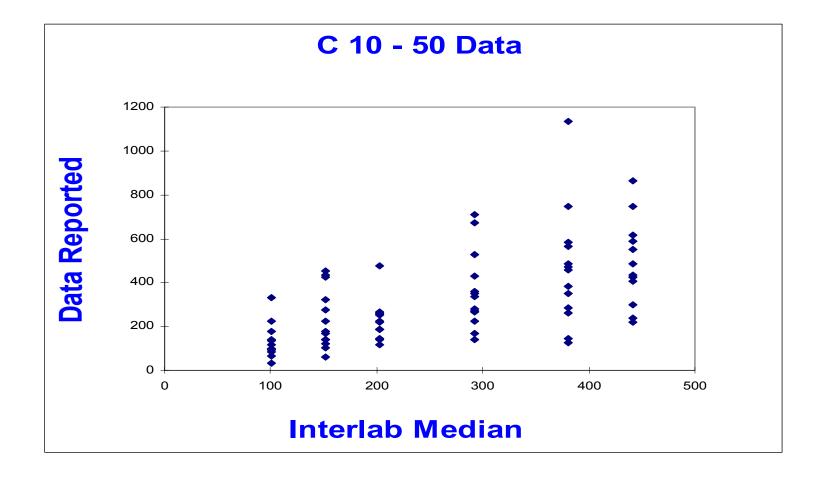

Development of PHC CWS Method


Richard Turle Analysis and Air Quality Division Environmental Technology Centre Environment Canada

Before the CWS Process CAEAL did a PHC Round Robin (1997)

Conclusion was.....

- No uniform methodology
- No definition of analyte
- No standardized calibration
- Thus:
 - Results incomparable
 - Needed a new approach
 - Hence the CWS PHC method

Recommendation from the October 1997 PHC Workshop

- Harmonize PHC Analysis Methods
- Major issues to be resolved
 - Carbon ranges
 - MDLs and DQOs
 - Single or multiple methods
 - Method options allowed
 - What about the heavy fraction?

What We Have (AMTAG ++) Accomplished?

- Wide consultation on method Job Done!
- Agreed on hydrocarbon fractions
- Agreed on analytical method
- Carried out 2 Round Robins
- Single lab validation & method development
- Published method

Hydrocarbon Fractions

- F1 : C6 C10 BTEX
- F2 : C10 C16 Naphthalene
- F3 : C16 C34 9 PAHs
- F4 : C34 C50
 - <u>or</u> Gravimetric Heavy
 - Hydrocarbons,
 - (silica gel cleanup optional)
 - or High temperature GC
- Moisture

BTEX and specific PAHs

Aromatics

- Correct rather than double count <u>if</u> <u>analyzed</u>
- Subtract BTEX from F1

 $\bigcirc \bigcirc$

 CH_3

- Subtract Naphthalene from F2
- Subtract other specified PAHs from F3
- Analyze 1 sample to show absence

CH₂CH₃

CH₃

CH₃

Analytical Method F1 C6 - C10

- Extract with methanol
- Extract within 2 days (if possible)
- Purge and Trap
- GCFID DB1 column
- Calibrate against toluene
- Integrate beginning of C6 to apex of C10

Analytical Method F2, F3, F4 (C10 - C50)

- Dry with diatomaceous earth
- Soxhlet with hexane + acetone
 - Dry with sodium sulfate
 - Add 3 5 mL toluene, reduce to 1 2 mL
 - Clean up with silica gel
- GCFID DB1 column
- Calibrate against nC10 + nC16 + nC34
- C10 C16, C16 C34, C34 C50

70% recovery for nC50

How to Recover C50?

- Need 70% recovery for nC50
- On column or splitless works
- Need high injector temperature
- Electronic pressure program helps
- Keep injector clean and silanized
 Difficult, but it <u>can</u> be done

Silica Gel Options C10 - C50

In - situ cleanup (no longer recommended)

- add 20 mL 50 / 50 n-hexane / DCM
- add 0.6 g 100% Activated Silica Gel per g dry sample
- shake or stir 5 minutes
- add 1 2 mL toluene, evaporate to 1 mL
- Column cleanup (recommended)
 - glass column 15 20 mm id
 - 1 cm Na₂SO₄, 20 mm (5g) 100% Activated Silica Gel
 - add sample extract
 - elute with 20 mL 50 / 50 n-hexane / DCM

