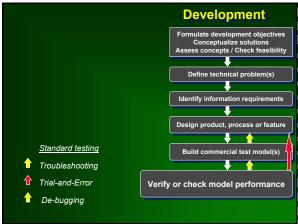
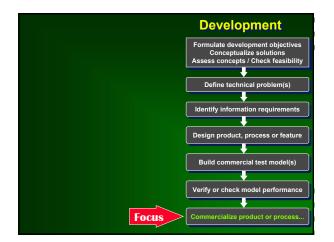
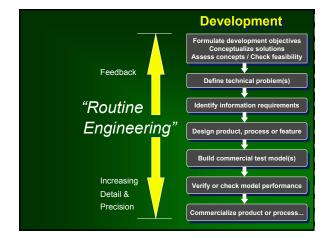
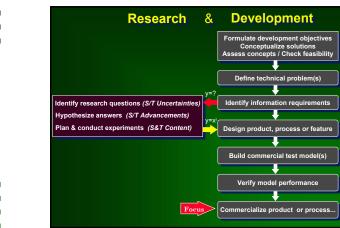
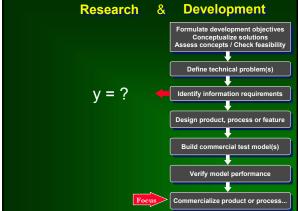

Μ	oving R&D Funding
	om Risk to Assurance
	Discussion Agri-Food and Value Adding Network Development Team meeting of June 14, 2002
	Prepared by Doug McGinnis

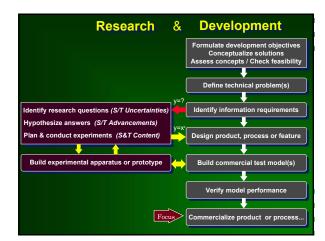


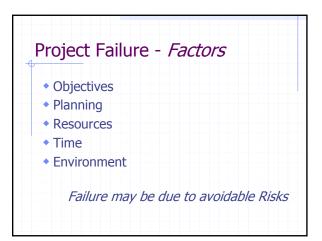


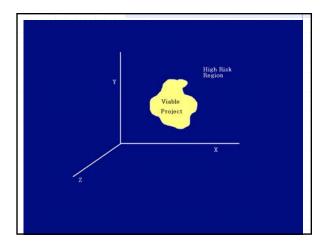

R&D Funding fails to deliver value because.....??? • Funding agency sets inappropriate goals • Planning was insufficient to meet objectives • Unable to respond to the unexpected • Wrong barriers / challenges were addressed • Funding and/or confidence was eroded • The competition was too fast & too smart • Personnel or expertise was lacking • Technical challenges were insurmountable • Development-marketing "chain" is broken

