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Abstract

We extend microfounded models of money with both centralized and decentralized mar-
kets to include capital. Although we consider several versions, in the baseline model,
capital produced in the centralized market is an input in the decentralized market.
We calibrate the model, and find the following. With bargaining in the decentralized
market, inflation has virtually no impact on investment, but still affects consumption
and welfare: going from 10% inflation to the Friedman rule is worth around 3.5% of
consumption. With price taking the same policy works quite differently: now capital
increases 12%, and although the steady state gain is also 3.5%, the transition cost
cuts it to 1.9%. Although we also find big distortions from fiscal policy, even if we
must make up the revenue with proportional taxes, eliminating inflation may still be
desirable. Finally, we quantify the impact of holdup problems in bargaining models.
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1 Introduction

The goals of this paper are: (i) extend some recent work in monetary theory; (ii) quantify

the resulting model; and (iii) use it to study policy, especially the effects of long-run changes

in inflation and taxation on capital accumulation, consumption and welfare. Our approach

builds on the model with periodic meetings of centralized and decentralized markets in

Lagos and Wright (2005), although for the goals described above we need to generalize that

framework along several dimensions. In particular, we need to introduce capital.

To motivate this endeavor, note that the long-run relation between money and growth

— or inflation and capital formation — is one of the classic issues in macroeconomics, going

back at least to Tobin (1965) and Sidrauski (1967a, 1967b), continuing through Stockman

(1981), Cooley and Hansen (1989, 1991), Gomme (1993), Ireland (1994) and many others

to the present day. All of these papers use ‘reduced-form’ models of money; e.g. they put it

directly into the utility function or impose cash-in-advance constraints. Modern monetary

theory proceeds without recourse to such shortcuts by taking seriously the frictions that

generate a role for a medium of exchange in the first place, and shows that for many questions

this can make a big difference. We want to know if the same is true for questions related to

money and capital accumulation.

A previous attempt to integrate growth and microfounded monetary theory in Aruoba

and Wright (2003) was at best partially successful, because that specification displays a

strong dichotomy: one can solve independently for the equilibrium allocations in the cen-

tralized and decentralized markets. This has some undesirable implications — e.g. monetary

policy can have no impact on investment, employment or consumption in the centralized

market — and indeed, one might say that money and growth theory have really not been

integrated at all (Howitt 2003; Waller 2003). In our baseline model, the dichotomy breaks

down simply because capital produced in the centralized market is used as an input in the

decentralized market. This generalization implies potentially rich feedback across markets,

and from monetary policy to investment, employment and consumption.
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Although we think this is worthwhile as a theoretical exercise, we also want to emphasize

the quantitative analysis. It is because we are interested in quantitative analysis in the first

place that we include capital, and also some other ingredients, such as government spending

and taxation, that are staples in mainstream macroeconomics. These features are important

for calibration purposes and also allow us to analyze an extended set of policy issues. In

discussing policy, the analysis here is much more interesting than in models without capital,

like most of those in monetary theory, because we need to take into account transition paths

and hence solve for the decision rules rather than simply comparing steady states; we find

that this leads to new qualitative insights and can make a big difference for the quantitative

results.1

We also compare the model under two scenarios with respect to price formation in the

decentralized market. In one version we assume bilateral bargaining, which is arguably

natural given the kinds of frictions that make money essential, and is used in much of the

microfoundations literature. In the other version we assume price taking. This allows us

to isolate the effects in the bargaining model of holdup problems in both the demand for

money and the demand for capital, and to try to quantify their importance.2 It turns out

that the two models generate very different predictions about the effects of monetary policy

on investment. Due to the double holdup problem, under bargaining, inflation has very little

impact on capital formation. Under price taking, which avoids holdup problems, inflation

can have a big effect on investment.

We calibrate the model to standard observations and discuss the extent to which different

specifications do a more or less reasonable job of capturing the key observations. We then

1There have been few previous attempts to take microfounded monetary theories to the data, especially
versions with capital. Exceptions are Shi (1999) and Menner (2005), who start from the model in Shi (1997),
and Molico and Zhang (2005), who start from Molico (1999). Those models are very different because they
have only decentralized markets, so this is where all investment occurs. Since we start from the model in
Lagos and Wright (2005), we can have investment occur either in centralized or decentralized markets. In
our benchmark model we assume investment occurs in the centralized market, but for comparison we also
study the alternative.

2The former has been discussed in the recent monetary literature but the latter has not, even though it
has been suggested elsewhere that holdup problems generally are important for aggregate investment; see
e.g. Caballero and Hamour (1998) and Caballero (1999). We discuss this further in Section 2.2.
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perform several policy experiments. In the price-taking model, we find that going from

10% inflation to the Friedman rule can increase long-run capital by 12%. In the bargaining

model, although it has virtually no effect on capital, inflation is still very costly because it

directly affects decentralized market consumption, and due to the money holdup problem

this is painful. In fact, both specifications generate about the same cost of inflation when

one compares across steady states: going from 10% to the Friedman rule is worth around

3.5% of consumption. In the price-taking model, however, much of the gain accrues in the

long run, and the costly transition reduces the net benefit to just below 2%.

Although the two versions of the model have very different channels through which mon-

etary policy matters — in one case it works via decentralized market consumption, and in

the other it works via the long-run capital stock and centralized market consumption — in

either case our welfare numbers are bigger that those typically found in the ‘reduced form’

literature. We also find big effects from taxes. But even if we have to make up the lost

revenue with distortionary taxation, we find that eliminating inflation can still be beneficial,

which also differs from the previous literature. Finally, we show that the costs of the holdup

problems can be quantitatively important, even though we have bargaining only in the de-

centralized market, and our calibration implies that this market accounts for only around

5% of aggregate output.

The rest of the paper is organized as follows. In Section 2 we describe the baseline model.

In Section 3 we present several extensions. In Section 4 we discuss calibration. In Section 5

we present the quantitative results. In Section 6 we conclude.3

3A few more words are perhaps in order as to why we adopt the Lagos-Wright model, with two kinds
of markets. First, having some decentralized trade is what makes a medium of exchange essential. Then,
having a centralized market not only seems natural for discussing investment, it also generates a big gain
in tractability over models without it because we do not have to keep track of the distribution of money
as a state variable. While models where one does have to keep track of this distribution, including Green
and Zhou (1998, 2002), Molico (1999), Zhou (1999), and Zhu (2003, 2005), are interesting, it is nice to
have a benchmark that is relatively easy to analyze and understand, the way e.g. the complete-market,
representative-agent, neoclassical growth model serves as a benchmark for nonmonetary macroeconomics.
Previous search-based monetary models, including Kiyotaki and Wright (1993), Shi (1995), or Trejos and
Wright (1995), are also easy to analyze, but mainly because they make some strong assumptions that preclude
quantitative and policy analysis as it is usually practiced.
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2 The Basic Model

2.1 General Assumptions

As in Lagos and Wright (2005), hereafter LW, a [0, 1] continuum of agents live forever in

discrete time. In each period there convene two distinct markets. One is a frictionless or

centralized market, referred to as the CM, while the other is a decentralized market, referred

to as the DM, with two main frictions. These frictions are: (i) a double-coincidence problem;

and (ii) anonymity, which precludes credit. This means that some medium of exchange is

essential (Kocherlakota 1998; Wallace 2001). The main issue in much of modern monetary

theory (e.g. Kiyotaki and Wright 1989) is to determine endogenously which object will play

this role. In order to focus on other questions, however, other papers avoid the issue by

assuming there is a unique storable asset — perhaps fiat money, perhaps commodity money,

perhaps something else — that qualifies as a potential medium of exchange.4

For the current project, we want to follow the latter approach and avoid the interesting

but difficult problem of determining the medium of exchange endogenously. We cannot,

however, assume there is a unique storable asset in a paper called “Money and Capital.”

Our strategy is to assume that physical capital is fixed in place in the CM, and thus cannot

be traded in the DM. Then, to address the question of why claims to (rather than physical

units of) capital do not circulate in the DM, we assume that agents can costlessly counterfeit

such claims, but cannot so easily counterfeit currency. Given this, sellers will never accept

claims to capital from anonymous buyers in the DM, any more than they would accept

personal IOU’s. But they may accept money.5

4For example, in Trejos and Wright (1995), it is assumed that “Agents consume services (or, equivalently,
nonstorable goods)” to rule out commodity money and concentrate on fiat money as a medium of exchange.
However, there is no constraint saying that agents have to use money to consume — e.g. they are free to try
direct barter, and there typically is some barter in equilibrium.

5One need not interpret money here literally as cash. He, Huang and Wright (2005) study a related albeit
much simpler model where agents can deposit money in bank accounts in the CM, and pay with either cash
or checks in the DM (see also Berentsen et al. 2005 or Chiu and Meh 2006). It is feasible to do something
similar here, but adding banks complicates the presentation without changing much else. The important
thing to understand is that as long as banks hold some reserves in equilibrium, for whatever reason, and
these reserves earn less than the market return, liquidity has a cost and this cost is influenced by policy that
affects interest rates.
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So money is the only object that can serve as a medium of exchange in this environment,

while capital is merely a productive input. We emphasize that we do not regard this as a

particularly interesting or elegant solution to the rate-of-return-dominance question — how

can money coexist with other assets paying higher rates of return? It is rather a simple

solution that allows us to study interactions between money and capital when one serves as

medium of exchange and the other as a factor of production. Our position is that, even if

we do not have a prize-winning answer to the rate-of-return-dominance puzzle, for now, we

want to study other issues in models that include many of the ingredients from micro-based

monetary economics, including double-coincidence problems, bargaining problems, and so

on.

While we acknowledge that our assumptions about capital are crude, at the same time we

insist that they are logically consistent assumptions about the physical environment, and not

direct assumptions about agents’ behavior or institutions. As a general principle it should

be clear that it is better to be explicit about the assumptions leading to an outcome, other

things being equal, rather than assuming the outcome as a ‘reduced-form’ for something

left implicit. This is not (only) because some people may doubt that there exist logically

consistent assumptions generating the outcome in question, but because one ought to want

to know what other implications these assumptions may have. The only way to know this

is to be explicit about the environment.6

To continue, in the CM there is a general good that can be used for consumption or

investment. It is produced using labor H and capital K, hired by firms in perfectly com-

petitive markets. As usual, profit maximization implies r = FK(K,H) and w = FH(K,H),

where F is the technology, r is the rental rate and w the real wage, and by constant returns

equilibrium profits will be 0. In the DM these firms do not operate, but an agent’s own

6Of course it is interesting to think more about the coexistence of currency and other assets in these
kinds of models, but this is left for other work. See Lagos and Rocheteau (2005) and Waller (2003) for some
discussion. Devices that could potentially be used to capture why capital does not drive out money if we
did allow it to circulate include government policies like those in Aiyagari et al. (1996), Shi (2005), and
Lagos (2005), or private information as in Williamson and Wright (1994), Trejos (1997), and Berentsen and
Rocheteau (2004).
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effort e and capital k may be used with technology f(e, k). Note that k appears as an input

in DM production, even if it cannot be traded in the DM. So while perhaps k cannot be

physically moved to the location where the DM convenes, it still may affect productivity at

that location; think about logging on to your computer from a remote site, or more generally,

think about being more efficient for owning a better computer even when you don’t have it

with you.