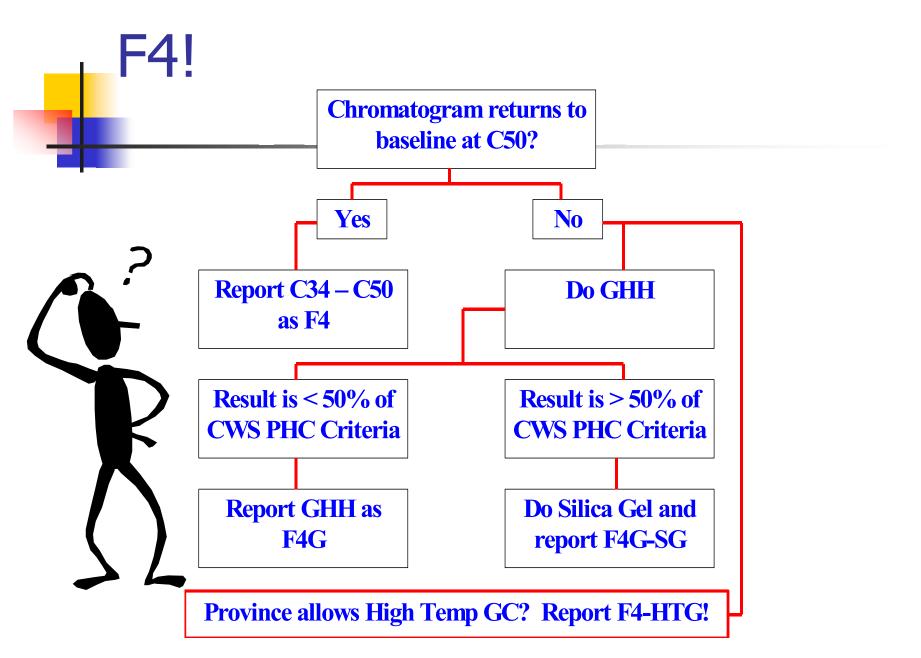
Cannot be added to GC results

- Soxhlet with hexane + aceton
- Evaporate and weigh

Analytical Method

F4 GHH

- Reconstitute in DCM + hexane
- Clean up with silica gel
- Evaporate and weigh again

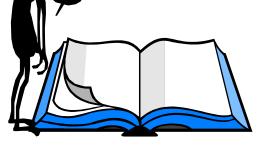


- If chromatogram returns to baseline at C50 then report <u>C34 C50</u> as F4
- If it does not return to baseline
 - must do gravimetric heavy hydrocarbons
 - if <50% of limit, report F4G
 - if >50% of limit, do silica gel, report F4G-SG
 - report the <u>higher of C34 50 or GHH-SG</u> as <u>F4</u>
- If jurisdiction permits,

F4!

- do high temperature GC characterization
- report that result as F4-HTG

Report all results!



Reporting

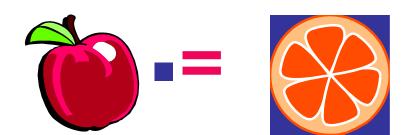
- F1 or F1 BTEX (if analyzed)
 - F2 or F2 -Naphthalene (if analyzed)
 - F3 or F3 particular PAHs (if analyzed)
 - F4 greater of C34 -C50 with Silica Gel <u>OR</u>

GHH with Silica gel <u>OR</u> F4-HTG maybe)

- % Moisture
- Total organic carbon (if analyzed)
- MDL
- Professional judgement about the product (if asked)

• Report all F4 results

Reporting


- Name and address of client and lab
- Dates, report number, sample ID, validator
- Statement that GHH <u>cannot</u> be added to C6 - C50
- Statement that method complies with CWS PHC method and is validated
- Deviations from method used

- Did chromatogram return to baseline at C50?
- Were all Quality Criteria met?
- Note that QC sample data is available

Equivalent Alternatives

- **I**Some aspects of method are prescriptive
- Technical progress is allowed using a performance based approach
- Soxhlet, purge and trap, silica gel, etc. can be changed <u>if</u> <u>validated</u>
- Validation includes analysis of 4 soils including peaty and clay soils by CCME and proposed method
- Data must be within 20% and all QC criteria met!

Special Soil Types

- Judgement of regulators and experts paramount
- High organic content soils can give false positives - confirm PHCs using GCMS or subtract a "blank" comparison soil. Measure TOC
- Manure amended bioremediation soils compare PHC results to a control site
- Soils containing partially degraded PHCs requires careful Silica Gel cleanup and might compare a contaminated and uncontaminated soil
- Wet soils dried using diatomaceous earth

Single Lab Validation

- Linearity: excellent for all standards
- Precision for standards (%RSD)

