

Salt Contamination Assessment and Remediation Guidelines

Gordon Dinwoodie
Environmental Sciences Division
Alberta Environment

Sources of Salt Contamination

- Road salt storage yards
 - NaCl, CaCl, KCl
- Produced water spills
 - NaCl
- Animal slaughter operations
 - NaCl
- Pulp mills
 - NaSO₄

Environmental Effects

Plant growth

- inhibits water uptake
- chloride toxicity
- sodium toxicity

Soil quality

- crusting
- inhibits water movement through soil
- trafficability, tilth

Groundwater quality

Guideline Structure

- Regulatory
 - legislative background
 - Guidelines
- Site Assessment
- Remediation
- Technical background

Regulatory Practice Remediation Objectives

Increasing Regulatory Involvement

- Soil
- Groundwater
- Site-specific risk assessment
- Risk Management

Generic Soil Guidelines

- Separate values for surface (A horizon) and subsurface (B,C horizons)
- Classify control soils into suitability rating category
- Choose remediation objective from within same suitability category
- Sites zoned for industrial use may default to industrial guidelines

Generic Soil Guidelines

Parameter		Rating Categories				Industrial
		Good	Fair	Poor	Unsuitable	
Topsoil	EC dS/m	<2	2 to 4	4 to 8	>8	4
	(salinity)					
	SAR	<4	4 to 8	8 to 12	>12	12
	(sodicity)					
Subsoil	EC dS/m	<3	3 to 5	5 to 10	>10	4
	(salinity)					
	SAR	<4	4 to 8	8 to 12	>12	12
	(sodicity)					

Generic Water Guidelines

Water Use	Parameter		
	Chloride – 250 mg/l		
	Total dissolved solids – 500 mg/l		
	Nitrate (as N) -10 mg/l		
Drinking Water	Nitrite (as N) $- 1$ mg/l (where nitrates and		
	nitrites are both present, the total		
	acceptable concentration is 10 mg/l)		
Liveate als	Total dissolved solids – 3000 mg/l		
Livestock	100 mg/l for nitrate plus nitrite, and 10		
Watering	mg/l for nitrite alone		

Risk Assessment

- Estimate the potential for adverse effects from site-specific information:
 - extent and severity of contamination
 - potential for contamination to spread
 - receptors that may be affected
- Use risk characterization to plan:
 - remediation program
 - remediation objectives
 - risk management solutions

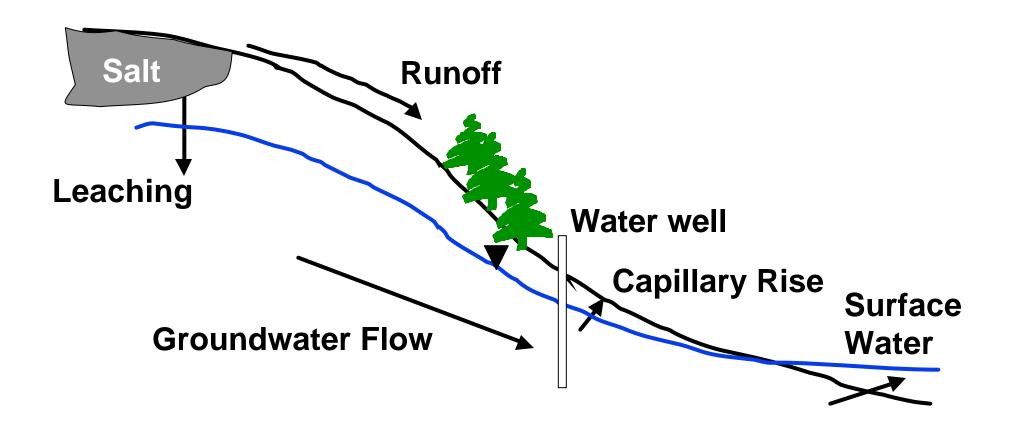
Risk Assessment

- Risk assessment is appropriate when:
 - generic guidelines do not account for sitespecific exposure conditions
 - significant or sensitive receptors
- Risk assessment endpoints may support:
 - equivalent land capability, or
 - risk management and land use restrictions

Site Assessment

Goal:

 Provide sufficient information to develop remediation objectives and a work plan


Information required:

- Extent and degree of contamination
- Land use and land capability (control sites)
- Receptors
- Potential for salts to move beyond spill site

Pathways of Salt Movement

Site Assessment Tools

- Soil sampling and lab analysis
- Field screening techniques
- Geophysical investigation
 - EM surveys
- Visual indicators
 - Vegetation damage
 - Salt tolerant vegetation
 - Crusting
- Groundwater wells

Remediation Options

- Reduce salt concentrations
- Provide calcium to replace sodium
- Methods include:
 - Excavation and disposal
 - In-situ flushing
 - Groundwater interception and disposal
 - Excavation and washing

Technical Background

Provides the science behind the guidelines

- Sources of salt
- Natural occurrence of salts in soil and groundwater
- Transport mechanisms in soil and groundwater
- Effects of salt on soil, vegetation

Conclusions

Guidelines provide:

- options for developing remediation objectives
 - generic guidelines
 - site-specific risk based objectives
 - risk management programs
- site assessment guidance
- potential remediation techniques
- scientific background