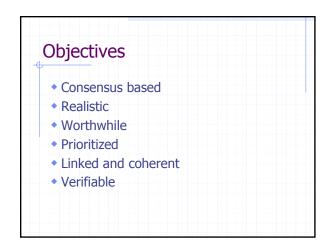


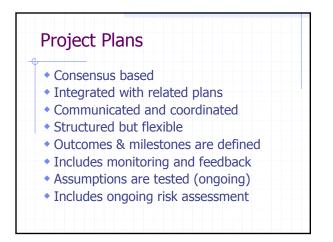


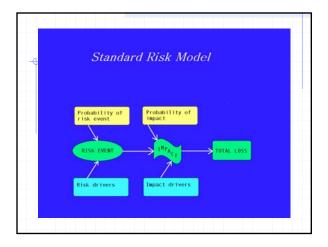


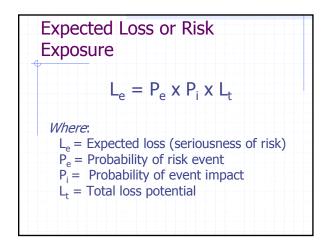


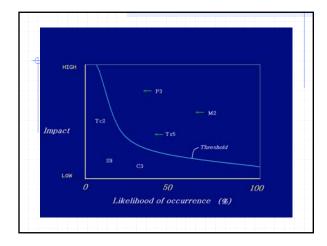


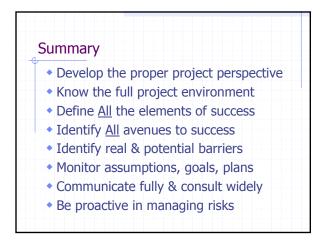


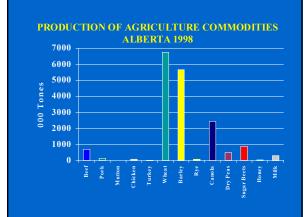


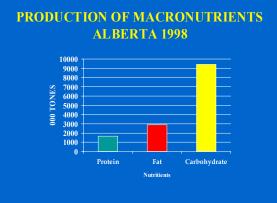




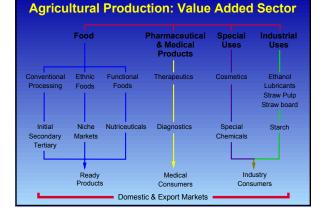


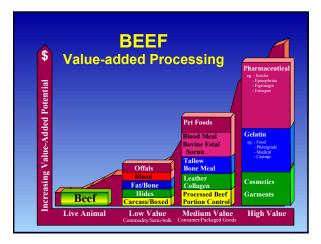


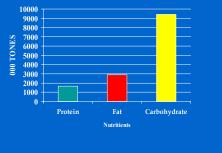


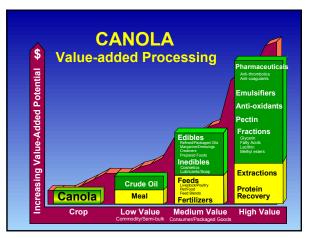


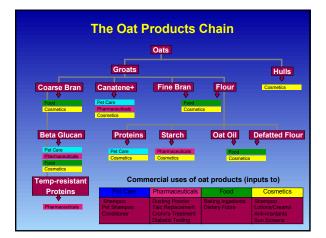
Agri-Health and Value-Added **Opportunities for Alberta**


Ron Pettitt Leduc Food Processing Development Centre Alberta Agriculture, Food and Rural Development June, 2002

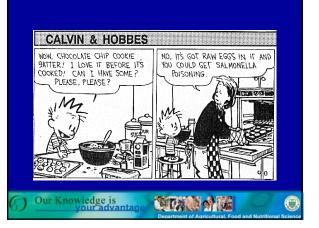





Macronutrients (1)


- 1,705 million tonnes of protein
- 2,899 million tonnes of fat
- 9,440 million tonnes of carbohydrate
- enough protein to sustain 85.250 million adults or 179.5 million children annually
- one Alberta farmer sustains 1,445 adults or 3,041 children annually

Lynn McMullen Associate Professor University of Alberta


COLOR OF MA

Changing Face of Foodborne Disease

New Pathogens
 in new places

Our Knowledge is

Changing Face of Foodborne Disease

- New Pathogens new characteristics
- acid tolerance
- antibiotic resistant pathogens

Changing Face of Foodborne Disease

- New Pathogens
- Changes in susceptibility of host population
 - as high as 25% of population is vulnerable
 - aging population
 - higher proportion
 - immunocompromised

Changing Face of Foodborne Disease

- New Pathogens
- Changes in susceptibility of host populations
- Chronic sequalae

Chronic Sequelae • Septic arthritis Salmonella spp. • Rheumatoid arthritis Yersinia, Shigella, Salmonella, Campylobacter, Escherichia spp. • Crohn's disease Mycobacterium paratuberculosis, E. coli, Streptococcus spp. • Renal disease E. coli O157:H7 and others • Guillian Barre syndrome Campylobacter jejuni

Changing Face of Foodborne Disease

- New Pathogens
- Changes in susceptibility of host populations
- New food vehicles
 - minimally processed
 - fresh preservative free
 - more perishable foods

Changing Face of Foodborne Disease

- New Pathogens
- Changes in susceptibility of host populations
- Chronic sequalae
- New food vehicles
- Economic impact on the industry

SETTLEMENT CLOSES CHAPTER IN '93 HAMBURGER DEATHS Feb. 26/98

Reuters Bob Burgdorfer

CHICAGO -- A \$58.5 million payment to Foodmaker Inc. by nine beef suppliers this week clears up nearly all claims stemming from four deaths and many illnesses in 1993 from *E.coli* tainted hamburgers.