To generate a double-coincidence problem we adopt the following specification in the

DM: with probability σ an agent wants to consume but cannot produce; with probability σ

he can produce but does not want to consume; and with probability 1− 2σ he can neither

produce nor consume. This is equivalent for our purposes to the standard bilateral matching

specification in the search literature, where there is a probability σ of wanting to consume a

good produced by a random partner. We frame things here in terms of taste and technology

shocks rather than matching because it facilitates some parts of the discussion, but otherwise

very little hinges on this part of the specification.7

Instantaneous utility in the CM is U(x)−Ah, where x is consumption and h hours. In the

DM, with probability σ an agent is a consumer and has utility u(q), and with probability σ

he is a producer and has utility −c(e), where q is consumption and e effort. Functions U(x),

u(q) and c(e) have the usual properties. Linearity in h is not important in principle, but

yields a big gain in tractability; alternatively, one can assume general utility and indivisible

labor, as in Rogerson (1988), and get essentially the same results, as shown by Rocheteau

et al. (2005). In any case, it is convenient to write disutility in the DM as follows: given k,

solve q = f(e, k) for e = ξ(q, k) and let c(q, k) = c[ξ(q, k)]. As we show in the Appendix,

cq > 0, ck < 0, cqq > 0, and ckk > 0 under the usual monotonicity and convexity assumptions

on f and c, and cqk < 0 if fkfee < fefek, which always holds under the additional assumption

that k is a normal input.

7As discussed in fn.4, random matching models typically have some direct barter. We can get this by
having agents sometimes able to produce, but wanting to consume something other than what they produce.
Given this is understood, for most of the presentation we will not discuss barter explicitly.
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The government sets the money supply so thatM+1 = (1+π)M , where +1 denotes next

period and π is a decision variable that need not be constant over time; because the Fisher

equation holds, it is equivalent to set the nominal interest or inflation rate here. Government

also consumes G, levies a lump-sum tax T , a labor income tax th, a capital income tax tk,

and a sales tax tx in the CM. In principle, we could allow a sales tax in the DM, tq, but

setting tq = 0 streamlines the presentation a fair amount, and when we did calibrate tq > 0

it mattered very little for the quantitative results; hence it seems prudent to assume sales

taxes are only levied in the CM. Letting δ be depreciation on capital, which is tax deductible,

and p the CM price level, the government budget constraint is

G = T + thwH + (r − δ) tkK + txX + πM/p.

Agents discount between the CM and DM at rate β, but to reduce notation, not between

the DM and CM (think about the DM convening first within each period e.g.). If W (m, k)

and V (m, k) are the value functions in the CM and DM, then the DM problem is

W (m, k) = max
x,h,m+1,k+1

{U(x)−Ah+ βV+1(m+1, k+1)} (1)

s.t. (1 + tx)x = w (1− th)h+ [1 + (r − δ) (1− tk)] k − k+1 − T +
m−m+1

p
.

After eliminating h using the budget equation, the FOC are

x : U 0(x) =
A (1 + tx)

w (1− th)

m+1 :
A

pw (1− th)
= βV+1,m(m+1, k+1) (2)

k+1 :
A

w (1− th)
= βV+1,k(m+1, k+1),

assuming interiority.8 This leads to two key results. First, since (m, k) does not appear in (2),

for any distribution of (m, k) across agents entering the CM, the distribution of (m+1, k+1)

8See LW for assumptions to guarantee an interior solution in these kinds of models (one cannot impose
standard curvature assumptions since utility is linear in h). Also, note that the SOC can be complicated in
equilibrium models with bargaining, involving third derivatives of u and c. For now we simply assume that
V is strictly concave, but we check this in our quantitative analysis.
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is degenerate. Second, from the envelope conditions, W is linear in (m, k):

Wm(m, k) =
A

pw (1− th)
(3)

Wk(m, k) =
A [1 + (r − δ) (1− tk)]

w (1− th)
(4)

Moving back to the DM market, we have

V (m, k) = σV b(m, k) + σV s(m, k) + (1− 2σ)W (m, k), (5)

where the values to being a buyer and a seller are

V b(m, k) = u(qb) +W (m− db, k) (6)

V s(m, k) = −c(qs, k) +W (m+ ds, k) , (7)

with qb and db (qs and ds) denoting output and money exchanged when buying (selling).

Using (3) we have

V (m, k) =W (m, k) + σ

∙
u(qb)−

dbA

pw (1− th)

¸
+ σ

∙
dsA

pw (1− th)
− c(qs, k)

¸
. (8)

To solve (2) we need:

Vm(m, k) =
A

pw (1− th)
+ σ

∙
u0
∂qb
∂m
− A

pw (1− th)

∂db
∂m

¸
+σ

∙
A

pw (1− th)

∂ds
∂m
− cq

∂qs
∂m

¸
(9)

Vk(m, k) =
A [1 + (r − δ) (1− tk)]

w (1− th)
+ σ

∙
u0
∂qb
∂k
− A+A (r − δ) (1− tk)

w (1− th)

∂db
∂k

¸
+σ

∙
A+A (r − δ) (1− tk)

w (1− th)

∂ds
∂k
− cq

∂qs
∂k
− ck

¸
(10)

It remains to specify how the terms of trade (q, d) are determined, so that we can sub-

stitute for their derivatives in (9) and (10). This will differ across versions of the model

considered below. Before pursuing equilibrium, however, consider the planner’s problem

without anonymity, so that money is not essential:

J(K) = max
q,X,H,K+1

{U(X)−AH + σ [u(q)− c(q,K)] + βJ+1(K+1)} (11)

s.t. X = F (K,H) + (1− δ)K −K+1 −G
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Eliminating X, and again assuming interiority, we have the FOC:

q : u0(q) = cq(q,K)

H : A = U 0(X)FH(K,H) (12)

K+1 : U 0(X) = βJ 0+1(K+1)

From the envelope condition J 0(K) = U 0(X)[FK(K,H) + 1− δ]− σck(q,K), we get

U 0(X) = βU 0(X+1)[FK(K+1, H+1) + 1− δ]− σβck(q+1, K+1). (13)

Using the first condition in (12), given K we have q = q∗(K) where q∗(K) solves u0(q) =

cq(q,K). Then the paths for (K+1, H,X) satisfy the the Euler equation (13), the second

FOC in (12), and the constraint in (11). This characterizes what we call the first best, or FB

for short.9 Note the presence of the term −βσck(q+1,K+1) > 0 in (13), which reflects the

fact that in general investment not only affects CM but also DM productivity. If K did not

appear in c(q), this term would vanish and the system would dichotomize: we could first set

q = q∗, where q∗ solves u0(q) = c0(q), and then solve the other conditions — which reduce to

those from the standard growth model — independently for (K+1,H,X). In general, however,

we need to solve all of the conditions simultaneously.

2.2 Bargaining

Suppose each agent with a desire to consume in the DM is paired with one who can produce.

Since buyers are anonymous trade must be quid pro quo — which here means money. If

the buyer’s and seller’s states are (mb, kb) and (ms, ks), the terms of trade (q, d) solve the

generalized Nash problem, with bargaining power for the buyer given by θ and threat points

given by continuation values. The buyer’s payoff from trade is u(q) +W (mb− d, kb) and his

threat point W (mb, kb), so (3) implies his surplus is u(q) − Ad/pw (1− th). Similarly, the

seller’s surplus is Ad/pw (1− th)− c(q, ks). Hence our bargaining solution is

max
q,d

∙
u(q)− Ad

pw (1− th)

¸θ ∙
Ad

pw (1− th)
− c(q, ks)

¸1−θ
s.t. d ≤ mb.

9There is of course also a transversality condition; this will remain implicit in all that follows.
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As in LW, one can show that in any equilibrium d = mb, and this implies q ≤ q∗(ks)

where q∗(ks) is the solution to u0(q) = cq(q, ks).10 In any case, inserting d = mb and taking

the FOC with respect to q, we get

mb

p
=

g(q, ks)w (1− th)

A
, (14)

where

g(q, ks) ≡
θc(q, ks)u

0(q) + (1− θ)u(q)cq(q, ks)

θu0(q) + (1− θ)cq(q, ks)
. (15)

We write q = q(mb, ks), where q(·) is given by solving (14) for q as a function of (mb, ks). Now

one can compute ∂d/∂mb = 1, ∂q/∂mb = A/pw (1− th) gq > 0 and ∂q/∂ks = −gk/gq > 0

where

gq =
u0cq[θu

0 + (1− θ)cq] + θ(1− θ)(u− c)[(u0cqq − cqu
00)

[θu0 + (1− θ)cq]2
> 0

gk =
θu0ck [θu

0 + (1− θ)cq] + θ(1− θ)(u− c)u0cqk

[θu0 + (1− θ)cq]
2 < 0,

while the other derivatives in (9) and (10) are 0.

Inserting these results and imposing (m, k) = (M,K), (9) and (10) reduce to

Vm(M,K) =
(1− σ)A

pw (1− th)
+

σAu0(q)

pw (1− th) gq(q,K)
(16)

Vk(M,K) =
A+A (r − δ) (1− tk)

w (1− th)
− σγ(q,K), (17)

where it is understood that q = q(M,K), and

γ(q,K) ≡ ck + cq
∂q

∂K
=

ck(q,K)gq(q,K)− cq (q,K) gk(q,K)

gq(q,K)
< 0. (18)

Substituting (16) and (17), as well as prices p = AM/w (1− th) g(q,K), r = FK(K,H), and

w = FH(K,H), into the FOC for m+1 and k+1 in (2), we get the equilibrium conditions

g(q,K)

M
=

βg(q+1,K+1)

M+1

∙
1− σ + σ

u0(q+1)

gq(q+1,K+1)

¸
(19)

U 0(X) = βU 0(X+1) {1 + [FK(K+1,H+1)− δ] (1− tk)} (20)

−σβ (1 + tx) γ(q+1, K+1).

10Typically the inequality is strict; in models without capital, e.g., it is well known that q < q∗ unless
θ = 1 and the nominal interest rate is i = 0.
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The other equilibrium conditions come from the FOC for X and the resource constraint,

U 0(X) =
A (1 + tx)

(1− th)FH(K,H)
(21)

X +G = F (K,H) + (1− δ)K −K+1. (22)

An equilibrium with bargaining is defined as (positive, bounded) paths for (q,K+1, H,X)

satisfying (19)-(22), given policy and an initial condition K0. We mainly focus on mon-

etary equilibria, where q > 0, and ignore the nonmonetary equilibrium where q = 0 and

(K+1, H,X) satisfy (20)-(22) with γ = 0, which are exactly the equilibrium conditions for

a standard nonmonetary model (e.g. Hansen 1985). When M+1 = (1 + π)M for fixed π, a

steady state is a constant solution (q,K,H,X) to (19)-(22). In steady state inflation equals

the money growth rate π, the real interest rate is iR = ρ where β = 1
1+ρ
, and the nominal

interest rate i comes from the Fisher equation i = (1+ iR)(1+π)−1. Then the steady state

versions of (19)-(20) simplify to

i

σ
=

u0(q)

gq(q,K)
− 1 (23)

ρ = [FK(K,H)− δ] (1− tk)− σ (1 + tx)
γ(q,K)

U 0(X)
. (24)

A special case of this model is the specification in Aruoba and Wright (2003), where

capital is not used in the DM, so c(q,K) = c(q) and γ(q,K) = 0. That version dichotomizes:

(19) determines a path for q, while (20)-(22) determine paths for (K+1, H,X), independently.

Hence, money affects q but not (K+1, H,X). When the dichotomy prevails, many properties

of this model are similar to ones without capital. One can show ∂q/∂i < 0. Since q < q∗

for i > 0, welfare is maximized at the Friedman rule i = 0, which we abbreviate FR; but if

θ < 1 then q < q∗ even at i = 0. Notice that (for all i > 0) q is lower when θ is lower due to

a holdup problem in money demand: buyers bear the cost of acquiring liquidity in the CM,

but when θ < 1 they must share with sellers the surplus generated by this liquidity in the

DM. This lowers the demand for money and hence q.11

11Since q is a real variable, obviously, even in this case money affects welfare — i.e. dichotomy does not
mean neutrality. See Rocheteau and Waller (2005) for more discussion of what we call the money holdup
problem.
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The dichotomy does not prevail when capital enters the DM cost function, since then K

and q both appear in (19) and (20), and there is no way to solve for q independently of the

other variables. In this case investors take into account the fact that K affects productivity

in the DM as well as the CM. Given that monetary policy affects q — basically, inflation is a

tax on DM activity — it thereby affects the value of K and hence investment. This impacts

on productivity, employment, output and consumption in the CM. Notice, however, if θ = 1

then γ(q,K) = 0 even when K enters c(q,K). In this case the model is recursive, if not

dichotomous: first (20)-(22) can be solved for (K+1, H,X), then (19) determines q. So when

θ = 1, money still cannot influence investment, employment or consumption in the CM, even

though anything that affects the CM (e.g. fiscal policy) does feed back to q.

