise linear regression:
X�
p;t+1 = �0 + �1R

�
I;t+1 + �max(R

�
I;t+1 � k; 0) + "t+1:
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Table 5
Valuation: Indexes by Category
Panel a: No Bias Correction
� � = 5% � = 10% � = 15% � = 20% � = 25%

HFR
C1 Convertible arbitrage 7:6367 9:1635 8:9960 8:4067 7:5394 6:5228

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
C2 Fixed-income arbitrage 5:0670 7:1259 6:6235 5:3625 3:7143 1:8762

[0:000] [0:000] [0:000] [0:000] [0:000] [0:062]
C3 Event driven 7:0258 9:7673 9:4665 8:4083 6:8509 5:0255

[0:000] [0:000] [0:000] [0:000] [0:000] [0:037]
C4 Equity market neutral 6:2443 6:5276 6:4732 6:1246 5:4765 4:6366

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
C5 Long-short equity hedge 9:3726 11:1446 10:6658 9:6657 8:4347 7:0955

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
C6 Global macro 5:6318 6:7384 6:5076 5:6596 4:3911 2:8943

[0:002] [0:007] [0:005] [0:002] [0:005] [0:014]
C7 Emerging markets 6:9216 12:3663 11:7689 9:6673 6:5743 2:9491

[0:128] [0:012] [0:016] [0:049] [0:285] [0:836]
C8 Dedicated short bias 5:8760 2:9587 3:8506 5:3518 7:0812 8:9123

[0:090] [0:374] [0:271] [0:121] [0:063] [0:055]
C9 Managed futures 6:9684 0:6507 1:5706 4:0785 7:4498 11:2535

[0:037] [0:288] [0:210] [0:072] [0:020] [0:005]
C10 Funds of funds 3:9041 5:0765 4:8320 3:9335 2:5898 1:0041

[0:007] [0:002] [0:000] [0:002] [0:029] [0:140]

TREMONT
C1 Convertible arbitrage 8:4091 9:5119 9:3909 8:9652 8:3388 7:6045

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
C2 Fixed-income arbitrage 2:2729 3:9088 3:3811 2:5769 1:6769 0:7353

[0:011] [0:000] [0:000] [0:003] [0:042] [0:273]
C3 Event driven 7:4228 8:9748 8:8045 8:2055 7:3238 6:2905

[0:000] [0:000] [0:000] [0:000] [0:000] [0:018]
C4 Equity market neutral 9:8197 10:5688 10:4249 9:5031 7:7894 5:5687

[0:000] [0:000] [0:000] [0:000] [0:000] [0:000]
C5 Long-short equity hedge 11:6081 14:3074 13:5780 12:0545 10:1792 8:1391

[0:000] [0:000] [0:000] [0:000] [0:000] [0:001]
C6 Global macro 7:6297 9:5565 8:9538 7:9803 6:8723 5:7050

[0:000] [0:000] [0:000] [0:000] [0:000] [0:002]
C7 Emerging markets 6:7862 9:5106 9:2117 8:1601 6:6125 4:7985

[0:115] [0:037] [0:039] [0:066] [0:224] [0:565]
C8 Dedicated short bias 9:3207 5:6836 6:7955 8:6671 10:8233 13:1061

[0:023] [0:211] [0:131] [0:044] [0:013] [0:008]
C9 Managed futures 8:9322 2:9069 3:5680 5:8937 9:3165 13:3282

[0:015] [0:196] [0:109] [0:029] [0:010] [0:009]
C10 Funds of funds 5:7602 4:9634 5:0794 5:3957 5:8209 6:3006

[0:000] [0:001] [0:000] [0:000] [0:001] [0:004]

This table shows the value of the fund for di¤erent values of the annual volatility of the market �. The value of the fund
is computed according to the following formula: v = �0+�1+ � [N(d1)� kN(d2)] where d1 = � log(k)=� and d2 = d1��.
p-values for the hypothesis that the value of the fund is equal to zero, H0 : v = 0, are presented in brackets.
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Table 5
Valuation: Indexes by Category

Panel b: Back�lling and Survivorship Bias Correction
� � = 5% � = 10% � = 15% � = 20% � = 25%

HFR
C1 Convertible arbitrage 3:5636 5:8174 5:5701 4:7002 3:4199 1:9193

[0:018] [0:000] [0:000] [0:002] [0:061] [0:359]
C2 Fixed-income arbitrage �0:5568 1:9012 1:2567 �0:1672 �1:9517 �3:9075

[0:734] [0:148] [0:318] [0:853] [0:482] [0:274]
C3 Event driven 1:4879 4:9092 3:8632 2:1027 0:0744 �2:0730