Management of Food Safety HACCP Risk Assessment Food Safety Objectives as a risk management tool - a statement of the maximum frequency or concentration of a microbiological hazard in a food at the time of consumption that provides the appropriate level of consumer protection Our Knowledge is Pra of the

Research Opportunities for the Future

- Integration of environmental surveillance with human surveillance
 - increase understanding of epidemiology and sources of foodborne disease
- Improved understanding of foodborne pathogens
 - adaptation, virulence, impact of stress responses, improved detection · genomics and proteomics

TA OF M

Research Opportunities for the Future

- Integration of environmental surveillance with human surveillance
- Improved understanding of foodborne pathogens
- Microbial ecology

Our Knowledge is

processing and packaging technology

TO A CONTRACT

- controls

Our Knowledge is

Probiotic

Our Knowledge is

• A live microbial feed supplement that beneficially affects the host animal by improving its intestinal microbial balance

Fuller, 1989

TTA OF GA

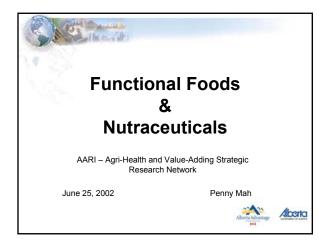
Prebiotic

· Non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon Gibson and Ruberfroid, 1995

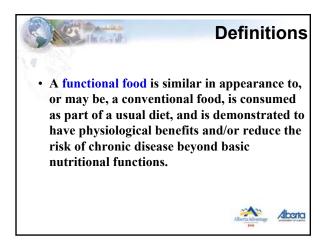
Symbiotic

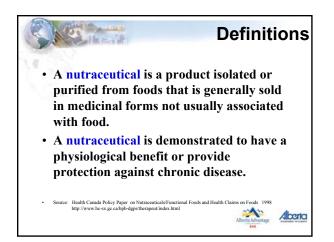
Our Knowledge is

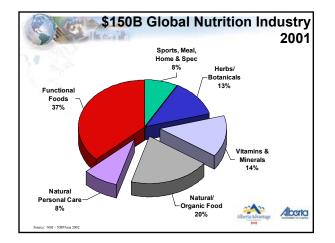
 a product that contains a prebiotic and a probiotic and the prebiotic selectively favors the probiotic

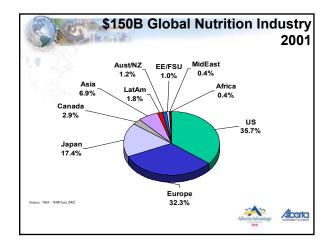

TA OF A

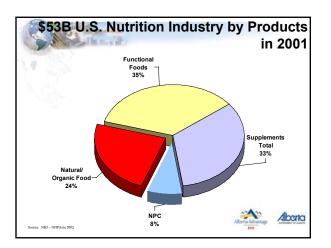
Research Opportunities in Microbial Ecology of the GIT

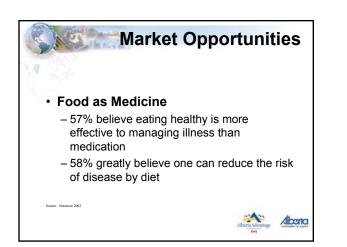

- Fundamental understanding of microbial populations of the gut
 - influence of gut microflora on health and disease
 - influence of antimicrobials on microbial ecology, gene expression in pathogens etc.
 - influence of prebiotics, symbiotics
- Our Knowledge is TA OF M e