Intuitively, when θ = 1, sellers get none of the DM surplus, so investment decisions are

based solely on returns in the CM. This is an extreme version of a holdup problem in the

demand for capital. More generally, for any θ > 0, sellers underinvest since they do not

get the full return. This holdup problem has perhaps been neglected, although as Caballero

and Hamour (1998) say: “From a macroeconomic perspective, the prevalence of unprotected

specific rents makes it a potentially central factor in determining the functioning of the

aggregate economy.” Caballero (1999) further says “the quintessential problem of investment

is that is almost always sunk ... opening a vulnerable flank,” and the problem is more serious

“when the exposed flanks are largely controlled by economic agents with the will and freedom

to behave opportunistically.” This is exacty what happens here.12

This distortion due to the capital holdup problem is over and above the usual inefficiencies

that arise when i > 0, the money holdup problem that arises when θ < 1, and the obvious

effects of th, tk, tx > 0. If we run the FR (i = 0) and use lump-sum taxes exclusively, we

would be left with only the holdup problems. In many models, all such problems can be

resolved simultaneously if one simply sets θ correctly (the classic treatment is Hosios 1990;

12Holdup problems are often attributed to incomplete contracting, which seems reasonable given the
nature of our DM. More generally, holdup problems might make more sense in search than in other models,
to the extent that it is not possible to contract with a person before you contact a person.
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see Rogerson et al. 2005 for a recent update). In our model, this is not possible: θ = 1

resolves the problem in the demand for money, but this is the worst case for investment;

and θ = 0 resolves the problem in the demand for capital, but this this is the worst case for

money. Under bargaining there is no θ that can solve both problems entirely; we next show

that some alternative pricing mechanisms can.

2.3 Price Taking

It is known from labor market theory with ex ante investments that the solution concept

called competitive search equilibrium, based on price posting rather than bargaining, elimi-

nates holdup problems (Shimer 1995; Moen 1997; Acemoglu and Shimer 1999). Rocheteau

and Wright (2005) show the same is true in monetary theory. Moreover, based on these

results, we claim that competitive equilibrium with Walrasian price taking also does the

trick here, although this is not true in general — e.g., Rocheteau and Wright show Walrasian

pricing does not do as well when there are search externalities. We now analyze the model

with price taking in the DM, and since there are no search externalities, it can be either

interpreted as competitive equilibrium or as competitive search equilibrium.13

With price taking, the DM value function has the same form as (5), but (6) and (7)

change. For a buyer,

V b(m, k) = max
q

{u(q) +W (m− p̃q, k)} s.t. p̃q ≤ m, (25)

and for a seller

V s(m, k) = max
q
{−c(q, k) +W (m+ p̃q, k)} , (26)

where p̃ is the price level in the DM, now taken parametrically. Note that p̃ generally differs

from the price level in the CM, p. Market clearing implies buyers and sellers choose the

same q. Also, exactly as in the bargaining model, buyers necessarily spend all their money

in equilibrium, so q =M/p̃.

13One reason to study this case is that, since it avoids holdup problems, we can use it to quantify their
impact in the other model. Another advantage of price taking is that it can be shown analytically that the
SOC hold, which is not the case with bargaining.
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The FOC from (26) is cq(q, k) = p̃Wm = p̃A/pw (1− th). Inserting p̃ =M/q, we get the

analog to (14) from the previous specification:

M

p
=

qcq(q, k)w (1− th)

A
(27)

Given this, the analogs to (16) and (17) are:

Vm(m, k) =
(1− σ)A

pw (1− th)
+

σu0(q)

p̃

Vk(m, k) =
A+A (r − δ) (1− tk)

w (1− th)
− σck(q, k)

Inserting these into (2) yields the analogs to (19) and (20):

cq(q,K)q

M
=

βcq(q+1,K+1)q+1
M+1

∙
1− σ + σ

u0(q+1)

cq(q+1, K+1)

¸
(28)

U 0(X) = βU 0(X+1) {1 + [FK(K+1, H+1)− δ] (1− tk)} (29)

−σβ (1 + tx) ck(q+1, K+1)

The other equilibrium conditions do not change, and are repeated here for convenience:

U 0(X) =
A (1 + tx)

FH(K,H)(1− th)
(30)

X +G = F (K,H) + (1− δ)K −K+1. (31)

An equilibrium with price taking is given by (positive, bounded) paths for (q,K+1, H,X)

satisfying (28)-(31), given policy and K0. The difference between the bargaining and price-

taking models is in the difference between (19)-(20) and (28)-(29). The first pair of equations

differ because, in general, we do not have g(q,K) = cq(q,K)q and gq(q,K) = cq(q,K), except

in the special case where c(q,K) is linear in q and θ = 1, which implies g(q,K) = c(q,K).

The second pair of equations differ because, in general, we do not have γ(q,K) = ck(q,K),

unless θ = 0. The fact that the equilibrium condition for q in this model looks like the one

from the bargaining model when θ = 1 and the equilibrium condition for K looks like the

one from the bargaining model when θ = 0 suggests that the price-taking model avoids both

holdup problems. We now verify this.
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First, set tk = th = tx = 0. Then (29)-(31) are exactly the conditions for (K+1, H,X)

from the planner’s problem in Section 2.1. Hence the equilibrium coincides with the FB iff

q = q∗(K), or u0(q) = cq(q,K). From (28), this is equivalent to

cq(q,K)q

M
=

βcq(q+1,K+1)q+1
M+1

.

Using (27) this reduces to 1/pw = β/p+1w+1. Since w = A/U 0(X) it further reduces to

p/p+1 = U 0(x)/βU 0(X+1). Since in any equilibrium (not only steady state) the slope of the

indifference curve U 0(x)/βU 0(X+1) equals the slope of the budget line 1+ iR, with iR the real

interest rate, the relation in question finally reduces to p+1
p
= 1

1+iR
. Obviously this holds, and

hence q = q∗(K) solves (28), iff p+1
p
(1 + iR) = 1, which is equivalent to setting the nominal

rate to i = 0 by the Fisher equation p+1
p
(1 + iR) = 1 + i. We conclude that when i = 0 and

we use only lump-sum taxes, equilibrium under price taking coincides with the FB.

3 Extensions

3.1 Two Capital Goods

To show the main ideas are robust, we sketch some extensions. First, we relax the assumption

that the same capital stock is used in both markets. Suppose now k is used in the CM and z

in the DM; they depreciate at rates δ and ω. Although they are inputs in different markets,

output of both k and z is produced in the CM. Neither k nor z can be used as a medium of

exchange in the DM. For the sake of illustration there is no tax on z, and here we present

only the bargaining model (price-taking is similar).

The problem in the CM is now

W (m, k, z) = max
x,h,m+1,k+1,z+1

{U(x)−Ah+ βV (m+1, k+1, z+1)}

s.t. (1 + tx)x = w (1− th)h+ [1 + (r − δ) (1− tk)] k − k+1 − T +
m−m+1

p

+(1− ω) z − z+1.
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Eliminating h using the budget equation, we have the FOC:

x : U 0(x) =
A (1 + tx)

w (1− th)

m+1 :
A (1 + tx)

pw (1− th)
= βVm(m+1, k+1, z+1)

k+1 :
A

w (1− th)
= βVk(m+1, k+1, z+1)

z+1 :
A

w (1− th)
= βVz(m+1, k+1, z+1).

The envelope conditions forWm, Wk andWz are derived in the obvious way. The usual logic

implies the distribution of (m, k, z) is degenerate for agents leaving the CM.

The DM is exactly as before, except we replace c(q, k) with c(q, z) and g(q, k) with g(q, z).

The value function in the DM and the envelope conditions for Vm, Vk and Vz are derived in

the obvious way. This leads to:

g(q, Z)

M
=

βg(q+1, Z+1)

M+1

∙
1− σ + σ

u0(q+1)

gq(q+1, Z+1)

¸
(32)

U 0(X) = βU 0(X+1) {1 + [FK(K+1, H+1)− δ] (1− tk)} (33)

U 0(X) = βU 0(X+1)

∙
1− ω − (1 + tx)σγ(q+1, Z+1)

U 0(x+1)

¸
(34)

U 0(X) =
A (1 + tx)

FH(K,H) (1− th)
(35)

X +G = F (K,H) + (1− δ)K −K+1 + (1− ω)Z − Z+1 (36)

where γ(q, Z) is defined as in (18). An equilibrium is now given by (positive, bounded) paths

for (q,K+1, Z+1, H,X) satisfying (32)-(36).

Notice (32) is equivalent to (19), except Z replacesK. Also, (33) is the standard condition

for K from the one-sector growth model: in contrast to (20), γ is not in (33), but now shows

up in (34). In any event, this model obviously does not dichotomize: there is no way to

solve for the CM and DM variables independently, since the Z used as an input in the

DM is produced in the CM. Given monetary policy affects q, it affects Z, and hence it

affects the CM. We return to this specification in Section 5.3, where although it gives similar

quantitative results to the baseline model, it is useful in developing intuition.
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3.2 Capital Produced in DM

So far all investment occurs in the CM. Since it has been known since Stockman (1981)

that it makes a difference if money is needed for investment, we now consider a setup where

new k is acquired in the DM. We follow Shi (1999) and assume agents do not consume DM

output q, but use it as an intermediate input that is transformed one-for-one into k, which

is then an input to CM production; this contrasts with the other models, where capital is

acquired in the CM and used in the DM. Each period a fraction σ of agents in the DM can

produce the intermediate input, and a fraction σ can transform it into capital. Although

agents cannot acquire new capital in the CM, they are allowed to trade used capital.

Let k be the amount of capital held by an agent entering the CM and k0+1 the amount of

capital taken out, and hence into the next DM. Then the CM problem is:

W (m, k) = max
x,h,m+1,k0+1

U(x)−Ah+ βV+1(m+1, k
0
+1)

s.t. (1 + tx)x = w (1− th)h+ [r − (r − δ) tk]k + (1− δ)φk − φk0+1 − T +
m−m+1

p

where φ is the goods price of used capital in terms of x. The FOC are:

x : U 0(x) =
A (1 + tx)

w (1− th)

m+1 :
A

pw (1− th)
= βV+1,m(m+1, k

0
+1) (37)

k0+1 :
Aφ

w (1− th)
= βV+1,k(m+1, k

0
+1)

The envelope conditions are obtained in the obvious way and again imply W is linear.