[0:351] [0:004] [0:007] [0:092] [0:652] [0:559]
C4 Equity market neutral 0:0121 0:5985 0:4859 �0:2357 �1:5771 �3:3156

[0:992] [0:401] [0:537] [0:849] [0:714] [0:449]
C5 Long-short equity hedge 1:0038 3:0096 2:4676 1:3356 �0:0579 �1:5737

[0:618] [0:351] [0:376] [0:514] [0:850] [0:883]
C6 Global macro �4:2076 �1:3082 �1:9315 �4:0234 �7:0496 �10:5709

[0:065] [0:474] [0:340] [0:102] [0:020] [0:005]
C7 Emerging markets �0:5245 4:8079 4:2228 2:1646 �0:8646 �4:4150

[0:912] [0:278] [0:418] [0:807] [0:662] [0:391]
C8 Dedicated short bias �0:7777 �2:3244 �1:9065 �1:0335 0:0411 1:2101

[0:861] [0:889] [0:882] [0:884] [0:974] [0:982]
C9 Managed futures �6:3996 �11:2096 �10:5093 �8:5998 �6:0331 �3:1370

[0:051] [0:006] [0:006] [0:014] [0:083] [0:381]
C10 Funds of funds �1:5713 0:1801 �0:1950 �1:4675 �3:3157 �5:4698

[0:358] [0:755] [0:953] [0:494] [0:228] [0:148]

TREMONT
C1 Convertible arbitrage 3:8877 5:6028 5:4146 4:7526 3:7783 2:6363

[0:002] [0:000] [0:000] [0:000] [0:008] [0:083]
C2 Fixed-income arbitrage 1:0743 3:3023 2:4902 1:6598 0:8249 �0:0117

[0:360] [0:070] [0:113] [0:243] [0:505] [0:978]
C3 Event driven 6:3482 7:9378 7:4518 6:6339 5:6915 4:6938

[0:001] [0:001] [0:001] [0:001] [0:006] [0:069]
C4 Equity market neutral 0:7526 1:9803 1:7443 0:2337 �2:5749 �6:2145

[0:781] [0:272] [0:383] [0:652] [0:860] [0:712]
C5 Long-short equity hedge 3:5331 7:1105 6:0168 4:1759 2:0551 �0:1902

[0:173] [0:102] [0:099] [0:142] [0:293] [0:506]
C6 Global macro �2:4550 �4:7508 �4:3471 �3:4266 �2:2610 �0:9782

[0:561] [0:703] [0:660] [0:594] [0:517] [0:492]
C7 Emerging markets �2:7315 0:0193 �0:2826 �1:3443 �2:9069 �4:7384

[0:610] [0:952] [0:895] [0:704] [0:622] [0:629]
C8 Dedicated short bias 5:6145 2:1009 3:0223 5:0574 7:6077 10:4025

[0:426] [0:694] [0:597] [0:449] [0:356] [0:352]
C9 Managed futures 0:5035 �6:5469 �5:5203 �2:7215 1:0407 5:2856

[0:913] [0:335] [0:455] [0:768] [0:672] [0:267]
C10 Funds of funds 0:9778 2:1709 2:0400 1:5795 0:9017 0:1072

[0:573] [0:174] [0:201] [0:384] [0:809] [0:952]

This table shows the value of the fund for di¤erent values of the annual volatility of the market �. The value of the fund
is computed according to the following formula: v = �0+�1+ � [N(d1)� kN(d2)] where d1 = � log(k)=� and d2 = d1��.
p-values for the hypothesis that the value of the fund is equal to zero, H0 : v = 0, are presented in brackets.
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Table 6
Results with All Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:999 1:000 0:999 1:000
Average p-value 0:380 0:331 0:394 0:330
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 1334 1228 1425 1244

72:23% 66:49% 77:15% 67:35%
5% < p-value < 10% 123 151 145 158

6:66% 8:18% 7:85% 8:55%
1% < p-value < 5% 188 198 171 195

10:18% 10:72% 9:26% 10:56%
p-value < 1% 202 270 106 250

10:94% 14:62% 5:74% 13:54%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with at
least 60 observations (1847 funds). Each p-value is for the hypothesis that the return of the fund has a linear relationship
with the return of the market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
Value k = 1 Value

Average value 6:925 6:933
Standard deviation value 9:092 9:311
Quartiles min value �84:713 �90:345
25% 2:596 2:492
50% 6:165 6:227
75% 10:546 10:670
Max value 99:713 86:061

Max p-value 0:999 0:995
Average p-value 0:222 0:222
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 10 9