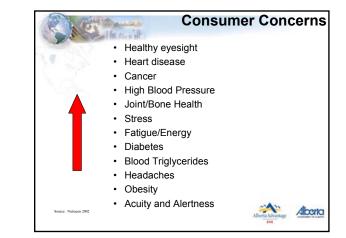


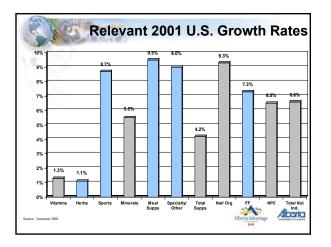

O

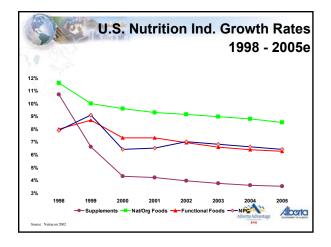












		oblems with Above Avg. ected Growth 1999-2010
1. 23	Menopausal women	21.1%
1 m.	Prostrate problems – men	19.8
	Heart disease	19.6
•	Diabetes	19.4
•	Arthritis	19.0
•	Osteoporosis	19.0
•	High blood pressure	18.8
•	High cholesterol	18.7
•	Cancer	18.2
•	Eyesight	15.2
•	Obesity	13.8 Aberta Abartage
Source: Nutracon 2002		141

Daula	0000	Top Ten L
Rank	2000	2001
1	MSM	Weight loss
2	Glucosmine/chondritin	Bone & Joint
3	SAM-e	Enzymes/co-enzymes
4	IP-6	MSM
5	Diet/Weight loss	Multi-vitamins
6	Green foods	Green foods
7	Olive Leaf Extract	Immune Boosters
8	Soy Supplements	Beta glucan
9	Alpha-lipoic acid	Growth hormone
10	Vitamin E	Soy isoflay, colostrum

Armand Lavoie Vice President Western Canada Foragen Technologies Management Inc.

June 25, 2002

Foragen Overview

- · A Company Creation Vehicle
- · Focus on Advanced Agricultural and Food Technologies
- \$42M fund
- Provide initial seed investment: \$500K to 1.5M
- Max total investment: \$3M
- Investment horizon: 5 to 7 years
- IRR: > 25% after tax (overall Foragen's performance)

foragen

Foragen Strategic Priorities

- Human and Animal Health
- Alternatives Bio-Based Products/Materials/Process

Environmental sustainability

enhancement

technologies

Food and Fibre Quality/Traits

• "Freedom to Operate" - Platform

• Food Safety - a 21st Century priority • Tools for enhancement of efficiency /production

foragei

torage

Foragen Investment Requirements

- Product concept - Differentiating advantage
- Unmet need
- Large market
- Patentable technology
- Freedom to operate
- Platform technology
- RETURN ON INVESTMENT

Foragen Due Diligence (I) Assessing the People - Ability to work together - Understand their strengths and weaknesses - Relationship built on trust - Capable of delivering results - Open to adding to the team Assessing the Technology - Intellectual property

- Proof-of-concept
- Unique selling feature
- Development plan

Foragen Due Diligence (II)

Common Thread in Foragen Investments

- Technology often results from strategic research initiatives
- Strong key scientists
 - Excellent science
 - Think creatively (often a paradigm shift)
 - Excellent to work with
- Never a clear winning investment - Are the elements of success present?
- Key is to foster success by providing key elements
- Science and medical faculties are also good sources of technologies
- Feedback from end-users is key

foragei

Foragen Sees a Strong Potential for Company Creation

- 20 to 40 companies
- Between \$50 and \$200 M sales
- Global companies
- Headquartered locally
- Strong manufacturing presence
- Opportunities in both main commodity and specialized crops adapted locally

Foragen Sees Many Other Technologies With Potential

- Not all technologies are company creation
 - Licensing plays
 - Good profitable companies with limited growth potential
- Potential for 100 to 200 co. with sales between \$5 and \$50 million
 - Product development is key for their success

Thank You

Wheat Bioproducts

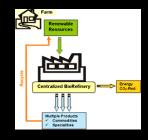
Canadian Wheat Cultivar Development Network

AAFC Cereal Research Centre June 4 - 5, 2002

Stewart J. Campbell PhD, MBA, PAg.

S. J. Campbell Investments Ltd. Cochrane, Alberta sjc@bizinc.com

Whither Wheat Bioproducts?


Look to the corn refining business :

- · Early on a US economic development instrument !
- · Today a global industrial bioproducts engine !
- Wheat refining a business model for Canada ?
- What's the same?
- What's different?

