Evaluation Report
 254

Meter-Man Mustang BL99 Electric Fence Controller

A Co-operative Program Between

METER-MAN MUSTANG BL99 ELECTRIC FENCE CONTROLLER

MANUFACTURER AND DISTRIBUTOR:

B \& L Manufacturing Inc.
8 South Main, P.O. Box 486
Winnebago, Minnesota 56098
U.S.A.

SUMMARY AND CONCLUSIONS

The Mustang BL99 electric fence controller was very suitable for use over a wide range of fence conditions. Wire insulators were unnecessary for most fences while plant growth did not appreciably affect controller performance in most conditions.

Peak voltage output on a $5.4 \mathrm{~km}(3.3 \mathrm{mi})$ single wire fence varied from 6110 V for a well-insulated, grass-free, dry fence to 3880 V for an uninsulated, grass-grown, wet fence. Output was well above the 2000 V minimum guard voltage recommended for long-haired animals.

Peak voltage output on a $16 \mathrm{~km}(10 \mathrm{mi})$ single wire fence varied from 3150 V for a well-insulated, grass-free, dry fence to 2450 V for an uninsulated, grass-grown, wet fence.

Peak current flow through a cow touching well-insulated 5.4 and 16 km (3.3 and 10 mi) single wire fences varied from 7.9 to 5.2 A for a cow standing in water and from 1.5 to 0.83 A for a normally-grounded cow. The high peak current output indicated that the Mustang BL99 generated quite an intense shock on fairly long or poorly insulated fences.

The Mustang BL99 was very suitable for cold weather use on feeding fences. Peak voltage output at $-35^{\circ} \mathrm{C}$ on a 5.4 km (3.3. mi) single wire fence was about 6000 V , only 2% lower than its output at room temperature.

The Mustang BL99 did not have CSA approval.
No durability problems occurred during testing.

RECOMMENDATIONS

It is recommended that the manufacturer consider:

1. Submitting the controller to Canadian Standards Association for certification, to comply with regulations in the prairie provinces.
Chief Engineer -- E. O. Nyborg
Senior Engineer -- G. E. Frehlich
Project Technologist -- G. G. Burton

THE MANUFACTURER STATES THAT

With regard to recommendation number:

1. We are presently submitting the Meter-Man Mustang BL99 to the Canadian Standards Association for certification.

NOTE: This report has been prepared using SI units of measurement. A conversion table is given in APPENDIX II.

RETAIL PRICE:
\$102.00 (December, 1981, f.o.b. Humboldt)

GENERAL DESCRIPTION

The Mustang BL99 electric fence controller is designed for 115 V AC operation. It is meant to be mounted in a suitable weather-proof enclosure.

The Mustang BL99 contains solid-state electronics, with no moving parts. It may be used on fences without insulators. A light is provided to indicate operation.

Detailed specifications are given in APPENDIX.

SCOPE OF TEST

The performance characteristics of the Mustang BL99 were determined in the laboratory for a range of simulated fence conditions.* It was evaluated for ease of operation, quality of work, safety and suitability of the instruction manual.

RESULTS AND DISCUSSION

EASE OF OPERATION

Installation: The Mustang BL99 is equipped with three wire cord and plug for connection to a standard, grounded, 115 V AC receptacle. The controller is to be mounted indoors and if mounted outdoors, it must be placed in an appropriate weather-proof shelter. The manufacturer recommends that it be installed in a dry area near an electrical receptacle.

The controller is connected to the fence with a length of insulated wire. In addition, a suitable ground rod has to be installed and connected to the controller. Depending on ground conditions, a ground rod up to 3 m (10 ft) long may be needed.

Fence Condition: The manufacturer recommends that for cattle fences, in areas with normal ground conditions, a single charged wire provides a suitable fence. For very dry or frozen soil, which provide poor ground conditions, a two-wire fence, with one charged wire and one ground wire, may be necessary.

Operation: The Mustang BL99 is equipped with a flashing light to indicate that the fence is properly charged. If this light does not flash, it indicates that insufficient charge is being placed on the fence, which may be the result of too long a fence or poor insulation.

Consistent with safety practice for power line-operated fencers, the controller was factory sealed. As a result, if the indicator light should need replacement, the controller would need factory servicing.

QUALITY OF WORK

General: Operation of an electric fence controller is quite complex. To be effective, an electric fence has to deliver a minimum guard voltage to overcome the insulation resistance of the hide and hair of an animal. In addition, once the insulation resistance of the animal is overcome, the controller must deliver a pulse of electrical energy to the animal to create a shock. The amount of energy (charge) delivered is related to the current flow and its duration. If too much energy is delivered, the fence will be hazardous to both animals and humans while if not enough energy is delivered, animal control will be ineffective.

Little is known about the physiological effect of shock pulses on animals. In general, the following guidelines are used in assessing fencer performance: the minimum guard voltage needed to overcome animal insulation resistance should be at least 2000 V for sheep and for long-haired cattle, such as Herefords or Charolais. For shorter haired animals, such as most dairy cows, a minimum guard voltage of 700 V is sufficient. The shape of the current pulse affects what the animal feels when it touches an electrical fence, but little reliable information is available. It has been found that shock intensity is more related to the peak current value in a pulse than to the total value of the electrical charge.