0:54% 0:49%
1% < p-value < 5% 16 17

0:87% 0:92%
5% < p-value < 10% 10 7

0:54% 0:38%
p-value >10% 223 230

12:07% 12:45%

Number and % of funds (Value>0 )
p-value >10% 604 603

32:70% 32:65%
5% < p-value < 10% 123 131

6:66% 7:09%
1% < p-value < 5% 206 209

11:15% 11:32%
p-value < 1% 655 641

35:46% 34:71%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the cross-sectional dis-
tribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at least 60
observations (1847 funds). The value of the fund is computed under the assumption that the annual volatility of the return
on the market index is � = 15%.
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Table 7
Results with Live Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:999 1:000 0:999 1:000
Average p-value 0:403 0:344 0:420 0:353
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 925 850 987 884

75:20% 69:11% 80:24% 71:87%
5% < p-value < 10% 84 96 88 99

6:83% 7:80% 7:15% 8:05%
1% < p-value < 5% 101 120 99 110

8:21% 9:76% 8:05% 8:94%
p-value < 1% 120 164 56 137

9:76% 13:33% 4:55% 11:14%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those live funds
with at least 60 observations (1230 funds). Each p-value is for the hypothesis that the return of the fund has a linear
relationship with the return of the market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
Value k = 1 Value

Average value 8:278 8:281
Standard deviation value 7:307 7:533
Quartiles min value �27:495 �23:254
25% 4:133 3:921
50% 7:208 7:225
75% 11:087 11:186
Max value 52:304 52:171

Max p-value 0:999 0:995
Average p-value 0:160 0:158
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 1 2

0:08% 0:16%
1% < p-value < 5% 4 3

0:33% 0:24%
5% < p-value < 10% 0 0

0:00% 0:00%
p-value >10% 74 78

6:02% 6:34%

Number and % of funds (Value>0 )
p-value >10% 341 344

27:72% 27:97%
5% < p-value < 10% 92 88

7:48% 7:15%
1% < p-value < 5% 162 170

13:17% 13:82%
p-value < 1% 556 545

45:20% 44:31%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the cross-sectional dis-
tribution of the p-values for the hypothesis that the value of the fund is equal to zero for those live funds with at least
60 observations (1230 funds). The value of the fund is computed under the assumption that the annual volatility of the
return on the market index is � = 15%.

43



Table 8
Results with Graveyard Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:999 0:995 0:999 0:986
Average p-value 0:333 0:303 0:344 0:285
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 409 378 438 360

66:29% 61:26% 70:99% 58:35%
5% < p-value < 10% 39 55 57 59

6:32% 8:91% 9:24% 9:56%
1% < p-value < 5% 87 78 72 85

14:10% 12:64% 11:67% 13:78%
p-value < 1% 82 106 50 113

13:29% 17:18% 8:10% 18:31%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those graveyard
funds with at least 60 observations (617 funds). Each p-value is for the hypothesis that the return of the fund has a linear
relationship with the return of the market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
Value k = 1 Value

Average value 4:227 4:245
Standard deviation value 11:411 11:651
Quartiles min value �84:713 �90:345
25% �0:745 �1:004
50% 3:596 3:548
75% 8:679 8:999
Max value 99:713 86:061

Max p-value 0:995 0:994
Average p-value 0:345 0:349
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 9 7

1:46% 1:13%
1% < p-value < 5% 12 14

1:94% 2:27%
5% < p-value < 10% 10 7

1:62% 1:13%
p-value >10% 149 152

24:15% 24:64%

Number and % of funds (Value>0 )
p-value >10% 263 259

42:63% 41:98%
5% < p-value < 10% 31 43

5:02% 6:97%
1% < p-value < 5% 44 39

7:13% 6:32%
p-value < 1% 99 96

16:05% 15:56%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the corresponding cross-
sectional distribution of the p-values for the hypothesis that the value of the fund is equal to zero for those graveyard
funds with at least 60 observations (617 funds). The value of the fund is computed under the assumption that the annual
volatility of the return on the market index is � = 15%.
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Table 9
Results with Arbitrage Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:994 0:976 0:993 0:972
Average p-value 0:282 0:235 0:298 0:233
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 194 178 204 178

59:15% 54:27% 62:20% 54:27%
5% < p-value < 10% 26 26 33 24

7:93% 7:93% 10:06% 7:32%
1% < p-value < 5% 41 50 49 52

12:50% 15:24% 14:94% 15:85%
p-value < 1% 67 74 42 74

20:43% 22:56% 12:81% 22:56%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with
at least 60 observations and that belong to the category convertible arbitrage, �xed-income arbitrage, or event driven (328
funds). Each p-value is for the hypothesis that the return of the fund has a linear relationship with the return of the
market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
Value k = 1 Value