We now show how to construct equilibrium so the distribution of (m, k0) coming out of

the CM is degenerate, even though the distribution going in is not. Consider bargaining

(price taking is similar). As always, a buyer in the DM gives up all his money in exchange

for q, and now brings k = k0 + q to the CM. The usual LW logic implies the bargaining

solution is independent of (ms, kb, ks), and that q = q(mb) solves mb/p = g(q, r, w) where

g(q, r, w, φ) ≡ (1− th)w [θc (q) + (1− θ) c0 (q) q] [r − (r − δ) tk + (1− δ)φ]

θA[r − (r − δ) tk + (1− δ)φ] + (1− θ) (1− th)wc0 (q)
.
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Also, upon entering the DM with any (m, k0), we have

V (m, k0) = W (m, k0) + σ

½
A [r − (r − δ) tk + (1− δ)φ] q (m)

w (1− th)
− Am

pw (1− th)

¾
+σE

½
Am̃

pw (1− th)
− c [q (m̃)]

¾
,

where the expectation is with respect to the money holding m̃ of a random agent — which

we are in the process of establishing, but have not yet established, is degenerate.14

Then we have

Vm(m, k0) =
(1− σ)A

pw (1− th)
+

σ [r − (r − δ) tk + (1− δ)φ]

pw (1− th) gq(q, r, w, φ)

Vk(m, k0) =
A [r − (r − δ) tk + (1− δ)φ]

(1− th)w
.

Since Vm is independent of k0, the FOC for m+1 in (37) implies m+1 is independent of k0+1

and hence the same for all agents.15 Proceeding as in the baseline model, the analog to (19)

is

ĝ (q,K,H, φ)

FH (K,H)M
=

βĝ
¡
q+1,K+1,H+1, φ+1

¢
FH (K+1, H+1)M+1

∙
1− σ + σ

FK(K+1,H+1)(1−tk)+δtk+(1−δ)φ+1
ĝ(q+1,K+1,H+1,φ+1)

¸
(38)

where ĝ(q,K,H, φ) ≡ g [q, FK(K,H), FH(K,H), φ]. Using Vk, the FOC for k0+1 is

φ

FH (K,H)
=

β
£
FK (K+1,H+1) (1− tk) + δtk + (1− δ)φ+1

¤
FH (K+1, H+1)

. (39)

This does not pin down k0+1: it is simply an arbitrage condition that must hold in any

equilibrium.

Given (39), the demand for k0+1 is indeterminate and we are free to set k
0
+1 = (1− δ)K

for all agents. Hence, we have (m+1, k
0
+1) degenerate in equilibrium (of course, as always,

assuming quasi-linearity and interiority). The other equilibrium conditions are derived in

14This expectation makes sense if agents are bilaterally matched at random in the DM, but the results
also go through if we assume that they trade multilaterally.

15What we really should say is that the choice of m+1 is independent of k0+1, and is unique if Vmm < 0;
again, strict concavity is not obvious, but it can be checked numerically. Note that we actually proved
something quite strong here: we are constructing equilibrium where (m+1, k

0
+1) is degenerate, but the logic

implies (at least if Vmm < 0) that m+1 would be degenerate even if k0+1 were not.
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the obvious way, and can be summarized as

K+1 = (1− δ)K + σq+1 (40)

U 0(X) =
A(1 + tx)

(1− th)FK (K,H)
(41)

X +G = F (K,H) (42)

An equilibrium is now given by (positive, bounded) paths for (q, φ,K+1, H,X) satisfying

(38)-(42).16 This system obviously does not dichotomize, because inflation is a direct tax on

capital accumulation, as in Stockman (1981). We will return to this in Section 5.3

3.3 Nonseparable Utility

Finally, we show how to break the dichotomy with a more general but still quasi-linear

utility function, Û(x, q, e)− Ah. Although one can do it in a variety of ways, suppose that

x interacts with the (q, e) brought in from the previous DM, so the latter are state variables

in the current CM. To isolate the effects of nonseparable utility, assume k does not appear

in the DM technology; then we can write e = ξ(q) ≡ f−1(q). Again we assume bargaining,

and here we set distorting taxes to 0 to keep the notation manageable.

The CM problem is:

W (m, k, q, e) = max
x,h,m+1,k+1

n
Û(x, q, e)−Ah+ βV (m+1, k+1)

o
s.t. x = wh+ (1 + r − δ)k − k+1 − T +

m−m+1

p

The FOC are:

x : Ûx(x, q, e) =
A

w

m+1 :
A

pw
= βVm(m+1, k+1) (43)

k+1 :
A

w
= βVk(m+1, k+1)

16We cannot generally reduce this model to a system in (q,K+1,H,X), because the price φ cannot be
eliminated from the equilibrium conditions. However, we can use standard asset pricing methods to write
φt =

P∞
s=0 β

s+1 (1− δ)
s U 0(Xt+s)

U 0(Xt)
[(1− tk) rt+s+1 + δtk] (see e.g. Ljungqvist and Sargent 2000, eq. 10.24).

In steady state, we can solve for φ and insert it into (38) to yield four equations in (q,K+1,H,X).
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We again get a degenerate distribution of (m, k), but now there is a distribution of x in

the CM, as this choice is affected by random events in the last DM. Let xs = xs(q, w),

xb = xb(q, w) and x0 = x0(w) be the choices of agents who were sellers, buyers and non-

traders in the previous DM, determined by the first condition in (43).

By the usual logic, d = mb, and q solves the analog of (14) with g(q, w) replacing g(q, k),

where in this model g(q, w) satisfies

Υ(q, w)g(q, w) ≡ (1− θ)
n
Û [x0(w), 0, 0]− Û [xb(q, w), q, 0]

o
Ûe [xs(q, w), 0, ξ(q)] ξ

0(q)

+θ
n
Û [x0(w), 0, 0]− Û [xs(q, w), 0, ξ(q)]

o
Ûq [xb(q, w), q, 0]

+ (1− θ)
A

w
[xb(q, w)− x0(w)] Ûe [xs(q, w), 0, ξ(q)] ξ

0(q) (44)

+θ
A

w
[xs(q, w)− x0(w)] Ûq [xb(q, w), q, 0] ,

with Υ(q, w) ≡ θUq [xb(q, w), q, 0] − (1− θ)Ue [xs(q, w), 0, ξ(q)] ξ
0(q) > 0. Although (44) is

messy, it simplifies dramatically in some special cases.17 In any case, the usual methods yield

the analog to (19)

g̃(q,K,H)

M
=

βg̃(q+1,K+1,H+1)

M+1

½
1− σ + σ

Uq [x̃b(q+1, K+1, H+1), q+1, 0]

ĝq(q+1,K+1,H+1)

¾
, (45)

where g̃(q,K,H) ≡ g[q, FK(K,H)] and x̃b(q+1,K+1,H+1) ≡ xb[q, FH(K,H)].

The other equilibrium conditions, analogs to (20)-(22), are derived in the obvious way

and are omitted. It is clear from (45) that this model does not dichotomize: q cannot be

determined independently of (K,H), in general. This model is really quite flexible in terms

of its predictions, and we will briefly return to it below, but for the most part we want to

keep the discipline and parsimony of separable preferences, and break the dichotomy via

technology.

17Of course, if Û = U(x) + u(q)− c(e) is separable then ĝ(q, w) = g(q) and we are back to a model that
dichotomizes. In the intermediate case Û = Ũ(x, q) − c(e), where we can write c(q) = c[ξ(q)], the RHS of
(44) reduces to

θc(q)Ũq [xb(q,w), q] + (1− θ)

½
Ũ [xb(q,w), q]− Ũ [x0(w), 0] +

A

w
[x0(w)− xb(q,w)]

¾
andΥ(q, w) = θŨq [xb(q,w), q]−(1− θ) c0(q). Alternatively, for any Û , if θ = 1 then ĝ(q, w) = U [x0(w), 0, 0]−
U [xs(q, w), 0, ξ(q)] +

A
w [xs(q, w)− x0(w)].
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4 Quantitative Analysis

4.1 Preliminaries

In order to calibrate the model we first need to do some accounting. The price levels in the

CM and DM are p and p̃ =M/q, respectively, where p satisfies

p =
AM

(1− th) g (q,K)FH(K,H)
(46)

in the bargaining version of the model by (14), and

p =
AM

(1− th) qcq (q,K)FH(K,H)
(47)

in the price-taking version by (27). Nominal output is pF (K,H) in the CM and σM in

the DM. Using p as the unit of account, real output in each sector is YC = F (K,H) and

YD = σM/p, and total output is Y = YC+YD. The share of output in the DM is sD = YD/Y .

Define the markup µ by equating 1+µ to the ratio of price to marginal cost. The markup

in the CM market is always 0, since it is competitive. The markup in the DM under price

taking is also 0. With bargaining, however, the markup in the DM is derived as follows.

Marginal cost in terms of utility is cq (q,K). Due to quasi-linearity, a dollar is always worth

A/p (1− th)w utils, so marginal cost in dollars is cq (q,K) p (1− th)w/A. Since p̃ = M/q,

the DC markup µD is given by

1 + µD =
M/q

cq (q,K) p (1− th)w/A
=

g (q,K)

qcq (q,K)
,

after eliminating M using (46). The aggregate markup is µ = sDµD.

We also discuss certain elasticities, including what we call the interest elasticity of money

demand ξ = ∂(M/p)
∂i

i
M/p

, derived in usual fashion. Consider ξ under bargaining (price-taking

is similar). Using (46) and differentiating, we get

ξ =

µ
gq
∂q

∂i
+ gk

∂K

∂i

¶
i

g
+

µ
FHH

∂H

∂i
+ FHK

∂K

∂i

¶
i

FH
. (48)

It is now a matter of substituting ∂q/∂i, ∂K/∂i and ∂H/∂i, which we derive in the Appendix,

to yield ξ as a function of the allocation and parameters.
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4.2 Calibration

Consider the following functional forms for preferences and technology:

CM: U(x) = B
x1−ε − 1
1− ε

and F (K,H) = KαH1−α

DM: u(q) = C
q1−η − 1
1− η

and c(q, k) = qψk1−ψ

The c(q, k) function comes from c(e) = e and q = eχk1−χ where 0 < χ ≤ 1, so ψ = 1/χ ≥ 1;

if ψ = 1 the model dichotomizes. We normalize C = 1 with no loss in generality, and assume

B, ε, η > 0 and 0 < α < 1.18 In the Appendix we prove analytically that under price-

taking, for these functional forms, a monetary steady state always exists, and under a simple

restriction it is unique. This is not so easy for bargaining models, but in the numerical work

we always find a solution and it appears to be unique.

We now describe the calibration strategy. Beginning with preferences, first set β to match

a real interest rate of iR = 0.035, which comes from annual US data, 1951-2004, where the

average nominal rate on Aaa-rated corporate bonds is 7.2% and the average inflation rate

using the GDP deflator is 3.6%. Although in our baseline model the period is a year, we

discuss other options in Section 5.3, and this turns out not to matter. As a benchmark we

set ε = η = 1 mainly to facilitate comparison with previous studies, but also because this is

required for balanced growth in a generalized version with technical change; we also check

robustness on this dimension in Section 5.3 and it turns out not to matter too much. The

remaining preference parameters A and B are determined simultaneously with several other

parameters, as described below.

Moving to policy, as we said, inflation is π = 0.036. We also more or less directly

observe taxes, and we use th = 0.242 and tk = 0.548, the average effective marginal rates

in McGrattan et al. (1997). We set tx = 0.069, the average of excise plus sales tax over

18For DM utility, we actually use u(q) = (q+b)1−η−b1−η
1−η to guarantee u(0) = 0 for all η, so that in the

bargaining model the buyer’s threat point is finite; then we set b = 0.0001. We can set C = 1 wlog because
we already have the constants A and B weighting h and x, and we do not need to weight e since we do not
use it in any of the calculations (a weight on e would merely pick units for effort).
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consumption in the data. Moving to technology, we set δ = 0.070 to match I/K, where K is

residential and nonresidential structures plus producer equipment and software.19 We then

set the coefficient α in the CM production function to match labor’s share, which is 0.712

in our data, using the method in Prescott (1986); hence α = 0.288. This leaves us with the

two remaining preference parameters A and B, the size of government G, the coefficient in

the DM cost function ψ, the probability of being a consumer or a producer in the DM σ,

and, in bargaining models, the buyers’ share θ.