Fence conditions determine the guard voltage produced by a fence controller and limit the amount of charge which a controller is capable of delivering to an animal. The insulation resistance of a $1.6 \mathrm{~km}(1 \mathrm{mi})$ single wire fence typically varied from about $1 \mathrm{k} \Omega$ for an uninsulated, grass-grown, wet fence to well above $500 \mathrm{k} \Omega$ for a well-insulated, grass-free, dry fence. The higher the fence insulation resistance, the greater is the length of fence on which a controller can be effectively used. To receive a shock from a single wire electrified fence, an animal must be sufficiently grounded to permit current to flow from the fence, through the animal. Typical electrical resistances of cattle vary from about $0.5 \mathrm{k} \Omega$ for a cow standing in water and licking a charged wire to about $4 \mathrm{k} \Omega$ for typical ground conditions. If ground conditions are too poor, animal resistance to ground is so great that no shock occurs.

Peak Voltage Output: FIGURES 1 and 2 show peak voltage outputs of the Mustang BL99 for 5.4 and 16 km (3.3 and 10 mi) lengths of single wire fence over a range of insulation resistances. On a $5.4 \mathrm{~km}(3.3 \mathrm{mi})$ fence (FIGURE 1), peak voltage output varied from 6110 V for a well-insulated, grass-free, dry fence to 3880 V for an uninsulated, wet fence with considerable grass touching the charged wire. The voltage output was well above the 2000 V minimum guard voltage needed for long-haired animals. From FIGURE 1, it can be seen that the Mustang BL99 can be satisfactorily used on this length of fence without wire insulators.

On a $16 \mathrm{~km}(10 \mathrm{mi})$ fence (FIGURE 2), peak voltage output ranged from 3150 V for a well-insulated, grass-free, dry fence to 2450 V for an uninsulated, grass-grown, wet fence. Voltage output was above the 2000 V minimum required for long-haired animals for all fence conditions. Wire insulators also were unnecessary for this length of fence.

As can be seen from FIGURES 1 and 2, plant growth touching a fence did not appreciably affect controller performance, since the voltage output was above 2000 V for all fence conditions. The Mustang BL99 can be expected to operate well over a wide range of fence conditions.

Electrical Charge: FIGURES 3 to 6 show the current output of the Mustang BL99 when a cow touches 5.4 and 16 km (3.3 and 10 mi) lengths of well-insulated, single wire, fence. FIGURES 3 and 4 are for an animal resistance of $0.5 \mathrm{k} \Omega$, which represent the most extreme condition of a cow standing in water and licking the charged wire, while FIGURES 5 and 6 are for an animal resistance of $4 \mathrm{k} \Omega$, representing more normal ground conditions. The shock intensity is related to the peak current in the pulse. The higher the peak current, the more intense will be the shock.

The peak current delivered by the Mustang BL99 varied from 7.9 A for a well-grounded cow touching the $5.4 \mathrm{~km}(3.3 \mathrm{mi})$ fence

FIGURE 1. Guard Voltage Produced on a 5.4 km Single Wire Fence.

FIGURE 2. Guard Voltage Produced on a 16 km Single Wire Fence.
to 0.83 A for a normally-grounded cow touching the 16 km (10 mi) fence. The Mustang BL99 gave quite an intense shock on fairly long or poorly insulated fences.

About 60 charge pulses per minute were delivered. The number of pulses did not vary with fencer load, however, the on-time was affected by load. On-time varied from about 0.51 to 2.14 ms .

FIGURE 3. Current Delivered to a Well-Grounded Cow Touching a 5.4 km Well-Insulated Fence.

FIGURE 4. Current Delivered to a Well-Grounded Cow Touching a 16 km Well-Insulated Fence.

FIGURE 5. Current Delivered to a Normally-Grounded Cow Touching a 5.4 km Well-Insulated Fence.

FIGURE 6. Current Delivered to a Normally-Grounded Cow Touching a 16 km Well-Insulated Fence.

Low Temperature Operation: The Mustang BL99 could effectively be used to energize cattle feeding wires during low winter temperatures. The peak voltage output of the controller at $-35^{\circ} \mathrm{C}$ on a $5.4 \mathrm{~km}(3.3 \mathrm{mi})$ single wire fence was about 6000 V , only 2% lower than its output at room temperature. Since the peak voltage output was well above the 2000 V minimum required to overcome the insulation resistance of long-haired animals, the Mustang BL99 was very suitable for feeding enclosures.

As frozen ground is often a very poor electrical conductor, two-wire systems, utilizing a separate ground wire, are usually most suitable for winter cattle feeding.

SAFETY

No safety problems were evident if the manufacturer's instructions were followed.

The Mustang BL99 did not have Canadian Standards Association certification. Since CSA certification of power lineoperated fence controllers is a requirement in the prairie provinces, it is recommended that the manufacturer submit the controller for certification.

INSTRUCTION MANUAL

The instruction manual outlined installation, safety considerations and operation of the fence controller.

DURABILITY RESULTS

The intent of the test was functional evaluation. An extended durability evaluation was not conducted. No problems occurred during functional testing.

CONVERSION TABLE
1 millimetre (mm)
1 metre (m)
1 kilometre (km)
$=0.04$ inches (in)

1 kilogram (kg) $=2.2$ pounds mass (lb)

Prairie Agricultural Machinery Institute

Head Office: P.O. Box 1900, Humboldt, Saskatchewan, Canada SOK 2A0
Telephone: (306) 682-2555
P.O. Box 1150

Humboldt, Saskatchewan, Canada SOK 2A0
Telephone: (306) 682-5033
Fax: (306) 682-5080