Average value 7:161 7:125
Standard deviation value 6:283 6:470
Quartiles min value �22:525 �23:491
25% 4:220 4:133
50% 6:865 6:883
75% 9:833 9:712
Max value 39:005 37:951

Max p-value 0:961 0:993
Average p-value 0:090 0:097
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 1 2

0:30% 0:61%
1% < p-value < 5% 3 2

0:91% 0:61%
5% < p-value < 10% 0 0

0:00% 0:00%
p-value >10% 15 13

4:57% 3:96%

Number and % of funds (Value>0 )
p-value >10% 48 55

14:63% 16:77%
5% < p-value < 10% 10 14

3:05% 4:27%
1% < p-value < 5% 33 33

10:06% 10:06%
p-value < 1% 218 209

66:46% 63:72%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the corresponding cross-
sectional distribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at
least 60 observations and that belong to the category convertible arbitrage, �xed-income arbitrage or event driven (328
funds). The value of the fund is computed under the assumption that the annual volatility of the return on the market
index is � = 15%.
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Table 10
Results with Equity Market Neutral/Long-Short Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:998 1:000 0:998 1:000
Average p-value 0:487 0:436 0:484 0:428
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 513 496 519 478

85:50% 82:67% 86:50% 79:67%
5% < p-value < 10% 34 34 38 48

5:67% 5:67% 6:33% 8:00%
1% < p-value < 5% 34 38 26 33

5:67% 6:33% 4:33% 5:50%
p-value < 1% 19 32 17 41

3:17% 5:33% 2:83% 6:83%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with at
least 60 observations and that belong to the category equity market neutral or long-short equity hedge (600 funds). Each
p-value is for the hypothesis that the return of the fund has a linear relationship with the return of the market portfolio
(H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
Value k = 1 Value

Average value 8:704 8:705
Standard deviation value 8:414 8:797
Quartiles min value �17:474 �15:671
25% 3:917 3:600
50% 8:153 8:109
75% 12:350 12:435
Max value 63:664 71:489

Max p-value 0:997 0:995
Average p-value 0:208 0:208
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 1 0

0:17% 0:00%
1% < p-value < 5% 2 3

0:33% 0:50%
5% < p-value < 10% 1 1

0:17% 0:17%
p-value >10% 57 64

9:50% 10:67%

Number and % of funds (Value>0 )
p-value >10% 219 208

36:50% 34:67%
5% < p-value < 10% 49 54

8:17% 9:00%
1% < p-value < 5% 90 87

15:00% 14:50%
p-value < 1% 181 183

30:17% 30:50%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the cross-sectional dis-
tribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at least 60
observations and that belong to the category equity market neutral or long-short equity hedge (600 funds). The value of
the fund is computed under the assumption that the annual volatility of the return on the market index is � = 15%.
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Table 11
Results with Directional Funds

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:999 0:995 0:999 0:987
Average p-value 0:337 0:300 0:357 0:292
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 313 274 348 288

67:60% 59:18% 75:16% 62:20%
5% < p-value < 10% 34 46 35 42

7:34% 9:94% 7:56% 9:07%
1% < p-value < 5% 65 65 55 57

14:04% 14:04% 11:88% 12:31%
p-value < 1% 51 78 25 76

11:02% 16:85% 5:40% 16:42%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with
at least 60 observations and that belong to the category global macro, emerging markets, or managed futures (463 funds).
Each p-value is for the hypothesis that the return of the fund has a linear relationship with the return of the market
portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
value k = 1 value

Average value 6:502 6:545
Standard deviation value 12:729 12:924
Quartiles min value �84:713 �90:345
25% 0:165 0:264
50% 5:133 4:924
75% 12:322 11:999
Max value 99:713 86:061

Max p-value 0:999 0:994
Average p-value 0:342 0:338
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 8 7

1:73% 1:51%
1% < p-value < 5% 6 7

1:30% 1:51%
5% < p-value < 10% 6 4

1:30% 0:86%
p-value >10% 92 93

19:87% 20:09%

Number and % of funds (Value>0 )
p-value >10% 213 210

46:00% 45:36%
5% < p-value < 10% 36 38

7:78% 8:21%
1% < p-value < 5% 41 42

8:86% 9:07%
p-value < 1% 61 62

13:18% 13:39%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the cross-sectional dis-
tribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at least 60
observations and that belong to the category global macro, emerging markets, or managed futures (463 funds). The value
of the fund is computed under the assumption that the annual volatility of the return on the market index is � = 15%.
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Table 12
Results with Category 1: Convertible Arbitrage

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:994 0:952 0:986 0:916
Average p-value 0:433 0:331 0:447 0:320
Min p-value 0:002 0:001 0:003 0:001