Table 1 partitions parameters into two groups: the ones we have already set based on

‘obvious’ observations, and six yet to be determined, along with six other observations that

we now discuss (tables are at the end of the paper). First is average hours worked as a fraction

of discretionary time, H = 1/3 (Juster and Stafford 1991). Second is average velocity, which

is v = M/pY = 5.29 when we measure M by M1.20 Third is G/Y = 0.25. Fourth is

K/Y = 2.32. Fifth is the money demand elasticity, which we estimate to be ξ = −0.226,

as discussed below. Last is the markup, µ = 0.10 (Basu and Fernald 1997). Our method

is to set the six remaining parameters simultaneously to minimize the distance between the

targets in the data and the model. As the mapping between observations and parameters is

nonlinear, there is no presumption that we can match things perfectly, but we can get close

— how close depending on the specification.

This is all fairly standard, but two issues deserve comment. The first issue concerns the

fact that we target K/Y even though we have already used labor’s share to pin down α. In

the standard one-sector growth model, given β, δ and tk, the steady-state condition implies α

and K/Y are proportional. This is not true here, however, because of the DM. When capital

is used in the DM, the greater is ψ the greater are the returns to investing, and the idea is to

set ψ to match K/Y . This is reasonable especially because we have taxes in the model, and

19We remove consumer durables, inventories and net exports from all measurements. Thus, consumption
includes services plus nondurables, investment is private fixed investment, and output is the sum of these,
plus government consumption and investment.

20Using M1 facilitates comparison with existing studies and makes sense in light of fn.5, but we consider
alternatives in Section 5.3.

24



it is well known that if α is set to match labor’s share and tk is set realistically, K/Y tends

to be too low (at least in models that ignore household production; see e.g. Greenwood et

al. 1995 or Gomme and Rupert 2005).

The other issue concerns the elasticity ξ. Following a common specification in the litera-

ture (e.g. Goldfeld and Sichel 1990), we specify log real money demand m̃t as a linear function

of log nominal interest ı̃t and log real output ỹt, allowing for first-order autocorrelation in

the residuals. Due to nonstationarity we estimate this in first differences:21

∆m̃t = βy∆ỹt + βi∆ı̃t − ρβy∆ỹt−1 − ρβi∆ı̃t−1 + ρ∆m̃t−1 + νt (49)

βy = 0.369 (0.124) , βi = −0.226 (0.045) , ρ = 0.347 (0.131) , R2 = 0.423

Here ρ is the AR(1) coefficient for the residuals in the original equation in levels and the

numbers in parentheses are standard errors. The estimated long-run interest elasticity is

ξ = −0.226, with a relatively small standard error of 0.05. We match this to the theoretical

long-run elasticity, as in (48).

4.3 Decision Rules

Although we calibrate to steady state, we need to go beyond this and solve for equilibrium

decision rules in order to analyze transitions after a policy change. Here we briefly describe

our method. As is standard, we begin by scaling all nominal variables by the aggregate money

stock, so that m̂ = m/M , p̂ = p/M , etc. Then the individual state variable is (m̂, k,K). In

equilibrium, m̂ = 1 and k = K. A recursive equilibrium is then described by time-invariant

functions [q (K) , K+1 (K) ,H (K) ,X(K)], solving (19)-(22) for the bargaining version or

(28)-(31) for the price-taking version, plus value functions [W (K), V (K)] solving (1) and

(8). We solve these equations numerically using a nonlinear global approximation, which

can be important for accurate welfare computations.22

21There is a mapping between the regression coefficients and the underlying parameters whether the
estimation is done using differences or levels. We did it both ways, and the relevant elasticity estimates were
statistically identical, so we only report results for differences.

22Specifically, we use the Weighted Residual Method with Chebyshev Polynomials and Orthogonal Col-
location. See Judd (1992) for details, and Aruoba et al. (2006) for a recent comparison of solution methods.
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Figure 1 plots the decision rules and value function for two preferred parameterizations,

Models 4 and 5, as described in the next section. We show these functions for four scenar-

ios: the planner’s problem; monetary equilibrium at the FR; monetary equilibrium at 10%

inflation; and nonmonetary equilibrium. We will return to discuss the economic content of

these graphs below. For now, we mainly want to point out that over the range shown, which

allows K to vary ±90% of its steady state, the functions are fairly nonlinear. Although in

most of the policy experiments we do the economy remains within roughly ±20% of steady

state, where the nonlinearity is less important, it is good to know what happens when we

are further from steady state.

5 Results

5.1 Model ‘Fit’

The basic calibration results are given in Table 2, where the first column lists the relevant

moments in the data and the other columns list the moments from five different versions of

the model. Model 1 fixes ψ = θ = 1, giving up on K/Y and µ as targets; this model has

no holdup problems, and in fact θ = 1 is equivalent to price taking when ψ = 1 (but not

when ψ > 1). Model 2 keeps ψ = 1 but calibrates θ. Model 3 fixes θ = 1 and calibrates ψ.

Model 4 calibrates θ and ψ. Model 5 calibrates ψ and assumes price taking, so there is no θ.

In all cases we do well on the targets, with two exceptions. First, we match the markup µ

only if we assume bargaining and calibrate θ (to around around 3/4) rather than assuming

price taking or fixing θ = 1, for reasons that should be clear.23 Second, we do a good job

matching K/Y only in the price-taking model, for reasons that we now explain.

As discussed above, our method is to calibrate α to labor’s share and then try to match

K/Y using ψ. When ψ = 1, capital does not affect DM production and we pin down K/Y

exactly as in the standard model — meaning that it is too low compared to the data. When

ψ > 1, K/Y is higher, but with bargaining this effect is small because the holdup problem

23Notice that in bargaining models with an arbitrary θ, the markup can actually be negative; e.g. θ = 1
implies price equals average cost, which is less than marginal cost when ψ > 1.
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erodes investors’ returns from having capital in the DM. Hence, ψ > 1 does not help K/Y

much in a bargaining model. With price taking, there is no holdup problem, and we can set

ψ to generate a big enough return on capital to match K/Y exactly. So the price-taking

model is better on this dimension, but again, it misses the markup.

We also compared the model to several statistics to which we do not calibrate. Here we

focus on the elasticity of investment with respect to inflation, say ζ, since after all a main

goal is to study the effects of money on capital accumulation. Using quarterly data, we

estimate the long-run elasticity to be ζ = −0.023 and statistically significant. Although this

may appear small, it is economically relevant: raising inflation from our benchmark value to

7% e.g. reduces investment by arounf 2.3%, which is nothing to scoff at. As seen in Table

2, in Models 1—3 this elasticity is 0, since as we know from theory there is no feedback from

money to the CM. In Models 4 and 5 we have ζ < 0, although the effect is rather weak under

bargaining (−0.001) and too strong under price taking (−0.060).

The weak effect in Model 4 is again due to the holdup problem: the extra return from DM

production does not increase K much, so monetary policy, although it affects this return,

does not have a big impact on total investment. Now obviously this depends on the value of

ψ, but it turns out that the model cannot do much better if we choose ψ to make ζ as big as

possible. Even if we eliminate µ as a target, freeing up θ to help match the other targets, a

model with bargaining cannot do very well matching the elasticity of investment. If θ is big

the capital holdup problem makes the DM return to K small; if θ is small the money holdup

problem makes q small; and in either case investment is insensitive to inflation. With price

taking, by contrast, in Model 5 we actually could match ζ by recalibrating, with relatively

little sacrifice in other targets; we return to this in Section 5.3.

We also report the share of the DM in output, sD, which varies between 4.6% and 5.2%

across Models 1-5.24 While we do not want to take a stand on the size of the different sectors

in the real world, we think these numbers are reasonable, in the sense that we would be

24It is easy to see where this comes from. Velocity is v = PY/M where Y = YC+YD. Since YD = σM/P ,
v = σY/YD and hence sD = YD/Y = σ/v. Calibration implies σ ≈ 1/4, so given v ≈ 5, sD ≈ 5%.
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uncomfortable if the model predicted that anonymous monetary trade was too big a share of

GDP. Because sD is relatively small, we need a big markup in the DM — in the neighborhood

of 200% — to match the economy-wide markup. Although we do not want to go into too

much detail here, this prediction does not seem overly problematic: it would be no surprise

if some anonymous decentralized trade did occur at very high markups.25

Finally, one might ask how we match the empirical money demand curve, compared to

Lucas (2000), say. Figure 2 shows the relationship on which Lucas focuses, i versus M/pY ,

in the data and in a typical version of the model (Models 1-5 all look very similar in this

regard). As is true of other approaches to these data, including those discussed by Lucas, it

is not easy to fit the observations in the northwest part of the scatter plot. In our sample

these are all from 1951-1960. Ignoring this decade, we think our money demand curve

looks reasonable. In any case, one should not put too much weight this diagram, since the

specification assumes the income elasticity of money demand is 1, which is rejected by the

data. Alternatively, one can look at regression equation (49), which evidently fits quite well,

and we match the velocity and interest elasticity in the data almost exactly.

5.2 Experiments

Table 3 contains the results in each of the five models when we perform the standard ex-

periment of changing the inflation rate from π1 = 0.1 to the FR, which is π2 = −0.0338 for

this calibration. For now, when we change π we make up any change in government revenue

using lump-sum taxes, but we consider other fiscal policies below. The table gives ratios

of equilibrium values of several variables at the two inflation rates. When a 1 appears in

italics, the true number is not exactly unity, but shows up this way due to rounding: this is
25Although µ = 0.1 seems a reasonable aggregate target, as Faig and Jerez (2005) point out, markups

vary a lot. Data on retailers at http://www.census.gov/svsd/www/artstbl.html, e.g., indicate the following:
at the low end, warehouse clubs, superstores, car dealers and gas stations have µ between 17% and 20%; and
at the high end, specialty food, clothing, footwear and furniture stores are over 40%. Of course, retail does
not mean anonymous or monetary trade. More work needs to be done on both theory and measurement in
this area, but we are aware that our calibration strategy for Model 4 is in some sense extreme: since µC = 0,
we need a big µD to match aggregate µ. Model 3 is the other extreme, µD = 0, and if we target µ between
0 and 10%, the results naturally are between Models 3 and 4. In any case, we want to point out that if we
had µC > 0, for whatever reason, or a bigger sD, we could get a away with a smaller µD.
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to distinguish results where we know as a matter of theory that inflation has no effect from

results where there is an effect but it is too small to show up numerically.

The first thing to note is that in all models q1/q2 is considerably less than 1, varying

between 2/3 and 4/5. Again, π is a tax on DM activity, and this shows it is quantitatively

important. In Models 1-3 this is the only effect. In Model 4, in theory, π does affect the CM,

but the impact is tiny (as might be expected from the discussion in Section 5.1). Models 1-4

predict that going from π = 0.1 to the FR increases aggregate output Y by 2%, essentially

all due to the change in q. In Model 5 the effects of this policy are very different: q increases

by about the same percentage, but now this raises K by 12%, X by 3% and Y by 6%.

Hence, we conclude that inflation can have a very big impact on the CM through capital

accumulation if we assume price taking, but not if we assume bargaining.26

Turning to welfare, we solve for ∆ such that agents are indifferent between changing π

and increasing total consumption by factor ∆We report the answer comparing across steady

states — i.e. jumping instantly from π1 andK1 to π2 andK2 — as well as the cost of transition

from K1 to K2 and the net gain to changing π starting at K1. This last number gives the

true benefit of a policy change, although the steady state comparison is still interesting: it

tells us how much an agent having π1 and K1 would pay to trade places with an agent agent

having π2 and K2. Of course, in Models 1-3 there is no transition and in Model 4 we expect

the transition to be unimportant, since π does not affect K much, but in Model 5 it could

be quite important. We also report the net gain to reducing π to 0, to see how much of the

gain comes from eliminating inflation and how much comes from deflation.