GLOBAL Technology Group Company Lin Blo-Chem 大版生化科技集團有限公司

What will it take to build Canada's bioeconomy?

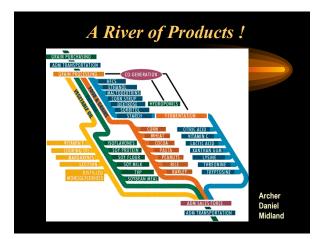
Strategic focus

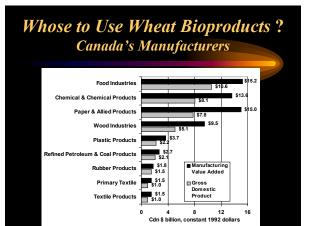
- Srategic alliances
- Simultaneous discovery
- Novel genetics
- Novel processing
- Novel products
- Commitment long term
- · Risk capacity
- Public appreciation of science

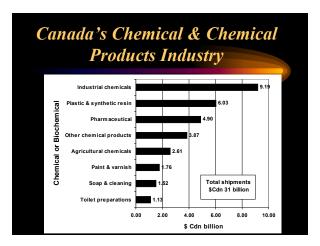
Current & Potential	
Biomass Feedstocks	

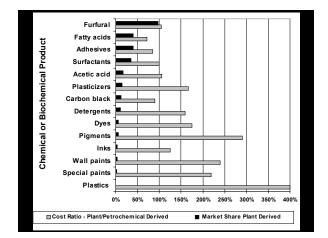
Crops		Cellulose / Hemicellulose		
Corn	Wheat	Forest residue	Sawdust	
Potato	Barley	Cereal straw	Corn fibre	
Sorghum	Sugar Cane	Yard clippings	MSW	
Milling byp	roducts	Industrial Hemp	Populars	
Food and	Beverage Wa	stes		
Beer		Used frying oils		
Cheese who	ey	Food processing w	astes	

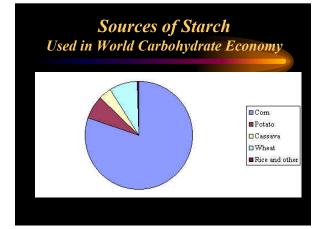
Fruit juices / drinks

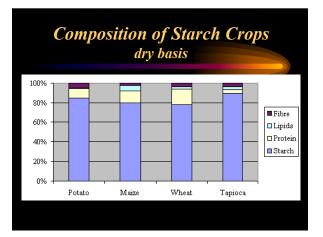

Corn syrup

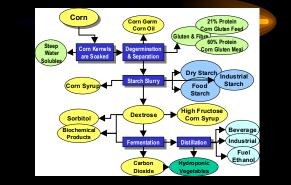

Canada's Bioproducts Feedstock

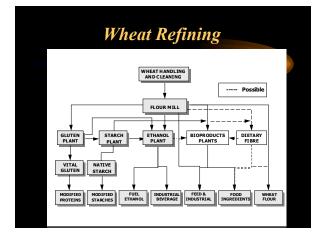

Bioresource	Production	Domestic Use	Available for Bioproducts	
Forest Products			10-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Lumber	68.4 million cubic	meters		
Wood pulp	25.3 million tonne	es shipped world-	wide	
Newsprint	9.2 million tonnes		housed	
Commercial forest	234.5 million hectares			
Sawmill Residue ¹⁸			1,100,000	
Cereals ¹⁹	million	million tonne in 1999/2000 crop year		
Wheat - all classes	26,900,000	8,643,000	18,257,00	
Barley all classes	13,196,000	10,503,000	2,693,00	
Corn	9,161,000	8,991,000	170,000	
Oats	3,641,000	2,104,000	1,537,00	
Rye	387,000	310,000	77,00	
Oilseeds				
Canola – all classes	8,798,000	3,597,000	5,201,00	
Flax – all classes	1.022,000	226,000	796,00	
Soybean – all classes	2,781,000	2,271,000	510,000	
Pulses and Specialty Crops				
All species and classes	4,074,000	1,392,000	2,682,00	
Agricultural Fibre Crops and Re	sidues			
Industrial hemp, others			Not known	
Straw, others			20,000,00	