Number and % of funds
p-value >10% 68 62 69 61

85:00% 77:50% 86:25% 76:25%
5% < p-value < 10% 3 8 5 5

3:75% 10:00% 6:25% 6:25%
1% < p-value < 5% 8 5 4 9

10:00% 6:25% 5:00% 11:25%
p-value < 1% 1 5 2 5

1:25% 6:25% 2:50% 6:25%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with at
least 60 observations and that belong to the category convertible arbitrage (80 funds). Each p-value is for the hypothesis
that the return of the fund has a linear relationship with the return of the market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
value k = 1 value

Average value 6:755 6:927
Standard deviation value 5:997 6:461
Quartiles min value �17:737 �21:250
25% 3:720 3:225
50% 5:753 5:864
75% 9:427 9:712
Max value 23:792 26:260

Max p-value 0:961 0:884
Average p-value 0:092 0:090
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 0 1

0:00% 1:25%
1% < p-value < 5% 1 0

1:25% 0:00%
5% < p-value < 10% 0 0

0:00% 0:00%
p-value >10% 4 3

5:00% 3:75%

Number and % of funds (Value>0 )
p-value >10% 12 12

15:00% 15:00%
5% < p-value < 10% 2 4

2:50% 5:00%
1% < p-value < 5% 7 6

8:75% 7:50%
p-value < 1% 54 54

67:50% 67:50%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the cross-sectional dis-
tribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at least 60
observations and that belong to the category convertible arbitrage (80 funds). The value of the fund is computed under
the assumption that the annual volatility of the return on the market index is � = 15%.
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Table 13
Results with Category 9: Managed Futures

Panel a: Cross-sectional Distribution of Linearity Tests (p-values)

Wald k = 1 supWald Wald(h) k = 1 supWald(h)

Max p-value 0:989 0:995 0:990 0:987
Average p-value 0:305 0:278 0:321 0:255
Min p-value 0:000 0:000 0:000 0:000

Number and % of funds
p-value >10% 148 126 166 128

62:98% 53:62% 70:64% 54:47%
5% < p-value < 10% 18 24 17 21

7:66% 10:21% 7:23% 8:94%
1% < p-value < 5% 41 41 36 34

17:45% 17:45% 15:32% 14:47%
p-value < 1% 28 44 16 52

11:92% 18:72% 6:81% 22:13%

This table shows the value of the cross-sectional distribution of the p-values for the linearity tests of those funds with
at least 60 observations and that belong to the category managed futures (235 funds). Each p-value is for the hypothesis
that the return of the fund has a linear relationship with the return of the market portfolio (H0 : � = 0).

Panel b: Cross-sectional Distribution of Hedge Fund Performance
value (k = 1) value

Average value 6:968 6:734
Standard deviation value 11:803 11:597
Quartiles min value �39:724 �37:350
25% 1:018 1:069
50% 5:108 4:710
75% 11:680 11:167
Max value 99:713 86:061

Max p-value 0:998 0:971
Average p-value 0:390 0:371
Min p-value 0:000 0:000

Number and % of funds (Value<0 )
p-value < 1% 2 1

0:85% 0:43%
1% < p-value < 5% 2 3

0:85% 1:28%
5% < p-value < 10% 2 2

0:85% 0:85%
p-value >10% 42 41

17:87% 17:45%

Number and % of funds (Value>0 )
p-value >10% 129 127

54:89% 54:04%
5% < p-value < 10% 19 18

8:09% 7:66%
1% < p-value < 5% 20 23

8:51% 9:79%
p-value < 1% 19 20

8:09% 8:51%

This table shows the cross-sectional distribution of the (annualized) performance (in %) and the corresponding cross-
sectional distribution of the p-values for the hypothesis that the value of the fund is equal to zero for those funds with at
least 60 observations and that belong to the category managed futures (235 funds). The value of the fund is computed
under the assumption that the annual volatility of the return on the market index is � = 15%.
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Table 14
Comparison with Agarwal and Naik�s (2004) Approach

Valuation
HFR
C1 Convertible arbitrage 2:541

[0:132]
C2 Fixed-income arbitrage �0:678

[0:716]
C3 Event driven 0:113

[0:950]
C4 Equity market neutral �0:239

[0:836]
C5 Long-short equity hedge �1:023

[0:564]
C6 Global macro �3:994

[0:115]
C7 Emerging markets �3:761

[0:475]
C8 Dedicated short bias 0:872

[0:841]
C9 Managed futures �4:843

[0:154]
C10 Funds of funds �2:568

[0:165]
C11 Other �2:810

[0:298]