In Models 1 and 3, with θ = 1, going from 10% inflation to the FR is worth around 3/4

of 1% of consumption, commensurate with most previous findings such as Lucas (2000) or

Cooley and Hansen (1991). In Models 2 and 4, with θ ≈ 3/4, this policy is worth over 3%

of consumption. Intuitively, at θ ≈ 3/4 the money holdup problem makes q inefficiently

26Intuitively, the reason inflation affects K a lot in Model 5 is that our calibration implies DM production
is relatively capital intensive: ψ ≈ 2.5 implies χ ≈ 0.4, compared to α ≈ 0.3. Hence, when q falls there is
a big impact on the overall return to K. This does not work in Model 4, even though it implies χ ≈ 0.5,
because of holdup.
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low, with or without other distortions, so any additional reduction is very costly. In Model

5 the steady state gain from this policy is about the same as in Models 2 and 4, but the

economics is completely different. With price taking, π has a big impact on K, and hence

on X. However, since much of the gain accrues only in the long run, and agents must work

more and consume less during the transition in order to accumulate the additional capital,

the net gain is only 1.87% — smaller, but still sizable.

We find it interesting that there are two distinct ways to get big numbers for the wel-

fare cost: assume bargaining with θ ≈ 3/4, whence the money holdup problem makes the

reduction in q due to inflation very costly; or assume price taking with ψ ≈ 2.5, whence

inflation has a big impact on K and X. We emphasize that while the first effect can be seen

in the basic LW money model, the latter cannot: without capital, under either price taking

or θ = 1, the cost of inflation predicted by that model is about the same as in the ‘reduced

form’ literature, around 3/4 of 1%. One gets a bigger number without capital if and only

if there is a money holdup problem (see Rocheteau and Wright 2006 for more discussion).

Here, because of the effect on K, inflation is costly even under price taking.

Both of these stories about why inflation is costly lead to similar steady state welfare

comparisons, but as we said, for the investment story the gains are tempered by a costly

transition. Figure 3 plots the transition paths following the reduction from 10% inflation to

the FR for Models 4 and 5. As one can see, in Model 5, in the short run H increases by over

4% and X falls by around 1% before settling down to their new steady state levels. And q

jumps on impact by around 16% before increasing 25% in the long run when K increases.

The paths are qualitatively similar in Model 4, but the magnitudes are very different. The

only quantitatively important effect in Model 4 is the increase in q, which is slightly bigger

than predicted by Model 5 in the long run, and moreover occurs very quickly.

Table 4 compares the FR and FB allocations. The differences are big, but mainly due

to taxation, and one finds similar results in nonmonetary models with proportional taxes

(McGrattan et al. 1997). To check this, we also report the gain to moving from the FR to
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the FB after setting th = tk = tx = 0 and recalibrating other parameters. In Models 1 and

5, the gain in this case is 0 because the FR implements the FB. In Model 3, with capital

holdup but not money holdup, the steady state gain is around 3%, although much is lost

in transition. In Model 4, with both, it is around 5%. These calculations provide measures

of the immpact of holdup: based on the steady state comparisons, e.g., one could say that

3% of consumption is the cost of capital holdup and an additional 2% the cost of money

holdup, and although there is no single ‘correct’ way to decompose the effects, this suggests

they may be quantitatively important even though sD is only around 5%.27

Table 5 reports the actual allocations, not just the ratios of the allocations at different π,

to facilitate comparisons across models for a given π. Notice q is considerably lower in Models

2 and 4 than in other models, due to the money holdup problem. Also, comparing Models 4

and 5, note that the latter has considerably bigger K and K/Y ratio for moderate inflation

rates, although K/Y is basically the same at the FB. In other words, K is much more

sensitive to π in the price-taking model, as we already discussed. The table also reports the

allocation in the nonmonetary equilibrium, where q = 0, which is the limit of the monetary

equilibrium as π →∞.28

At the risk of being redundant, one can also see what is happening from the decision

rules in Figure 1. In Model 5, as we lower π the decision rule for K+1 shifts up and steady

state K increases, although it is still far from the FB even at the FR (the FB steady state

K = 2.18 is off the chart). Also, the decision rule for q shifts up, increasing q in the short

27One issue is that the calibrated parameters differ across the columns in Table 4. Suppose we instead
fix the parameters at the ones calibrated to Model 4, and consider three cases: (i) θ = 1; (ii) θ calibrated;
and (iii) price taking. With taxes, going from the FR to the FB in these three scenarios is worth, in terms
of steady state (net) comparisons: (i) 32.87 (16.33); (ii) 43.90 (26.06); and (iii) 14.31 (6.58). Recalculating
with taxes set to 0, we get: (i) 5.57 (1.06); (ii) 14.80 (9.93); and (iii) 0 (0). Looking at the results with no
taxes, one could say the cost of capital holdup in terms of steady state is 5.57, or 1.06 including transition,
and the cost of money holdup is 9.23, or 8.87 including transition. With taxes the cost of capital and money
holdup including transitions are almost identical, 9.75 and 9.73. Again there is no single ‘correct’ way to
measure these costs.

28We can compute the welfare cost of large inflations — e.g. going from π = 100% to the FR is worth
around 8% in Model 4 and 14% in Model 5 — but one has to take these calculations with a grain of salt, for
at least two reasons. First, agents might devise other ways to trade in the DM at such high values of π (e.g.
foreign currency). Second, when π is very high and hence q is very low, the results are sensitive to the value
of b mentioned in fn. 19 (for moderate π the results are more robust; see Section 5.3).

31



run and more in the longer run as we move along the decision rule with the growth in K.

The latter effect is important, in Model 5, since K grows a lot. In Model 4 the decision rule

for K+1 and hence steady state K change little. The decision rule for q shifts, giving a short

run effect, but there is very little additional growth effect. Still, inflation is very costly in

Model 4 because the decision rule for q at the FR is far from the decision rule at the FB, so

any change in q matters a lot; by contrast, in Model 5 the decision rules for q at the FR and

FB are virtually coincident.

So far we computed the cost of inflation when any change in revenue is offset by changing

T . One can also consider changing proportional taxes. Cooley and Hansen (1991) e.g. find

that if one or more proportional taxes are used to make up the revenue shortfall, eliminating

inflation is not beneficial. It seems of interest to revisit the issue in our model. The results

are reported in Table 6 for the case where we make up the revenue with lump-sum taxes,

with labor taxes, and with consumption taxes.29 The first panel reproduces the results from

Table 3, of course, and shows that with lump sum taxation it is always desirable to eliminate

inflation. In the other panels there are two effects, a beneficial one due to the change in π,

which is equal to the effect from the first panel, plus a detrimental one due to changes in the

distortionary tax.

Going to the FR and making up the revenue by increasing th (from 25% to around 30%,

depending on the specification) reduces Y by around 4% in Models 1-4, and increases Y by

1% in Model 5. The net welfare gain in the bargaining models is negative when θ = 1 but

positive when θ is calibrated; it is negative in the price-taking model. The net gain is positive

if we make up the revenue by increasing tx (from 7% to 14%) in the price-taking model and

in the bargaining models with calibrated θ. We think these results are interesting because

they imply that one does not necessarily need access to lump-sum taxation to argue that

lower inflation may be desirable. More work could be done on this issue; e.g. it would be

29We could not solve the case where we make up the revenue with tk, since increasing tk lowered K by so
much that sufficient revenue was not forthcoming (this is also true in Cooley and Hansen 1991). For these
experiments we allow the government to issue a bond paying interest equal to the discount rate, simply so
that we do not have to adjust taxes each period during the transition.
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interesting to study the optimal monetary-fiscal policy mix, but this goes beyond the scope

of the present paper.

5.3 Robustness

In order to consider robustness, we redo the calculations after changing several aspects of

the specification. In the interest of space, Table 7 reports the results in terms of one key

statistic: the net welfare gain of going from 10% inflation to the FR, including any transition.

The first row is the benchmark model discussed above.

The first robustness check involves shutting down distorting taxes. We report results

when parameters other than taxes are kept at benchmark values, and when they are recal-

ibrated, which seems more reasonable. In either case, for Models 1-4 the results are very

similar to the benchmark calibration, but in Model 5 the cost of inflation is lower without

distorting taxes. This is no surprise. Without taxes the FR achieves the FB in Model 5, and

hence the cost of a small inflation is low by the envelope theorem. With taxes the FR does

not achieve the FB, so the envelope theorem does not apply and the cost is higher. We do

not think this is worrisome: the results predicted by Model 5 should depend on what one

assumes about taxation. Since taxes are a fact of life, we trust the benchmark calibration.

The next several rows vary the curvature parameters ε and η in the CM and DM utility

functions, as well as the parameter b mentioned in fn. 19 that is used to guarantee u(0) = 0.

One can look at the numbers for oneself, but our conclusion is that the results are not overly

sensitive to these choices (although as we mentioned in fn. 28, b does matter more when we

move to very high inflation rates). We think this is comforting, especially since the overall

‘fit’ of the model does not depend too much on these parameters. One can also vary other

baseline parameters (e.g. β or δ) over a reasonable range without affecting the results too

much; in the interest of space, we omit these results.

We tried several different measures of money,M0,M2 andM3, in addition toM1. As one

can see, this does make a difference. The main reason is that these different measures imply
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different values for velocity, with v = PY/M decreasing as we use broader measures. As v

changes, the calibrated size of the DM changes, and so does the estimated cost of inflation.

Some intuition for this comes from the traditional method of computing the welfare cost

of inflation as the area under a money demand curve such as the one in Figure 2: using a

narrower notion of money shifts the curve down and reduces the estimated welfare cost.30

While it is perhaps unfortunate that results depend on the definition of M , this is bound to

be true for any theory of money, not only ones that try to incorporate frictions explicitly.

Still, one needs to think carefully about the ‘best’ empirical measure of money, since it does

make a difference.

Table 7 also shows the impact of using different frequencies and time periods (recall the

baseline sample is yearly, 1951-2004). Again one can look at the numbers for oneself, but

we conclude that the results are not sensitive to these choices. The fact that using different

frequencies does not change the results is especially comforting since this is not the case

in typical ‘reduced-form’ models. To change the frequency here, we only have to adjust

inflation, velocity, interest rates, K/Y , and I/K by the relevant factor. The calibrated σ

declines as we increase the frequency, because shortening the period reduces the probability

of consuming or producing each period in the DM, but the welfare conclusions are basically

the same.

One can go beyond parameter values and check robustness with respect to larger modeling

choices. Recall the extension in Section 3 with two capital stocks, K in the CM and Z in

the DM. Tables 8 and 9 report calibration results and the effects of π for two versions of

the model, one with bargaining and one with price taking, called Models 6 and 7, which are

two-capital analogs of Models 4 and 5.31 Models 6 and 7 do about as well as Models 4 and

30At least this is the case as we move from M0 to M1 to M2 ; as we move from M2 to M3, although v
goes down, the calibrated elasticity ξ also changes, and the net effect is to reduce the cost. In any case, this
story is only meant to help with intuition, and is not an endorsement of the traditional way of measuring the
cost of inflation — the different versions of our model all generate basically the same money demand curve,
but predict different welfare costs. See also Craig and Rocheteau (2005).

31For Model 7 the calibration tried to make ψ very big — i.e. to make the underlying technology q = eχz1−χ

almost linear in z — which led to numerical problems in solving for decision rules. We report results when
we restrict ψ ≤ 10, which avoids these problems with little sacrifice in terms of matching the steady state.
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5 in terms of matching the targets. In Model 6, Z is very low due to the capital holdup

problem; since both versions have similar K/Y , not surprisingly, Model 7 does better on

(K + Z)/Y . Comparing Models 6 and 7 to Models 4 and 5, q actually increases by more in

the two-capital models when we reduce π, which tends to make inflation more costly.