Canada's Present Bioproducts

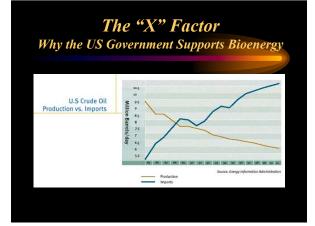

Bioproduct	Application	Present Contribution
Biomass energy	Combustion of wood resi- dues and pulping liquor	7% of Canadian energy supply
Biofuels	Corn, wheat and barley starch fermentation	175 million litre / year of fuel etha- nol. 0.3% of gasoline energy.
Biodiesel	Conversion of waste vege- table oil and animal fats	Pilot demonstration plant producing 1 million litre/year.

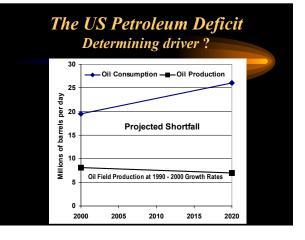






Total Material Utilization

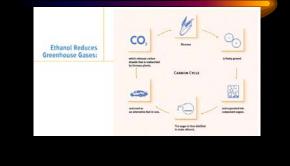


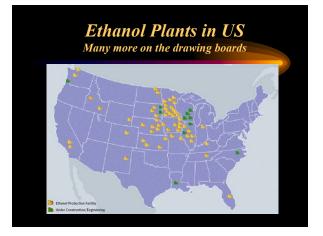

Simultaneous Discovery Frame Breaking !

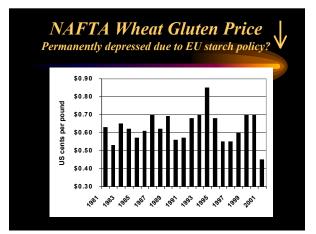
- Plant biotechnology
- · Agricultural & equipment engineering

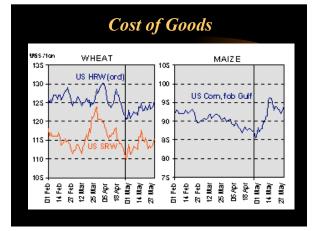
 Upstream processing biocatalysis, metabolic engineering, biomass conversion, bioreactor design and cell culturing,

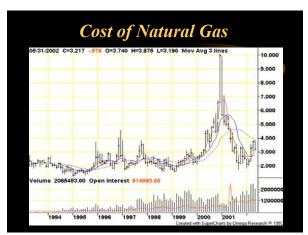
- Downstream processing separation, purification, biorefining, processing monitoring and control
- Biomaterial processing
- Systems Integration




Economic Arguments US Government Support of Ethanol




Environmental Drivers US Government Support of Ethanol



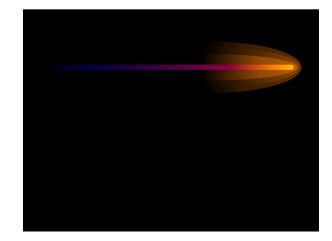
Focus for R&D ?

- Significant traits.....
- Grain yield & cost of goods
- Total material utilization
- Fractionation
- Extraction / purification.....
- Phys / chem modification
- Structure function
- Process engineering
- Utilization
- Industry/venture business case.
- Value chain

CPS OK, novel - let's see Must improve versus corn Yes, yield x unit selling \$ Probably OK, import, adapt Probably OK, import, adapt Import, adapt, develop novel Validate, adapt, novel Import, adapt, develop novel Much work needed Need proof of concept Much work needed

Key Results Expected of R&D \$ Relieve constraints and create opportunities

- New significant traits
 - · Competitive yield / cost
- · Process engineering
 - = fractionation
 - = isolation / purification
 - = total material utilization
 - = phys / chem modification
- Structure function
- · Utilization product development
- Market / value chain development


Wheat Ingredients Business

Food, Feed & Cosmetics

Industrial Bioproducts

- Biochemicals
- Biopolymers
- Biocomposites
- Biofuels