TREMONT
C1 Convertible arbitrage 2:799

[0:044]
C2 Fixed-income arbitrage 0:676

[0:594]
C3 Event driven 5:000

[0:024]
C4 Equity market neutral 0:260

[0:923]
C5 Long-short equity hedge 0:697

[0:752]
C6 Global macro �1:532

[0:710]
C7 Emerging markets �6:047

[0:315]
C8 Dedicated short bias 7:188

[0:355]
C9 Managed futures 3:037

[0:502]
C10 Funds of funds 0:155

[0:940]
C11 Other 1:009

[0:731]

This table presents results for the valuation of the corresponding hedge fund category index computed according to the
following formula v = �0+�1+�2+�3 where these coe¢ cients have been computed according to the following regression:
X�
pt = �0 + �1R

�
It + �2R

�
call;t + �3R

�
put;t + "t; where the asterisk indicates that the returns on the indexes have been

normalized by Rft, RIt denote the returns on the CRSP value-weighted index, and Rcall;t and Rput;t denote the returns
on the OTM call and put option factors, respectively, in Agarwal and Naik (2004). The corresponding p-values for the
hypothesis that the value of the fund is equal to zero, H0 : v = 0, are presented in brackets.
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Figure 1
Selectivity versus Market Timing in Henriksson-Merton Regressions
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Figure 2
Piecewise Linear Fit: TREMONT Index
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Figure 3
Valuation: TREMONT Index
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Figure 4
Piecewise Linear Fit: Categories
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C9 Managed Futures (Back�lling and Survivorship Bias Correction)
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Figure 5
Valuation: Categories

C1 Convertible Arbitrage (Back�lling and Survivorship Bias Correction)
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C2 Fixed-Income Arbitrage (Back�lling and Survivorship Bias Correction)
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C9 Managed Futures (Back�lling and Survivorship Bias Correction)
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Figure 6
Piecewise Linear Fit Russell: TREMONT Index
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Appendix A: Brief De�nitions of TASS Hedge Fund

Categories

These de�nitions are based on Lhabitant (2004).

C1 Convertible arbitrage

A typical strategy in this category is to be long in the convertible bond and short in

the common stock of the same company. Pro�ts are generated from both positions. The

principal is usually protected from market �uctuations.

C2 Fixed-income arbitrage

The goal is to exploit price anomalies between related interest rate securities, such as

interest rate swaps, U.S. and non-U.S. government bonds, and mortgage-backed securities.

C3 Event driven

This strategy aims at making pro�ts by using price movements related to special pending

events such as mergers, liquidations, bankruptcies, or reorganizations. In risk arbitrage, the

hedge fund manager usually invests long in the stock of the company being acquired and

short in the stock of the acquiring company.

C4 Equity market neutral

This investment strategy aims at balancing long and short positions to ensure a negligible

market exposure in a broad sense. A fund may be neutral to a speci�c exchange rate, a stock

index, a series of interest rates, or other factors.

C5 Long-short equity

Long/short strategies involve the combined purchase and sale of two securities. The main

source of return comes from the spread in performance between the stocks on the long side

(which should appreciate in value) and the shorted stocks (which should decrease in value).

The strategies can be based on value, growth, or size.
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C6 Global macro

Global macro funds do not hedge anything. They make directional bets based on their

forecasts of market directions according to economic trends or particular events. They are

not specialized, and carry long and short positions in any of the major world capital or

derivative markets. The portfolios include stocks, bonds, currencies, and commodities. Most

funds invest globally in both developed and emerging markets.

C7 Emerging markets

These funds take positions in all types of securities in emerging markets around the world.

Investments in emerging market equities are primarily long, since many emerging markets

do not allow short selling and no viable futures markets exist to hedge market risk.

C8 Dedicated short bias

Dedicated short hedge funds seek to pro�t from a decline in the value of stocks by tak-

ing short positions. These funds are rare nowadays, since they migrated to the long/short

category, where they still have a systematic short bias.

C9 Managed futures

These funds, often referred to as commodity trading advisers (CTAs), invest in �nancial

and commodity futures markets and currency markets around the world. A large proportion

are trend followers (buy in an up market and sell in a down market). Others use discretionary

(judgmental) or systematic (based on technical information) strategies.

C10 Funds of funds

Managers of these funds allocate capital to several hedge funds. Investors in these gain

exposure to many di¤erent managers and strategies.

C11 Other

This category consists of the funds that announce using more than one strategy and

cannot be classi�ed into these other categories.

57



Appendix B: Testing for Linearity

We are interested in �tting piecewise linear functions such as:

yt = �0 + �1xt +
mX
i=1

�imax(xt � ki; 0) + "t t = 1; : : : n;

where "t is a real-valued martingale sequence. This equation is just a general formulation of

the one that appears in (5). In particular, yt is the excess return of a hedge fund and xt is

the return on an index that drives the SDF (e.g., the market).