However, in Model 7 there is another effect, and the net cost of π is actually slightly

lower than in Model 5. This effect is the following. As always, a decrease in π raises q,

and with price taking this leads to a sizable increase in the demand for the capital used to

produce q. In Model 5 this same capital is used to produce CM consumption, so in the long

run X increases too. In Model 7, however, different capital stocks are used to produce q and

X; hence, when lower π causes Z to grow, this does not spill over to X. Although K does

grow when we reduce π, this is only because more K is needed to produce the additional Z;

there is no effect on X. Despite this detail, the overall picture from the two-capital models

is fairly similar to the base case.32

Tables 8 and 9 also report results from the extension where K is produced in the DM,

for both bargaining and price-taking versions, called Models 8 and 9, which is interesting

because now inflation taxes capital accumulation directly and not only indirectly via DM

consumption.33 In this model, π has a sizable effect on K under bargaining as well as price

taking. Overall the results are not so different from the base case, although the welfare cost

is somewhat higher than in the other models with bargaining. While there may be reasons to

prefer models where investment occurs in the CM, it may also be worth studing this case in

more detail, although one might want to rethink the calibration a little. We presented these

results mainly to show that the basic ideas carry over under various alternative assumptions,

and the results do not hinge too critically on some details of the specification.

32Model 7 actually has an interesting transition. After reducing π, Z jumps by nearly 50%, partly from
increasing H and reducing X, and partly from capital flowing from the CM to the DM. Thus, K falls 4% in
the short run. In the long run, Z grows even more as K goes up to around 2% above its initial level.

33In Model 8, when we try to match µ, we get a very low θ, a bad fit for money demand, and an excessively
high inflation - investment elasticity. Because of this we did not have much faith in those results, and instead
simply set θ = 3/4, close to the calibration in the other bargaining models. Also, notice that in Models 8
and 9 sD is bigger, because now all investment occurs in the DM.
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We report one more robustness calculation. In terms of the relation between money and

capital, Model 5 is in some sense our preferred specification — it has something interesting

to say because it avoids the holdup problems that effectively kill this relation in bargaining

models. However, one might worry that our strategy for picking parameters overestimates

the effect, because as we mentioned in Section 5.1, it implies an elasticity of investment with

respect to inflation of ζ = −0.060 while the data indicate ζ = −0.023. We reiterate that we

did not try to match ζ; rather, solidly in the tradition of the business cycle literature going

back to the early days of calibration, we target long-run averages and let the elasticities fall

where they may (the one exception being the money demand elasticity).

To pursue the analogy, when in the textbook business-cycle model we set A so that H

is 1/3 we are also implicitly setting the labor supply elasticity; and when we set ψ to match

K/Y we are implicitly setting the investment elasticity, given other parameters. Some people

worry the implied labor supply elasticity is too high in the standard model, and may also

worry that our investment elasticity is too high. If we recalibrate with ζ added to the list of

targets, we do fairly well except that K/Y is a little low. See Model 10. The calibrated ψ

is smaller, and hence the effect of π on K and the welfare numbers go down somewhat. It

is not clear which calibration strategy and hence which results one should prefer is better,

since Model 10 matches ζ but misses K/Y . We like the idea of targeting first moments, but

even if we match the elasticity directly, the results are not so different.

We close bymentioning one final issue. All of the models considered so far predict inflation

that has either a negative impact or no impact on investment. What about the so-called

Tobin effect? Tobin (1965) said that inflation increases investment by tilting the relative

return away from money and toward capital. This does not work in simple models. Imagine

higher inflation leading to more investment, as agents increase savings when consumption

becomes more expensive due to inflation. What do they do with the additional capital?

They make more consumption goods. The inflation tax cannot be avoided by saving. This

is why in the basic cash-in-advance model π has no effect on K. And in more sophisticated
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versions, like Stockman (1981), or the textbook model with both cash and credit goods, π

tends to reduce K.

Now consider our setup with nonseparable preferences, as in Section 3.3. In fact, all we

need is utility U(x, q) − c(e) − Ah to be nonseparable in x and q. Here is the intuition.34

As always, inflation reduces q. If q and X are substitutes, this increases X. Then as long

as CM production is more capital intensive than DM production, inflation can increase K.

That’s it. So it is easy to get ∂K/∂π > 0 with nothing fancy, other than two sectors that are

asymmetric in terms of their need for money and their capital intensity, plus nonseparable

utility. Now, to be sure, we are not trying to argue here that there is a positive relation

between inflation and investment in the data — only that it is not difficult in this kind of

model to get one in theory.

6 Conclusions

We presented a framework that combines elements from the microfoundations of money and

from mainstream macroeconomics. We analyzed several models, and used them to study

monetary and fiscal policy quantitatively. Although our benchmark model has feedback

between the CM and DM because capital produced in the former is used as an input in

both markets, several alternative specifications were also analyzed, including versions with

different capital goods in the two markets, and versions with capital used in the CM produced

in the DM. While the exact results depend on some details, there is no doubt that the idea

works — this idea being that, given money affects decentralized trade, in economies with

capital, money can also affects investment, consumption and employment.

One interesting finding is that the DM does not have to be very big — say, only around

5% of GDP — for it to matter quantitatively. Another finding that we believe is especially

interesting is the following: although inflation has important welfare consequences in all

34The idea here comes from Rocheteau et al. (2005), where a similar explanation of the Phillips curve is
developed with all the details made explicit. In discussing these kinds of results, it is useful to bear in mind
that certain comparative static results always hold in this framework because of quasi-linear utility.
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versions of the model, the transmission mechanism differs substantially across specifications.

In particular, with price taking it has a big impact on investment and CM consumption, and

with bargaining inflation has only a small impact on investment but it is still costly because

it reduces DM consumption. These results were not obvious to us ex ante.

There is much left to do, including refinement of the quantification. As we said above, this

paper is in the business-cycle-calibration tradition of trying to match mainly first moments

in the data, and then asking what happens when something changes (e.g. when there is a

technology shock or a policy shift). But there is no reason in principle why one could not

bring to bear more sophisticated econometrics. We thought it would be good to start with

calibration methods, which have some advantages in terms of simplicity and clarity.

Moreover, given what we have so far, it should be easy and might be interesting to add

stochastic shocks and study the business-cycle properties of the model. Here we concentrated

on the long-run implications of monetary policy, since this is a classic issue and one on which

we shed new light. For business-cycle analyses one may want to add various embellishments;

for instance, we see no reason in principle why the framework would not accommodate

anything from sticky prices to job search to whatever else one finds interesting. Since it has

been shown that taking money seriously matters for interesting questions in simple models,

one might reasonably want to know how it matters in more complicated or realistic models.

We leave this for future work.

A Appendix

A.1 The Cost Function

Here we verify the properties of the DM cost function c(q, k) stated in Section 2. This function

comes from a production function q = f(k, e) that is strictly increasing and concave, and a

disutility of effort function c(e) that is is strictly increasing and convex. By definition, saying

k is a normal input means that in the problem min {we+ rk} s.t. f(k, e) ≥ q, the solution

satisfies ∂k/∂q = fefek − fkfee > 0.
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To proceed, first rewrite q = f(k, e) as e = ξ(q, k). Then ∂e/∂q = ξq = 1/fe > 0 and

∂e/∂k = ξk = −fk/fe < 0. Also ξqq = −fee/f3e > 0, ξkk = − (f2e fkk − 2fefkfke + f2kfee) /f
3
e >

0, and ξkq = − (fekfe − feefk) /f
3
e . Hence, cq = c0/fe > 0, ck = −c0fk/fe < 0, cqq =

[c00c02fe − c0fee] /f
3
e > 0, ckk = − [c0 (fefkk − 2fefkfke + f2kfee)− fef

2
k c
00] /f3e > 0 and cqk =

− [c00fefk − c0 (fkfee − fefek)] /f
3
e . These results establish that c is increasing and convex in

q and decreasing and convex in k, and that cqk < 0 if k is a normal input, as claimed.

A.2 Money Demand Elasticity

The interest elasticity of money demand is ξ = ∂(M/P )
∂i

i
M/P

. To compute this in the bargaining

model (price taking is similar) we need to determine ∂q/∂i, ∂K/∂i and ∂H/∂i and substitute

them into (48). Eliminating X, we can write the steady state as 3 equations in (q,K,H):

i

σ
=

u0(q)

gq(q,K)
− 1

ρ = [FK(K,H)− δ] (1− tk)−
σ (1 + tx) γ(q,K)

U 0 [F (K,H)− δK −G]

U 0 [F (K,H)− δK −G]FH(K,H) =
A (1 + tx)

(1− th)

We take the total derivative of this system to obtain

B

⎡⎣ dq
dK
qH

⎤⎦ =
⎡⎣ di
0
0

⎤⎦
where

B =

⎡⎢⎣
σ(gqu00−u0gqq)

g2q
−σu0gqk

g2q
0

−σ(1+tx)γqU
0

U 02 Θ (1−tk)U 02FKH+σ(1+tx)γU
00FH

U 02

0 (FK − δ)FHU
00 + FKHU

0 F 2
HU

00 + FHHU
0

⎤⎥⎦
and Θ = (1− tk)FKK − σ(1+tx)

(U 0)2
[γkU

0 − (FK − δ) γU 00]. We can now compute the partials as

∂q

∂i
= B−111

∂K

∂i
= B−121

∂H

∂i
= B−131

where B−1ij refers to the (i, j) element of B−1.
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A.3 Existence and Uniqueness

Here we show that for the functional forms we use in the calibrated model, under pricing

taking, a steady state exists and under certain conditions is unique. With the functional

forms in question, (28)-(31) can be written:

K1−ψ

q−ψ
=

β

1 + π

"
(1− σ)

K1−ψ
+1

q−ψ+1
+ σψ(q+1 + b)−ηq+1

#
(50)

Xε
+1

Xε
= β(1− tk)

"
α

µ
K+1

H+1

¶α−1
+ 1− δ

#
− σβ(1 + πx)(1− ψ)

B

Xε
+1K

−ψ
+1

q−ψ+1
(51)

X =

∙
B(1− α)(1− th)

A(1 + tx)

Kα

Hα

¸1/ε
(52)

X = KαH1−α + (1− δ)K −K+1 −G (53)

Let k = K/H, and combine (53) and (52) to get

k
K

∙
(1− α)(1− th)

A(1 + tx)
kα
¸1/ε

= kα + (1− δ)k+ H+1

H
k+1 −

G

K
k.