0	nC6	12%
0	benzene	8.5%
0	toluene	4.0 %
0	nC10	9.0%

- nC8 nC30
- nC50

9.0% less than 4% 7.3%

Single Lab Validation

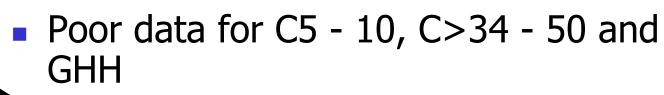
- Gasoline spiked soil
 - at 50 mg/kg Recovery = 82%, RSD = 7.5%
 - at 400 mg/kg Recovery = 88%, RSD = 8.4%
- Diesel and motor oil spike soil
 - Recovery about 95% for sum of F2 + F3 + F4
 - Precision 5% RSD for F2, 3.4% for F3, 3.5% for F4
- nC6, toluene and nC10 standards stable for 38 days (15% loss after 38 days)
- nC10 nC50 standards stable for 57 62 days.

Single Lab Validation

Detection Limits and CCME Tier 1 Levels for Residential / Parkland

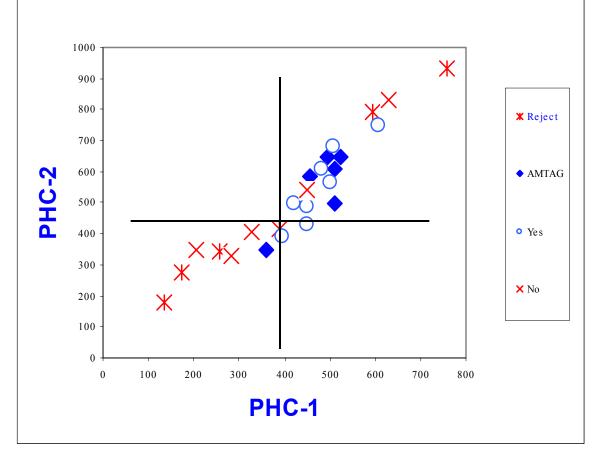
- CCME Levels (mg/kg)
 - F1 30 • F2 150
 - F3 400
 - F4 2800

- Single Lab MDL (mg/kg)
 - F1 12
 - F2 3.9
 - F3 9.0
 - F4 8
 - GHH 290


Round Robin July 1999

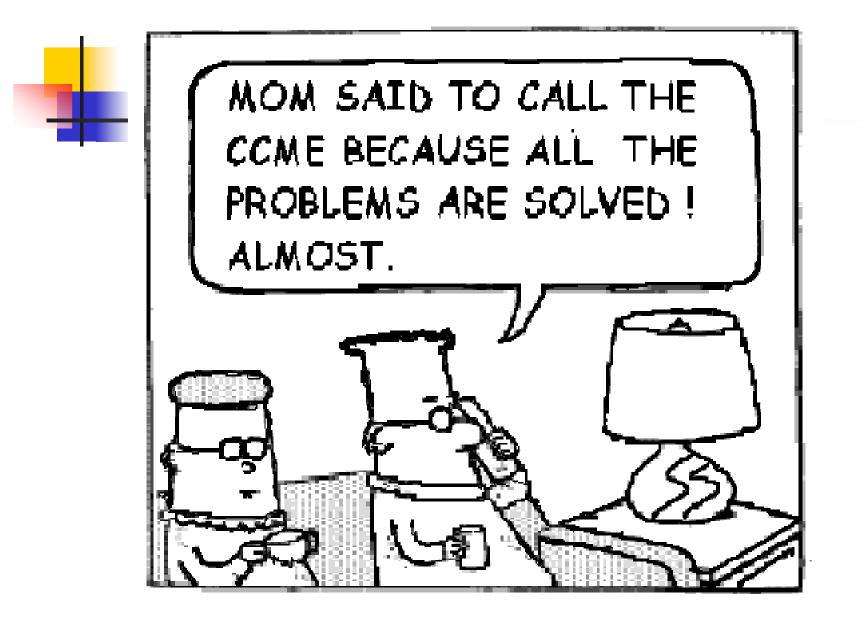
- 33 labs participated
- 7 Injectable standards and products
- 4 Soil samples
- Questionnaire

Round Robin July 1999


- Some used CWS PHC method, some didn't
 - Less variability when CWS PHC method used
 - Lots of GC problems encountered
 - Good data for C10 16 and C16 C34

Round Robin July 1999

PHC-1 vs PHC-2 C10-16


Lessons Learned from the Round Robin

- Must use CWS PHC method
- This is a difficult method to learn correctly so experience with the method is needed
 - Must meet QC criteria in method
 - Must get GC analysis right
- Updated method based on feedback
- Needed a second round robin

Method published

- Published April 2001 (English and French)
- Addendum issues in April 2002
 - (sent out with interlab study)
- Multi-lab validation Study summer 2002