To determine the number and position of the knots (that is, the m and the ki�s, respec-

tively) we start by testing whether the linear �t (m = 0) provides a better approximation

to the description of the data than a model with only one option (m = 1). Note that when

� = 0, the linear model is nested in the formulation m = 1:

yt = �0 + �1xt + �max(xt � k; 0) + "t t = 1; : : : n:

We rewrite this speci�cation as:

yt = xt(k)
0b+ "t t = 1; : : : n;

where xt(k) = [1; xt;max(xt � k; 0)]0 and b = [�0; �1; �]
0.

If the strike of the option k were known a priori, the testing problem would be the usual

one where the following heteroscedasticity-robust Wald statistic could be used:

Tn(k) = nbb(k)R hR0 bV(k)R0i�1R0bb(k); (B1)

where bb(k) = [
Pn

t=1 xt(k)xt(k)
0]
�1
[
Pn

t=1 xt(k)yt] and R is the vector (or, more generally,

the matrix) that, applied to the vector b; selects the parameter of interest, �; that is,

R = (0; 0; 1)0. The robust estimate of the covariance matrix bV(k) is of the usual formcM(k; k)�1 bK(k; k)cM(k; k)�1, where
bK(k1; k2) = 1

n

nX
t=1

[bst(k1)bst(k2)0] ;
cM(k1; k2) = 1

n

nX
t=1

[xt(k1)xt(k2)
0] ;
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with bst(k) = xt(k)
h
yt � xt(k)0bb(k)i being the regression score under the alternative. The

Wald statistic Tn(k) will have an approximate chi-square distribution with one degree of

freedom (the number of restrictions) in large samples.

Note that the OLS estimate, bb(k), and the value of the Wald test, Tn(k), will then vary
according to the choice k. Therefore, we treat the value of k as an unknown and its value is

estimated in a data-dependent procedure. In particular, the least-square estimate of k can

be found sequentially through concentration. That is, for a given value of the strike of the

option k, we run an OLS regression as in the case where k is known. We then search over the

possible values of k for the one that minimizes the sum of squared errors bet(k)0bet(k) to get
our estimate of this parameter. Following Hansen (1996, 1999), we restrict our search to the

observed values of xt. Moreover, since the point-wise statistics are ill behaved for extreme

values k, we further restrict the search to values of xt lying between the �th and (1 � �th)
quantiles of its distribution, being � = 0:15.

However, the chi-square distribution for the Wald test statistic is invalid, since k is cho-

sen in a data-dependent procedure. Instead, we follow Davies (1977, 1987), who suggests

computing the Wald test statistic, Tn(k), for each possible value of k and then focusing on

the supremum value of such a sequence; that is, Tn = supk Tn(k). This statistic is known as

�supWald.�Again, the problem that we face is that the asymptotic distribution of this test

is non-standard. In particular, using an appropriate asymptotic theory for random functions

(known as empirical process theory), Hansen (1996) derives the asymptotic distributions of

this test under the null hypothesis and provides a simulation method to compute the various

distributions. He shows that the test statistic sequence, Tn(k) (e.g., the Wald test for each

possible value of the strike k), converges in distribution to the following process:

Tn(k)!d T (k);

T (k) = S(k)0M(k; k)�1R [R0V(k)R0]
�1
R0M(k; k)�1S(k);

where S(k) denotes a mean zero Gaussian process with a covariance kernel K(k1; k2),1 such

that Sn(k) = (1=
p
n)
Pn

t=1 st(k) converges in distribution to S(k). This implies that the

supWald statistic Tn converges to T = supk T (k); and Hansen (1996) proposes calculating

the asymptotic distribution of this statistic T through simulation.

The algorithm for that purpose is the following. Let J be the number of simulations used

1Which means that, for any fk1; k2; : : : klg, fS(k1);S(k2); : : :S(kl)g is multivariate normal with mean zero
and covariances E [S(ki)S(kj)0] = K(ki; kj):
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to approximate the asymptotic distribution of the statistic. Then, for j = 1; : : : ; J , execute

the following steps:

(i) generate fvtjgnt=1 i.i.d. N(0; 1) random variables,

(ii) set Sjn(k) =
1p
n

Pn
t=1bst(k)vtj;

(iii) set T jn(k) = S
j
n(k)

0cM(k; k)�1R hR0 bV(k)R0i�1R0cM(k; k)�1Sjn(k);
(iv) set T jn = maxk T

j
n(k):