Hence, in steady state,

K =
k1−α

h
(1−α)(1−th)
A(1+tx)

Bkα
i1/ε

1− (δ + G
K
)k1−α

. (54)

Given b ≈ 0, (50)-(52) reduce to:

q =

∙
σ

ψ(i+ σ)

¸ 1
ψ+η−1

K
ψ−1

ψ+η−1 (55)

X =

∙
(1− α)(1− th)B

A(1 + tx)
kα
¸1/ε

(56)

1 = β
£
1 + (αkα−1 − δ)(1− tk)

¤
(57)

+ (ψ−1)σβ(1−α)(1−th)
A

h
σ

ψ(i+σ)

i ψ
ψ+η−1 k

α(ψ+η−1)−(1−α)ψη
ψ+η−1

(
1−(δ+G/K)k1−α
(1−α)(1−th)B

A(1+tx)
k
1/ε

) ψη
ψ+η−1

Notice (57) is one equation in k. The RHS approaches ∞ as k→ 0 and approaches a value

less than 1 as k → (δ +G/K)1/(α−1). Hence it has a solution. The solution is unique if we

assume α(ψ + η − 1) < (1− α)ψη, since then the RHS is strictly decreasing. Given k, (54)

yields K, (55) yields q, (56) yields X, and H = k/K. So we have existence, and uniqueness

under a simple restriction.
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Table 1 - Calibration Parameters and Targets

(a) ‘Obvious’ Parameters

Parameters β ε η th tk tx δ α
Targets 0.966 1 1 0.242 0.548 0.069 0.070 0.288

(b) Remaining Parameters

Parameters A B G ψ σ θ
Targets H v G/Y K/Y −ξ µ

Target Values 0.33 5.29 0.25 2.32 0.23 0.10

Table 2 - Calibration Results

Data Model 1 Model 2 Model 3 Model 4 Model 5
ψ = 1
θ = 1

ψ = 1
θ free

ψ free
θ = 1

ψ free
θ free

ψ free
p taking

Calibrated Parameters
σ 0.24 0.27 0.24 0.26 0.27
B 2.52 2.50 1.53 1.30 2.39
ψ − − 1.65 1.93 2.51
A 6.42 6.39 3.89 3.31 6.49
G 0.11 0.11 0.11 0.11 0.13
θ − 0.78 − 0.74 −

Calibration Targets
µ 10.00 0.00 10.00 −1.81 10.00 0.00

K/Y 2.32 1.86 1.86 1.86 1.87 2.32
G/Y 0.25 0.25 0.25 0.25 0.25 0.25
H 0.33 0.33 0.33 0.33 0.33 0.33
v 5.29 5.33 5.33 5.33 5.33 5.29
ξ −0.23 −0.23 −0.23 −0.23 −0.23 −0.23

Miscellaneous
sD 4.59 5.01 4.59 4.87 5.16
µD 0.00 199.38 −39.36 205.28 0.00
ζ −0.023 0.000 0.000 0.000 −0.001 −0.061
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Table 3 - π = 0.1 vs. FR

Model 1 Model 2 Model 3 Model 4 Model 5
Allocation

q1/q2 0.64 0.64 0.76 0.80 0.79
K1/K2 1.00 1.00 1.00 1 .00 0.88
H1/H2 1.00 1.00 1.00 1 .00 0.99
X1/X2 1.00 1.00 1.00 1 .00 0.97
Y 1
C/Y

2
C 1.00 1.00 1.00 1 .00 0.96

Y 1/Y 2 0.98 0.98 0.98 0.98 0.94
Welfare

ss gain 0.78 3.16 0.73 3.42 3.62
transition 0.00 0.00 0.00 −0.03 −1.75
net gain 0.78 3.16 0.73 3.40 1.87
net gain to 0 0.70 2.26 0.66 2.39 1.35

Table 4 - FR vs. FB

Model 1 Model 2 Model 3 Model 4 Model 5
Allocation

q1/q2 1.00 0.33 0.69 0.24 0.72
K1/K2 0.47 0.47 0.38 0.35 0.57
H1/H2 0.75 0.75 0.74 0.73 0.76
X1/X2 0.62 0.62 0.59 0.58 0.66
Y 1
C/Y

2
C 0.66 0.66 0.61 0.59 0.70

Y 1/Y 2 0.65 0.66 0.59 0.56 0.70
Welfare

ss gain 20.25 25.19 28.37 43.90 16.92
transition −10.23 −10.57 −14.35 −17.84 −9.08
net gain 10.02 14.62 14.02 26.06 7.84

Welfare with no Taxes
ss gain 0.00 4.91 2.82 4.95 0.00
transition 0.00 0.00 −2.53 −0.02 0.00
net gain 0.00 4.91 0.31 4.93 0.00
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Table 5 - Allocations

Model 1 Model 2 Model 3 Model 4 Model 5
First Best

q 1.00 1.00 1.01 1.09 1.11
YC 0.66 0.66 0.71 0.74 0.70
Y 0.70 0.71 0.78 0.83 0.74
K 1.81 1.81 2.22 2.43 2.18
H 0.44 0.44 0.45 0.45 0.44
X 0.42 0.42 0.44 0.45 0.42

K/Y 2.58 2.57 2.83 2.94 2.94
Equilibrium at FR

q 1.00 0.33 0.69 0.26 0.79
YC 0.43 0.43 0.43 0.43 0.49
Y 0.46 0.46 0.46 0.46 0.52
K 0.85 0.85 0.85 0.85 1.25
H 0.33 0.33 0.33 0.33 0.33
X 0.26 0.26 0.26 0.26 0.27

K/Y 1.84 1.83 1.84 1.84 2.41
Equilibrium at π = 0

q 0.88 0.29 0.64 0.25 0.74
YC 0.43 0.43 0.43 0.43 0.48
Y 0.46 0.46 0.46 0.46 0.51
K 0.85 0.85 0.85 0.85 1.20
H 0.33 0.33 0.33 0.33 0.33
X 0.26 0.26 0.26 0.26 0.27

K/Y 1.85 1.84 1.85 1.86 2.36
Equilibrium at π = 0.1

q 0.64 0.21 0.53 0.21 0.62
YC 0.43 0.43 0.43 0.43 0.47
Y 0.45 0.45 0.45 0.45 0.49
K 0.85 0.85 0.85 0.85 1.10
H 0.33 0.33 0.33 0.33 0.33
X 0.26 0.26 0.26 0.26 0.26

K/Y 1.88 1.87 1.88 1.88 2.26
Nonmonetary Equilibrium

q 0.00 0.00 0.00 0.00 0.00
YC 0.43 0.43 0.43 0.43 0.43
Y 0.43 0.43 0.43 0.43 0.43
K 0.85 0.85 0.85 0.85 0.84
H 0.33 0.33 0.33 0.33 0.33
X 0.26 0.26 0.26 0.26 0.24

K/Y 1.95 1.95 1.95 1.95 1.95

48



Table 6 - π = 0.1 vs FR and...

Model 1 Model 2 Model 3 Model 4 Model 5
Making up Revenue by T

q1/q2 0.64 0.64 0.76 0.80 0.79
K1/K2 1.00 1.00 1.00 1 .00 0.88
H1/H2 1.00 1.00 1.00 1 .00 0.99
X1/X2 1.00 1.00 1.00 1 .00 0.97
Y 1/Y 2 0.98 0.98 0.98 0.98 0.94
T 1/Y 1 −4.79 −4.65 −4.79 −4.67 −2.52
T 2/Y 2 −2.35 −2.21 −2.35 −2.23 −0.33
ss gain 0.78 3.16 0.73 3.42 3.62
transition 0.00 0.00 0.00 −0.03 −1.75
net gain 0.78 3.16 0.73 3.40 1.87

Making up Revenue by th
q1/q2 0.64 0.64 0.78 0.82 0.81
K1/K2 1.06 1.06 1.06 1.06 0.93
H1/H2 1.06 1.06 1.06 1.06 1.04
X1/X2 1.09 1.09 1.09 1.09 1.04
Y 1/Y 2 1.04 1.04 1.04 1.04 0.99
New th 0.31 0.31 0.31 0.31 0.29
ss gain −1.43 0.93 −1.54 1.04 −1.29
transition −0.66 −0.68 −0.69 −0.69 0.98
net gain −2.09 0.25 −2.23 0.35 −0.31

Making up Revenue by tx
q1/q2 0.64 0.64 0.77 0.81 0.80
K1/K2 1.04 1.04 1.04 1.04 0.90
H1/H2 1.04 1.04 1.04 1.04 1.03
X1/X2 1.06 1.06 1.06 1.06 1.01
Y 1/Y 2 1.02 1.02 1.02 1.02 0.97
New tx 0.14 0.14 0.14 0.14 0.13
ss gain −0.70 1.66 −0.79 1.80 −1.00
transition −0.46 −0.47 −0.48 −0.47 1.41
net gain −1.16 1.19 −1.27 1.33 0.41
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Table 7 - Robustness

Model 1 Model 2 Model 3 Model 4 Model 5
Benchmark 0.78 3.16 0.73 3.40 1.87

Only Lump-sum Tax
Recalibrated 0.90 3.68 0.85 3.68 0.90

Not 0.78 3.16 0.73 3.38 0.36
Utility Parameters ε and η

ε = 2, η = 1 0.78 3.21 0.78 3.44 1.49
ε = 5, η = 1 0.79 3.36 0.79 3.59 1.27
ε = 1, η = 1/2 0.87 5.17 0.44 3.98 2.07
ε = 2, η = 1/2 0.87 5.28 0.48 4.23 1.68
ε = 5, η = 1/2 0.88 5.66 0.48 4.42 1.46
ε = 1, η = 2 0.76 2.24 0.76 2.45 1.68
ε = 2, η = 2 0.77 2.26 0.77 2.41 1.32
ε = 5, η = 2 0.77 2.33 0.77 2.44 1.10

Utility Parameter b
b = 0.00001 0.78 3.33 0.73 3.47 1.87
b = 0.0001 0.78 3.16 0.73 3.40 1.87
b = 0.001 0.78 2.92 0.73 3.29 1.87
b = 0.01 0.78 2.53 0.73 3.08 1.86
b = 0.1 0.79 1.85 0.70 2.56 1.82

Measures of Money
M0 0.14 0.14 0.12 0.46 0.14
M1 0.78 3.16 0.73 3.40 1.87
M2 2.08 5.95 2.08 7.21 3.04
M3 1.46 4.28 1.46 6.26 2.34

Frequency
Quarterly 0.73 3.05 0.73 3.25 1.82
Monthly 0.72 3.02 0.72 3.12 1.87

Period
1961-2004 0.69 2.94 0.65 3.16 1.96
1951-1998 0.78 3.24 0.74 3.53 1.72
1986-2004 0.90 3.06 0.87 3.11 1.96
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Table 8 - More Robustness : Calibration Results

Data Model 6 Model 7 Model 8 Model 9 Model 10
Calibrated Parameters

σ 0.27 0.25 0.50 0.50 0.26
B 1.76 2.37 0.47 0.10 2.49
ψ 1.42 10.00 1.13 2.29 1.25
A 4.49 6.36 1.01 0.22 6.47
G 0.11 0.11 0.14 0.14 0.12
θ 0.70 - 0.75 - -

Calibration Targets
µ 10.00 10.00 0.00 -0.53 0.00 0.00

K/Y 2.32 1.87 2.27 2.34 2.16 2.01
G/Y 0.25 0.25 0.25 0.25 0.25 0.25
H 0.33 0.33 0.33 0.33 0.33 0.33
v 5.29 5.33 5.27 4.45 4.20 5.32
ξ −0.23 -0.23 -0.23 -0.12 —0.23 -0.23

Miscellaneous
sD 5.06 4.72 11.23 11.91 4.84
µD 197.53 0.00 -4.72 0.00 0.00
ζ −0.023 0.000 -0.008 -0.094 -0.087 -0.023

Table 9 - More Robustness : π = 0.1 vs. FR

Model 6 Model 7 Model 8 Model 9 Model 10
Allocation

q1/q2 0.66 0.64 0.69 0.89 0.70
K1/K2 1 .00 0.98 0.69 0.89 0.95
Z1/Z2 0.66 0.64 − − −
φ1/φ2 − − 1.17 1.06 −
H1/H2 1 .00 0.98 1.03 1.01 1 .00
X1/X2 1.00 1.00 0.89 0.96 0.99
Y 1
C/Y

2
C 1 .00 0.98 0.92 0.97 0.99

Y 1/Y 2 0.98 0.96 0.88 0.94 0.96
Welfare

ss gain 4.95 2.63 7.87 2.46 1.77
transition −0.07 −1.26 −1.98 −0.83 −0.57
net gain 4.88 1.37 5.89 1.63 1.20
net gain to 0 3.42 1.08 4.38 1.22 0.95
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Figure 1 - Decision Rules and Value Functions

(a) Model 4
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(b) Model 5
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Figure 2 - Money Demand Curve
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Figure 3 -10% to FR: Transitions

(a) Model 4
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(b) Model 5
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