Again, we follow Hansen (1996, 1999) and set J = 2000 in our empirical exercise. This

gives a random sample
�
T 1n ; : : : ; T

J
n

	
of observations of the conditional distribution of the

statistic. Finally, we can compute the percentage of these arti�cial observations which exceed

the actual test statistic Tn to compute an �asymptotic p-value�such as:

bpJn = 1

J

nX
t=1

�
T jn � Tn

	
;

and, as usual, if the value of this �asymptotic p-value�bpJn falls below the usual 10 per cent,
5 per cent, or 1 per cent value, then we will reject the null hypothesis of linearity at that

level.
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Appendix C: Monte Carlo Simulation Study

The Monte Carlo experiment is conducted for tests of size 10 per cent, 5 per cent, and 1 per

cent, but we will refer only to those of size 5 per cent, since no qualitative di¤erences are

observed. The number of replications is set to N = 2000, the number of internal simulations

to compute the p-values is set to J = 1000; and the search is restricted to the values of xt
lying between the �th and (1� �th) quantiles, being � = 0:15.

In a similar spirit to the simulation study in Hansen (1996), we compare test statis-

tics using four di¤erent covariance matrices: (i) standard Wald, (ii) standard LM, (iii)

heteroscedasticity-consistent LM, and (iv) heteroscedasticity-consistent Wald. In particu-

lar, we compute Davies�(1977, 1987) supremum test, which is the one we use in the main

text, but we also compute Andrews and Ploberger�s (1994) average and exponential average

tests for each one of the covariance matrices. These authors suggest that superior local power

can be constructed by computing an average or an exponential average of the Wald test sta-

tistic (aveWald and expWald tests, respectively) over the parameter space admissible for k.

The asymptotic distribution of such a statistic can be computed by replacing step number

(iv) in the simulation of the p-values with the corresponding (exponential) average of the

random sample
�
T 1n ; : : : ; T

J
n

	
of observations of the statistic. We also include the Wald and

LM tests for the case where the knot value is known and set to its true value. As a reminder,

the moneyness of the option that best approximates hedge fund returns is not known a priori,

so we include them only for comparison purposes.

The market return R�It and the error term are generated from two independent Gaussian

distributions.1 The hedge fund return is generated according to the piecewise linear function

in equation (9). The values of �0; �1; k; and �
2 are set to their corresponding estimates,

while the variance of R�It is set to the unconditional variance of this variable during the

period January 1996 to March 2004. In order to assess the �nite-sample size of these tests,

we start by setting � = 0 (null hypothesis of linearity).

We �nd that the asymptotic approximation in Hansen (1996), which we use in our main

text, delivers good size properties for the �standard tests�(those without heteroscedasticity

correction) and the heteroscedasticity-consistent LM test: the proportion of rejections is

around 5 per cent for a 5 per cent size test, regardless of the sample size and the choice of the

1Regarding the presence of autocorrelation, we did a thorough check of the presence of �rst-order auto-
correlation in the residuals of both the linear and non-linear models for all categories, for the indexes as well
as for individual funds. We did not �nd any strong evidence of remaining autocorrelation.
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Monte Carlo design. However, the heteroscedasticity-robust Wald test tends to over-reject

for our sample sizes: approximately 11 per cent of rejections for the supWald(h) test when

the sample size is T = 100 and 15 per cent when the sample size is T = 60. These results are

consistent with the simulation study in Hansen (1996). Still, this size distortion is similar to

the one we �nd for the heteroscedasticity-robust Wald test when the position of the �kink�

is known and set to the true value: 10 per cent when T = 100 and 12 per cent when T = 60.

To assess �nite-sample power, we set � = b� and � = 2b� while maintaining �xed the
remaining parameters. As expected, the number of rejections (power) increases with � and

the sample size. In particular, we �nd that, for a sample size of T = 100; the proportion of

rejections is close to 50 per cent when � = b� and close to 90 per cent when � = 2b�. It is also
worth mentioning that the �nite-sample power of the Andrews and Ploberger (1994) average

and exponential average tests tends to be smaller than their supremum test counterpart.

Therefore, we drop them from our analysis. Our results suggest that the heteroscedasticity-

robust Wald test is the most powerful test across all the statistics computed in this simulation

study, while the standard Wald and LM tests rank second and third, respectively. On the

other side of the spectrum, the heteroscedasticity-robust LM test is the most conservative.

While one possible explanation for this �nding could reside in the evidence of overrejection

found for the supWald(h) test, that is not the case, since we also �nd the same ranking when

computing size-adjusted power for these tests. Again, our results indicate that the loss of

power with respect to the benchmark of a known knot set to its true value is small. For

example, for the TREMONT category 1 design, we �nd that the proportion of rejections for

the Wald(h) test when the knot is known and set to the true value is 94 per cent, while the

proportion of rejections for the supWald(h) is 92 per cent.
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